Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros, y fue su primer indicio.
[4] Antes, en 1963, Roy Kerr había demostrado que en un espacio-tiempo cuatridimensional todos los agujeros negros debían de tener una geometría cuasiesférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L. Se conjetura que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos.
La gravedad de un agujero negro puede atraer el gas a su alrededor, que se arremolina y calienta a temperaturas de hasta 12.000.000 °C, unas 2000 veces más que la superficie del Sol.
[10] Los agujeros negros se forman en un proceso de colapso gravitatorio que fue ampliamente estudiado a mediados de siglo XX por diversos científicos, particularmente Robert Oppenheimer, Roger Penrose y Stephen Hawking, entre otros.
En este punto, dicho proceso puede proseguir hasta el colapso de dicho astro por la auto atracción gravitatoria que termina por convertir a esta enana blanca en un agujero negro.
En la actualidad todavía se desconoce lo que sucede con la materia que cae en el agujero negro atravesando este límite, porque para escalas pequeñas solo una teoría cuántica de la gravedad podría explicarlos adecuadamente, pero no existe una formulación completamente consistente con dicha teoría.
Michell calculó que un cuerpo con una densidad 500 veces mayor a la del Sol, pero con su mismo radio, tendría, en su superficie, una velocidad de escape igual a la de la luz y sería invisible.
En 1796, el matemático francés Pierre-Simon Laplace explicó en las dos primeras ediciones de su libro Exposition du Systeme du Monde la misma idea, aunque, al ganar terreno la idea de que la luz era una onda sin masa, en el siglo XIX fue descartada en ediciones posteriores.
En 1915, Einstein desarrolló la relatividad general y demostró que la luz era influida por la interacción gravitatoria.
Unos meses después, Karl Schwarzschild encontró una solución a las ecuaciones de Einstein, donde un cuerpo pesado absorbería la luz.
Esta teoría no fue objeto de mucha atención hasta los años 60, porque, después de la Segunda Guerra Mundial se tenía más interés en lo que sucedía a escala atómica.
Poco después, en 1969, John Wheeler[11] acuñó la locución «agujero negro» durante una reunión de cosmólogos en Nueva York, para designar lo que anteriormente se llamó «estrella en colapso gravitatorio completo».
[8][9] Según su origen, teóricamente pueden existir al menos dos clases de agujeros negros: Existe un teorema sobre propiedades de los agujeros negros que se suele enunciar diciendo que «un agujero negro no tiene pelo» (en inglés No-hair theorem); el teorema afirma que cualquier objeto que sufra un colapso gravitatorio alcanza un estado estacionario como agujero negro descrito solo por tres parámetros: su masa
En cuanto a la luz que atraviesa la zona del disco, también es afectada, tal como está previsto por la teoría de la Relatividad.
Eso significa que son igualmente probables todas las combinaciones o configuraciones de radiaciones de partículas que tengan energía, momento angular y carga eléctrica iguales.
El número mayor de configuraciones corresponde con mucho a una emisión con un espectro que es casi térmico.
Físicos como Jacob D. Bekenstein han relacionado los agujeros negros y su entropía con la teoría de la información.
Los trabajos de Bekenstein sobre teoría de la información y agujeros negros sugirieron que la segunda ley seguiría siendo válida si se introducía una entropía generalizada (Sgen) que sumara a la entropía convencional (Sconv), la entropía atribuible a los agujeros negros que depende del área total (A) de agujeros negros en el universo.
En espacio-tiempos no compactos se requieren algunas condiciones técnicas para decidir si una región es un agujero negro, así se dice que en un espacio-tiempo asintóticamente plano y predictible (que contiene una hipersuperficie de Cauchy que satisface ciertos requisitos), se dice que hay una región de agujero negro si el pasado causal de la hipersuperficie de tipo luz situada en el infinito futuro no contiene a todo el espacio-tiempo (eso significa que dicha hipersuperficie es inalcanzable desde algunos puntos del espacio tiempo, precisamente aquellos contenidos en el área de agujero negro).
Esta condición implica que no se cumplirán las condiciones de los teoremas mencionados anteriormente y, por tanto, estos no pueden ser aplicados para predecir la existencia de singularidades y por tanto agujeros negros.
[15][16][17] Este nuevo estudio da las mismas conclusiones que los obtenidos por trabajos anteriores basados en la relatividad general.
Ambas teorías están experimentalmente confirmadas pero, al intentar explicar la naturaleza de un agujero negro, es necesario discernir si se aplica la cuántica por ser algo muy pequeño o la relatividad por ser algo tan pesado.
Está claro que hasta que no se disponga de una física más avanzada no se conseguirá explicar realmente la naturaleza de este fenómeno.
Por su parte, la astrofísica Feryal Özel ha explicado algunas características probables en torno a un agujero negro: cualquier cosa, incluido el espacio vacío, que entre en la fuerza de marea provocada por un agujero negro se aceleraría a extremada velocidad como en un vórtice y todo el tiempo dentro del área de atracción de un agujero negro se dirigiría hacia el mismo agujero negro.
Esta observación indicó una rápida creación de agujeros negros súper masivos en el Universo joven.
Por ahora, no hay candidatos observados para ser agujeros negros primordiales.
Lo que supuso, además, la primera observación directa de dos agujeros negros fusionándose.
Sin contar los posibles microagujeros negros que casi siempre son efímeros al producirse a escalas subatómicas, macroscópicamente en abril de 2008 el equipo coordinado por Nikolai Saposhnikov y Lev Titarchuk ha identificado el más pequeño de los agujeros negros conocidos hasta la fecha; ha sido denominado J1650, se ubica en la constelación Ara (o Altar) de la Vía Láctea (la misma galaxia de la cual forma parte la Tierra).
Se considera que pueden existir muchos más agujeros negros de dimensiones semejantes.
Sin embargo, sí existe un efecto neto de transferencia de energía del agujero negro a sus aledaños, que es la radiación Hawking, cuya producción no viola ningún principio físico.