En ecuaciones diferenciales un problema de Cauchy (en algunos casos también llamado problema de valor inicial) consiste en resolver una ecuación diferencial sujeta a unas ciertas condiciones de frontera o valores iniciales sobre la solución cuando una de las variables que la definen, toma un determinado valor (usualmente, t=0, para modelar las condiciones del sistema en el instante inicial).
Su nombre se debe a Augustin Louis Cauchy.
son funciones dadas definidas sobre la superficie
Para ecuaciones diferenciales lineales el problema de Cauchy está resuelto dado que se puede garantizar la existencia y unicidad de la solución si las funciones que definen el problema son diferenciables con continuidad.
El teorema de Cauchy–Kowalevski dice que los problemas de Cauchy tienen solución única bajo ciertas condiciones, la más importante es que los datos de Cauchy y los coeficientes de la ecuación diferencial en derivadas parciales son funciones analíticas.
Los problemas de Cauchy pueden formularse en términos de ecuaciones integrales equivalentes a las ecuaciones diferenciales.
Esto puede tener ventajas suplementarias: las condiciones iniciales están automáticamente incorporadas a través de los límites de integración y para problemas lineales se maneja un operador integral acotado (de hecho, frecuentemente, un operador compacto), mientras que el operador diferencial del problema planteado en términos de ecuaciones diferenciales es en general no acotado.
Esto último permite echar mano de varios resultados conocidos para operadores compactos para resolver un problema planteado en términos de ecuaciones integrales.