Serie temporal

Los datos pueden estar espaciados a intervalos iguales (como la temperatura en un observatorio meteorológico en días sucesivos al mediodía) o desiguales (como el peso de una persona en sucesivas mediciones en el consultorio médico, la farmacia, etc.).

Para el análisis de las series temporales se usan métodos que ayudan a interpretarlas y que permiten extraer información representativa sobre las relaciones subyacentes entre los datos de la serie o de diversas series y que permiten en diferente medida y con distinta confianza extrapolar o interpolar los datos y así predecir el comportamiento de la serie en momentos no observados, sean en el futuro (extrapolación pronóstica), en el pasado (extrapolación retrógrada) o en momentos intermedios (interpolación).

Las series temporales se estudian en estadística, procesamiento de señales, econometría y muchas otras áreas.

Cuando la esperanza matemática de dichas variables aleatorias es constante o varía de manera cíclica, se dice que la serie es estacionaria y no tiene tendencia secular.

Muchas series temporales tienen una tendencia creciente (por ejemplo, el número de automóviles en uso en casi todos los países durante los últimos cincuenta años) o decreciente (por ejemplo, el número de personas que trabajan en la agricultura); otras no tienen tendencia (la luminosidad a horas sucesivas, que varía cíclicamente a lo largo de las 24 horas del día) y son estacionarias.