Platonismo matemático
Con esto se explica al carácter objetivo e interpersonal de las matemáticas.Por lo tanto: los números naturales son objetos abstractos que existen independientes de todas las actividades racionales, es decir, el objeto aritmético del platonismo es verdad.» Wigner en su trabajo La irrazonable eficacia de la Matemática en las Ciencias Naturales expresó que: «Es un milagro, como ha señalado Schrödinger, que a pesar de la perturbadora complejidad del mundo, puedan descubrirse en los fenómenos ciertas regularidades.»[20] En el presente los partidarios del platonismo matemático generalmente citan el siguiente argumento a favor de sus posiciones, argumento que busca mostrar que las teorías epistémicas son (deben ser) consistentes con la aproximación realista: El argumento de indispensabilidad de Quine y Putnam básicamente sugiere que debemos estar «ontológicamente comprometida con todas aquellas entidades que sean indispensables para nuestras mejores teorías científicas», es decir, debemos afirmar como válidas e independientes todos aquellos elementos básicos del análisis que necesitamos en nuestros razonamientos, alternativamente, somos intelectualmente deshonestos.Tales intuiciones racionales también son defendidas por la mayor parte de los clásicos del racionalismo, así como en debates más recientes acerca de la justificación sobre el conocimiento a priori, entre otros por Laurence Bonjour.[21] Sin embargo, un tratamiento más sofisticado de este asunto sugiere que el problema es más profundo: «nuestras mejores teorías epistémicas parecen excluir cualquier conocimiento de los objetos matemáticos.»[22][23] Esto generalmente se conoce como el dilema de Benacerraf[24][25] dado que generalmente se interpreta como estableciendo que debemos abandonar nuestras teorías epistemológicas actuales o la justificación sobre el conocimiento matemático.Varios matemáticos teóricos en conjuntos siguieron este enfoque y activamente buscaron posibles axiomas que se pueden considerar como verdaderos por razones heurísticas y que decidieran la hipótesis del continuo.Se estudiaron muchos grandes axiomas cardinales, pero la hipótesis del continuo permaneció independiente.Por ejemplo, el teorema de Pitágoras siempre será verdadero independientemente del lugar, la época o la persona que lo utilice.En ambos casos se trata de verdades objetivas, ingénitas, universales, imperecederas e inmutables.