Grupo profinito

, que satisfacen con la propiedades: Es posible verlos por tanto como grupos topológicos de manera natural: cada uno de los grupos finitos está dotado de la topología discreta, y como G es un subconjunto del producto de aquellos espacios discretos, hereda cierta topología que lo convierte en un grupo topológico.

Los ejemplos más importantes de grupos pro-finitos son los enteros p-ádicos.

Los grupos fundamentales que son tratados por la Geometría algebraica son también pro-finitos, debido a que, hablando rápidamente, el álgebra sólo puede 'ver' recubrimientos finitos de una variedad algebraica.

G es un conjunto cerrado de este producto y por tanto es también compacto y de Hausdorff.

Todo grupo pro-finito es totalmente disconexo y más aún: un grupo topológico es pro-finito si y solamente si es Hausdorff, compacto y totalmente disconexo.

De hecho esto es equivalente a ser ind-finito.

Aplicando la dualidad de Pontryagin, uno puede ver que los grupos abelianos pro-finitos son los duales de los grupos abelianos discretos localmente finitos.

Estos últimos son precisamente los grupos de torsión abelianos.