stringtranslate.com

secuencia ADN

La secuenciación del ADN es el proceso de determinar la secuencia del ácido nucleico : el orden de los nucleótidos en el ADN . Incluye cualquier método o tecnología que se utilice para determinar el orden de las cuatro bases: adenina , guanina , citosina y timina . La llegada de métodos rápidos de secuenciación de ADN ha acelerado enormemente la investigación y los descubrimientos biológicos y médicos. [1] [2]

El conocimiento de las secuencias de ADN se ha vuelto indispensable para la investigación biológica básica, los proyectos genográficos de ADN y en numerosos campos aplicados como el diagnóstico médico , la biotecnología , la biología forense , la virología y la sistemática biológica . La comparación de secuencias de ADN sanas y mutadas puede diagnosticar diferentes enfermedades, incluidos varios cánceres, [3] caracterizar el repertorio de anticuerpos, [4] y puede usarse para guiar el tratamiento del paciente. [5] Tener una forma rápida de secuenciar el ADN permite administrar una atención médica más rápida e individualizada, y identificar y catalogar más organismos. [4]

La rápida velocidad de secuenciación lograda con la tecnología moderna de secuenciación de ADN ha sido fundamental para la secuenciación de secuencias completas de ADN, o genomas , de numerosos tipos y especies de vida, incluido el genoma humano y otras secuencias completas de ADN de muchos animales, plantas y microbios. especies.

Un ejemplo de los resultados de la secuenciación automatizada de ADN por terminación de cadena.

Las primeras secuencias de ADN fueron obtenidas a principios de los años 1970 por investigadores académicos utilizando laboriosos métodos basados ​​en la cromatografía bidimensional . Tras el desarrollo de métodos de secuenciación basados ​​en fluorescencia con un secuenciador de ADN , [6] la secuenciación de ADN se ha vuelto más fácil y mucho más rápida. [7] [8]

Aplicaciones

La secuenciación de ADN se puede utilizar para determinar la secuencia de genes individuales , regiones genéticas más grandes (es decir, grupos de genes u operones ), cromosomas completos o genomas completos de cualquier organismo. La secuenciación de ADN es también la forma más eficaz de secuenciar indirectamente ARN o proteínas (a través de sus marcos de lectura abiertos ). De hecho, la secuenciación de ADN se ha convertido en una tecnología clave en muchas áreas de la biología y otras ciencias como la medicina, la ciencia forense y la antropología .

Biología Molecular

La secuenciación se utiliza en biología molecular para estudiar los genomas y las proteínas que codifican. La información obtenida mediante secuenciación permite a los investigadores identificar cambios en genes y ADN no codificante (incluidas secuencias reguladoras), asociaciones con enfermedades y fenotipos, e identificar posibles objetivos farmacológicos.

Biología evolucionaria

Dado que el ADN es una macromolécula informativa en términos de transmisión de una generación a otra, la secuenciación del ADN se utiliza en biología evolutiva para estudiar cómo se relacionan los diferentes organismos y cómo evolucionaron. En febrero de 2021, los científicos informaron, por primera vez, de la secuenciación de ADN de restos de animales , en este caso un mamut , de más de un millón de años, el ADN más antiguo secuenciado hasta la fecha. [9] [10]

Metagenómica

El campo de la metagenómica implica la identificación de organismos presentes en una masa de agua, aguas residuales , suciedad, desechos filtrados del aire o muestras de hisopos de organismos. Saber qué organismos están presentes en un entorno particular es fundamental para la investigación en ecología , epidemiología , microbiología y otros campos. La secuenciación permite a los investigadores determinar qué tipos de microbios pueden estar presentes en un microbioma , por ejemplo.

Virología

Como la mayoría de los virus son demasiado pequeños para ser vistos con un microscopio óptico, la secuenciación es una de las principales herramientas en virología para identificar y estudiar el virus. [11] Los genomas virales pueden estar basados ​​en ADN o ARN. Los virus de ARN requieren más tiempo para la secuenciación del genoma, ya que se degradan más rápido en muestras clínicas. [12] La secuenciación tradicional de Sanger y la secuenciación de próxima generación se utilizan para secuenciar virus en la investigación básica y clínica, así como para el diagnóstico de infecciones virales emergentes, la epidemiología molecular de patógenos virales y las pruebas de resistencia a los medicamentos. Hay más de 2,3 millones de secuencias virales únicas en GenBank . [11] Recientemente, NGS ha superado al Sanger tradicional como el enfoque más popular para generar genomas virales. [11]

Durante el brote de influenza aviar de 1990, la secuenciación viral determinó que el subtipo de influenza se originó a través del recombinamiento entre codornices y aves de corral. Esto llevó a que en Hong Kong se aprobara una legislación que prohibía la venta conjunta de codornices y aves de corral vivas en el mercado. La secuenciación viral también se puede utilizar para estimar cuándo comenzó un brote viral mediante una técnica de reloj molecular . [12]

Medicamento

Los técnicos médicos pueden secuenciar genes (o, teóricamente, genomas completos) de pacientes para determinar si existe riesgo de enfermedades genéticas. Esta es una forma de prueba genética , aunque es posible que algunas pruebas genéticas no impliquen la secuenciación del ADN.

La secuenciación del ADN también se utiliza cada vez más para diagnosticar y tratar enfermedades raras. A medida que se identifican más y más genes que causan enfermedades genéticas raras, los diagnósticos moleculares para los pacientes se vuelven más comunes. La secuenciación de ADN permite a los médicos identificar enfermedades genéticas, mejorar el manejo de las enfermedades, brindar asesoramiento reproductivo y terapias más efectivas. [13]

Además, la secuenciación de ADN puede ser útil para determinar una bacteria específica, para permitir tratamientos con antibióticos más precisos , reduciendo así el riesgo de crear resistencia a los antimicrobianos en las poblaciones de bacterias. [14] [15] [16] [17] [18] [19]

Investigación forense

La secuenciación de ADN se puede utilizar junto con métodos de elaboración de perfiles de ADN para la identificación forense [20] y pruebas de paternidad . Las pruebas de ADN han evolucionado enormemente en las últimas décadas para, en última instancia, vincular una huella de ADN con lo que se está investigando. Los patrones de ADN en las huellas dactilares, la saliva, los folículos pilosos, etc. separan de manera única a cada organismo vivo de otro. La prueba de ADN es una técnica que puede detectar genomas específicos en una cadena de ADN para producir un patrón único e individualizado.

Las cuatro bases canónicas

La estructura canónica del ADN tiene cuatro bases: timina (T), adenina (A), citosina (C) y guanina (G). La secuenciación de ADN es la determinación del orden físico de estas bases en una molécula de ADN. Sin embargo, hay muchas otras bases que pueden estar presentes en una molécula. En algunos virus (específicamente, bacteriófagos ), la citosina puede ser reemplazada por hidroximetilo o hidroximetilglucosacitosina. [21] En el ADN de los mamíferos, se pueden encontrar bases variantes con grupos metilo o fosfosulfato. [22] [23] Dependiendo de la técnica de secuenciación, una modificación particular, por ejemplo, el 5mC ( 5 metil citosina ) común en humanos, puede detectarse o no. [24]

En casi todos los organismos, el ADN se sintetiza in vivo utilizando únicamente las 4 bases canónicas; La modificación que se produce después de la replicación crea otras bases como 5 metil C. Sin embargo, algunos bacteriófagos pueden incorporar una base no estándar directamente. [25]

Además de las modificaciones, el ADN está bajo constante ataque de agentes ambientales como los rayos UV y los radicales de oxígeno. En la actualidad, la mayoría de los métodos de secuenciación de ADN no detectan la presencia de dichas bases dañadas, aunque PacBio ha publicado en este https://www.pacb.com/publications/direct-detection-and-sequencing-of-damged- bases-adn/

Historia

Descubrimiento de la estructura y función del ADN.

El ácido desoxirribonucleico ( ADN ) fue descubierto y aislado por primera vez por Friedrich Miescher en 1869, pero permaneció poco estudiado durante muchas décadas porque se pensaba que las proteínas, más que el ADN, eran las que mantenían el modelo genético de la vida. Esta situación cambió después de 1944 como resultado de algunos experimentos realizados por Oswald Avery , Colin MacLeod y Maclyn McCarty que demostraron que el ADN purificado podía transformar una cepa de bacterias en otra. Esta fue la primera vez que se demostró que el ADN era capaz de transformar las propiedades de las células.

En 1953, James Watson y Francis Crick propusieron su modelo de ADN de doble hélice , basado en estructuras cristalizadas de rayos X que estaba estudiando Rosalind Franklin . Según el modelo, el ADN se compone de dos cadenas de nucleótidos enrollados entre sí, unidos por enlaces de hidrógeno y que van en direcciones opuestas. Cada cadena está compuesta por cuatro nucleótidos complementarios: adenina (A), citosina (C), guanina (G) y timina (T), con una A en una cadena siempre emparejada con una T en la otra, y una C siempre emparejada con G. Propusieron que dicha estructura permitía utilizar cada hebra para reconstruir la otra, una idea central para la transmisión de información hereditaria entre generaciones. [26]

Frederick Sanger , pionero de la secuenciación. Sanger es uno de los pocos científicos que recibió dos premios Nobel, uno por la secuenciación de proteínas y otro por la secuenciación del ADN.

Las bases para la secuenciación de proteínas fueron establecidas por primera vez por el trabajo de Frederick Sanger , quien en 1955 había completado la secuencia de todos los aminoácidos de la insulina , una pequeña proteína secretada por el páncreas. Esto proporcionó la primera evidencia concluyente de que las proteínas eran entidades químicas con un patrón molecular específico y no una mezcla aleatoria de material suspendido en un fluido. El éxito de Sanger en la secuenciación de la insulina estimuló a los cristalógrafos de rayos X, incluidos Watson y Crick, que ya estaban tratando de comprender cómo el ADN dirigía la formación de proteínas dentro de una célula. Poco después de asistir a una serie de conferencias impartidas por Frederick Sanger en octubre de 1954, Crick comenzó a desarrollar una teoría que sostenía que la disposición de los nucleótidos en el ADN determinaba la secuencia de aminoácidos en las proteínas, lo que a su vez ayudaba a determinar la función de una proteína. Publicó esta teoría en 1958. [27]

secuenciación de ARN

La secuenciación de ARN fue una de las primeras formas de secuenciación de nucleótidos. El principal hito de la secuenciación de ARN es la secuencia del primer gen completo y el genoma completo del bacteriófago MS2 , identificado y publicado por Walter Fiers y sus colaboradores en la Universidad de Gante ( Gante , Bélgica ), en 1972 [28] y 1976. [29] Los métodos tradicionales de secuenciación de ARN requieren la creación de una molécula de ADNc que debe secuenciarse. [30]

Métodos tempranos de secuenciación de ADN.

El primer método para determinar secuencias de ADN implicó una estrategia de extensión de cebadores de ubicación específica establecida por Ray Wu en la Universidad de Cornell en 1970. [31] Para secuenciar se utilizó catálisis de ADN polimerasa y marcaje de nucleótidos específico, los cuales ocupan un lugar destacado en los esquemas de secuenciación actuales. los extremos cohesivos del ADN del fago lambda. [32] [33] [34] Entre 1970 y 1973, Wu, R Padmanabhan y sus colegas demostraron que este método se puede emplear para determinar cualquier secuencia de ADN utilizando cebadores sintéticos específicos de ubicación. [35] [36] [8] Frederick Sanger luego adoptó esta estrategia de extensión de cebadores para desarrollar métodos de secuenciación de ADN más rápidos en el Centro MRC , Cambridge , Reino Unido y publicó un método para la "secuenciación de ADN con inhibidores de terminación de cadena" en 1977. [37] Walter Gilbert y Allan Maxam en Harvard también desarrollaron métodos de secuenciación, incluido uno para la "secuenciación del ADN por degradación química". [38] [39] En 1973, Gilbert y Maxam informaron de la secuencia de 24 pares de bases utilizando un método conocido como análisis de punto errante. [40] Los avances en la secuenciación se vieron favorecidos por el desarrollo simultáneo de la tecnología del ADN recombinante , que permitió aislar muestras de ADN de fuentes distintas a los virus.

Secuenciación de genomas completos.

El genoma de 5.386 pb del bacteriófago φX174 . Cada bloque de color representa un gen.

El primer genoma de ADN completo que se secuenció fue el del bacteriófago φX174 en 1977. [41] Los científicos del Consejo de Investigación Médica descifraron la secuencia completa de ADN del virus de Epstein-Barr en 1984 y descubrieron que contenía 172.282 nucleótidos. La finalización de la secuencia marcó un punto de inflexión significativo en la secuenciación del ADN porque se logró sin conocimiento previo del perfil genético del virus. [42] [8]

A principios de la década de 1980, Herbert Pohl y sus colaboradores desarrollaron un método no radiactivo para transferir las moléculas de ADN de mezclas de reacción de secuenciación a una matriz inmovilizadora durante la electroforesis . [43] [44] Seguido de la comercialización del secuenciador de ADN "Direct-Blotting-Electrophoresis-System GATC 1500" de GATC Biotech , que se utilizó intensivamente en el marco del programa de secuenciación del genoma de la UE, se obtuvo la secuencia completa de ADN del Levadura Saccharomyces cerevisiae cromosoma II. [45] El laboratorio de Leroy E. Hood en el Instituto de Tecnología de California anunció la primera máquina de secuenciación de ADN semiautomática en 1986. [46] A esto le siguió la comercialización por parte de Applied Biosystems de la primera máquina de secuenciación totalmente automatizada, la ABI 370. , en 1987 y por Génesis 2000 de Dupont [47] que utilizó una nueva técnica de etiquetado fluorescente que permitía identificar los cuatro didesoxinucleótidos en un solo carril. En 1990, los Institutos Nacionales de Salud (NIH) de Estados Unidos habían iniciado ensayos de secuenciación a gran escala de Mycoplasma capricolum , Escherichia coli , Caenorhabditis elegans y Saccharomyces cerevisiae a un costo de 0,75 dólares por base. Mientras tanto, en el laboratorio de Craig Venter comenzó la secuenciación de secuencias de ADNc humano llamadas etiquetas de secuencia expresadas , un intento de capturar la fracción codificante del genoma humano . [48] ​​En 1995, Venter, Hamilton Smith y sus colegas del Instituto de Investigación Genómica (TIGR) publicaron el primer genoma completo de un organismo de vida libre, la bacteria Haemophilus influenzae . El cromosoma circular contiene 1.830.137 bases y su publicación en la revista Science [49] marcó el primer uso publicado de la secuenciación escopeta del genoma completo, eliminando la necesidad de esfuerzos iniciales de mapeo.

En 2001, se habían utilizado métodos de secuenciación rápida para producir un borrador de secuencia del genoma humano. [50] [51]

Métodos de secuenciación de alto rendimiento (HTS)

Historia de la tecnología de secuenciación  [52]

Se desarrollaron varios métodos nuevos para la secuenciación de ADN entre mediados y finales de la década de 1990 y se implementaron en secuenciadores de ADN comerciales en el año 2000. En conjunto, se denominaron métodos de secuenciación (NGS) de "próxima generación" o "segunda generación", para distinguirlos. a partir de los métodos anteriores, incluida la secuenciación de Sanger . A diferencia de la primera generación de secuenciación, la tecnología NGS se caracteriza típicamente por ser altamente escalable, lo que permite secuenciar todo el genoma de una vez. Por lo general, esto se logra fragmentando el genoma en pedazos pequeños, tomando muestras aleatorias de un fragmento y secuenciandolo usando una de una variedad de tecnologías, como las que se describen a continuación. Un genoma completo es posible porque se secuencian múltiples fragmentos a la vez (lo que le da el nombre de secuenciación "masivamente paralela") en un proceso automatizado.

La tecnología NGS ha empoderado enormemente a los investigadores para buscar ideas sobre la salud, a los antropólogos para investigar los orígenes humanos y está catalizando el movimiento de la " Medicina Personalizada ". Sin embargo, también ha abierto la puerta a más margen de error. Existen muchas herramientas de software para llevar a cabo el análisis computacional de datos NGS, a menudo compilados en plataformas en línea como CSI NGS Portal, cada una con su propio algoritmo. Incluso los parámetros dentro de un paquete de software pueden cambiar el resultado del análisis. Además, las grandes cantidades de datos producidos por la secuenciación del ADN también han requerido el desarrollo de nuevos métodos y programas para el análisis de secuencias. Se han intentado varios esfuerzos para desarrollar estándares en el campo NGS para abordar estos desafíos, la mayoría de los cuales han sido esfuerzos a pequeña escala surgidos de laboratorios individuales. Más recientemente, un gran esfuerzo organizado y financiado por la FDA culminó en el estándar BioCompute .

El 26 de octubre de 1990, Roger Tsien , Pepi Ross, Margaret Fahnestock y Allan J. Johnston presentaron una patente que describe la secuenciación por pasos ("base por base") con bloqueadores 3' removibles en matrices de ADN (transferencias y moléculas de ADN individuales). [53] En 1996, Pål Nyrén y su alumno Mostafa Ronaghi en el Real Instituto de Tecnología de Estocolmo publicaron su método de pirosecuenciación . [54]

El 1 de abril de 1997, Pascal Mayer y Laurent Farinelli presentaron patentes a la Organización Mundial de la Propiedad Intelectual que describen la secuenciación de colonias de ADN. [55] La preparación de muestras de ADN y los métodos de disposición aleatoria en cadena de la polimerasa de superficie (PCR) descritos en esta patente, junto con el método de secuenciación "base por base" de Roger Tsien et al., ahora se implementan en Illumina . Secuenciadores del genoma Hi-Seq.

En 1998, Phil Green y Brent Ewing de la Universidad de Washington describieron su puntuación de calidad phred para el análisis de datos de secuenciadores, [56] una técnica de análisis histórica que obtuvo una adopción generalizada y que sigue siendo la métrica más común para evaluar la precisión de una secuenciación. plataforma. [57]

Lynx Therapeutics publicó y comercializó la secuenciación masiva de firmas paralelas (MPSS) en 2000. Este método incorporó una tecnología de secuenciación basada en cuentas paralelizada, mediada por adaptador/ligación y sirvió como el primer método de secuenciación de "próxima generación" disponible comercialmente, aunque no Los secuenciadores de ADN se vendieron a laboratorios independientes. [58]

Métodos básicos

Secuenciación de Maxam-Gilbert

Allan Maxam y Walter Gilbert publicaron un método de secuenciación del ADN en 1977 basado en la modificación química del ADN y la posterior escisión en bases específicas. [38] También conocido como secuenciación química, este método permitió utilizar muestras purificadas de ADN bicatenario sin clonación adicional. El uso de etiquetado radiactivo en este método y su complejidad técnica desalentaron su uso extensivo después de que se realizaron mejoras en los métodos de Sanger.

La secuenciación de Maxam-Gilbert requiere un marcaje radiactivo en un extremo 5' del ADN y la purificación del fragmento de ADN que se va a secuenciar. Luego, el tratamiento químico genera roturas en una pequeña proporción de una o dos de las cuatro bases de nucleótidos en cada una de las cuatro reacciones (G, A+G, C, C+T). La concentración de los químicos modificadores se controla para introducir en promedio una modificación por molécula de ADN. De este modo se genera una serie de fragmentos marcados, desde el extremo radiomarcado hasta el primer sitio "cortado" de cada molécula. Los fragmentos de las cuatro reacciones se someten a electroforesis uno al lado del otro en geles desnaturalizantes de acrilamida para la separación por tamaños. Para visualizar los fragmentos, el gel se expone a una película de rayos X para realizar una autorradiografía, lo que produce una serie de bandas oscuras, cada una de las cuales corresponde a un fragmento de ADN radiomarcado, a partir del cual se puede inferir la secuencia. [38]

Este método está prácticamente obsoleto a partir de 2023. [59]

Métodos de terminación de cadena

El método de terminación de cadena desarrollado por Frederick Sanger y sus compañeros de trabajo en 1977 pronto se convirtió en el método elegido, debido a su relativa facilidad y confiabilidad. [37] [60] Cuando se inventó, el método terminador de cadena utilizaba menos sustancias químicas tóxicas y menores cantidades de radiactividad que el método de Maxam y Gilbert. Debido a su relativa facilidad, el método Sanger pronto se automatizó y fue el método utilizado en la primera generación de secuenciadores de ADN .

La secuenciación de Sanger es el método que prevaleció desde los años 1980 hasta mediados de los años 2000. Durante ese período, se lograron grandes avances en la técnica, como el etiquetado fluorescente, la electroforesis capilar y la automatización general. Estos avances permitieron una secuenciación mucho más eficiente, lo que generó costos más bajos. El método Sanger, en forma de producción en masa, es la tecnología que produjo el primer genoma humano en 2001, marcando el comienzo de la era de la genómica . Sin embargo, más adelante en la década, llegaron al mercado enfoques radicalmente diferentes, lo que redujo el costo por genoma de 100 millones de dólares en 2001 a 10 000 dólares en 2011. [61]

Secuenciación por síntesis

El objetivo de la secuenciación secuencial por síntesis (SBS) es determinar la secuenciación de una muestra de ADN mediante la detección de la incorporación de un nucleótido por una ADN polimerasa . Se utiliza una polimerasa diseñada para sintetizar una copia de una sola cadena de ADN y se monitorea la incorporación de cada nucleótido. El principio de secuenciación en tiempo real por síntesis se describió por primera vez en 1993 [62] y se publicaron mejoras algunos años después. [63] Las partes clave son muy similares para todas las realizaciones de SBS e incluyen (1) amplificación de ADN (para mejorar la señal posterior) y unir el ADN que se va a secuenciar a un soporte sólido, (2) generación de ADN monocatenario en el soporte sólido, (3) incorporación de nucleótidos usando una polimerasa diseñada y (4) detección en tiempo real de la incorporación de nucleótidos. Se repiten los pasos 3-4 y la secuencia se ensambla a partir de las señales obtenidas en el paso 4. Este principio de La secuenciación por síntesis en tiempo real se ha utilizado para casi todos los instrumentos de secuenciación paralela masiva , incluidos 454 , PacBio , IonTorrent , Illumina y MGI .

Secuenciación a gran escala y secuenciación de novo.

El ADN genómico se fragmenta en piezas aleatorias y se clona como una biblioteca bacteriana. Se secuencia el ADN de clones bacterianos individuales y la secuencia se ensambla utilizando regiones de ADN superpuestas.

La secuenciación a gran escala a menudo tiene como objetivo secuenciar piezas de ADN muy largas, como cromosomas completos , aunque la secuenciación a gran escala también se puede utilizar para generar cantidades muy grandes de secuencias cortas, como las que se encuentran en la presentación en fagos . Para objetivos más largos, como los cromosomas, los enfoques comunes consisten en cortar (con enzimas de restricción ) o cortar (con fuerzas mecánicas) grandes fragmentos de ADN en fragmentos de ADN más cortos. El ADN fragmentado puede luego clonarse en un vector de ADN y amplificarse en un huésped bacteriano como Escherichia coli . Los fragmentos cortos de ADN purificados de colonias bacterianas individuales se secuencian individualmente y se ensamblan electrónicamente en una secuencia larga y contigua. Los estudios han demostrado que agregar un paso de selección de tamaño para recolectar fragmentos de ADN de tamaño uniforme puede mejorar la eficiencia de la secuenciación y la precisión del ensamblaje del genoma. En estos estudios, el dimensionamiento automatizado ha demostrado ser más reproducible y preciso que el dimensionamiento manual del gel. [64] [65] [66]

El término " secuenciación de novo " se refiere específicamente a métodos utilizados para determinar la secuencia de ADN sin una secuencia conocida previamente. De novo se traduce del latín como "desde el principio". Los huecos en la secuencia ensamblada pueden llenarse mediante el recorrido del cebador . Las diferentes estrategias tienen diferentes compensaciones en cuanto a velocidad y precisión; Los métodos de escopeta se utilizan a menudo para secuenciar genomas grandes, pero su ensamblaje es complejo y difícil, particularmente porque las repeticiones de secuencias a menudo causan brechas en el ensamblaje del genoma.

La mayoría de los enfoques de secuenciación utilizan un paso de clonación in vitro para amplificar moléculas de ADN individuales, porque sus métodos de detección molecular no son lo suficientemente sensibles para la secuenciación de una sola molécula. La PCR en emulsión [67] aísla moléculas de ADN individuales junto con perlas recubiertas con cebador en gotitas acuosas dentro de una fase oleosa. Luego, una reacción en cadena de la polimerasa (PCR) recubre cada perla con copias clonales de la molécula de ADN seguida de una inmovilización para su posterior secuenciación. La PCR en emulsión se utiliza en los métodos desarrollados por Marguilis et al. (comercializado por 454 Life Sciences ), Shendure y Porreca et al. (también conocida como " secuenciación polony ") y secuenciación SOLiD , (desarrollada por Agencourt , más tarde Applied Biosystems , ahora Life Technologies ). [68] [69] [70] La PCR en emulsión también se utiliza en las plataformas GemCode y Chromium desarrolladas por 10x Genomics . [71]

Secuenciación de escopeta

La secuenciación de escopeta es un método de secuenciación diseñado para el análisis de secuencias de ADN de más de 1000 pares de bases, hasta cromosomas completos inclusive. Este método requiere que el ADN objetivo se rompa en fragmentos aleatorios. Después de secuenciar fragmentos individuales utilizando el método de terminación de cadena , las secuencias se pueden volver a ensamblar en función de sus regiones superpuestas. [72]

Métodos de alto rendimiento

Se deben ensamblar múltiples lecturas de secuencias fragmentadas en función de sus áreas superpuestas.

La secuenciación de alto rendimiento, que incluye métodos de secuenciación de "lectura corta" de próxima generación y de "lectura larga" de tercera generación, [nt 1] se aplica a la secuenciación del exoma , la secuenciación del genoma, la resecuenciación del genoma, la elaboración de perfiles del transcriptoma ( RNA-Seq ), Interacciones ADN-proteína ( secuenciación ChIP ) y caracterización del epigenoma . [73]

La gran demanda de secuenciación de bajo costo ha impulsado el desarrollo de tecnologías de secuenciación de alto rendimiento que paralelizan el proceso de secuenciación y producen miles o millones de secuencias simultáneamente. [74] [75] [76] Las tecnologías de secuenciación de alto rendimiento tienen como objetivo reducir el costo de la secuenciación de ADN más allá de lo que es posible con los métodos estándar de terminación de colorante. [77] En la secuenciación de rendimiento ultraalto se pueden ejecutar en paralelo hasta 500.000 operaciones de secuenciación por síntesis. [78] [79] [80] Estas tecnologías permitieron secuenciar un genoma humano completo en tan solo un día. [81] A partir de 2019 , los líderes corporativos en el desarrollo de productos de secuenciación de alto rendimiento incluyeron Illumina , Qiagen y ThermoFisher Scientific . [81]

Métodos de secuenciación de lectura larga.

Secuenciación en tiempo real de una sola molécula (SMRT)

La secuenciación SMRT se basa en el enfoque de secuenciación por síntesis. El ADN se sintetiza en guías de ondas de modo cero (ZMW), pequeños contenedores parecidos a pozos con las herramientas de captura ubicadas en el fondo del pozo. La secuenciación se realiza con el uso de polimerasa no modificada (unida al fondo del ZMW) y nucleótidos marcados con fluorescencia que fluyen libremente en la solución. Los pocillos están construidos de manera que sólo se detecta la fluorescencia que se produce en el fondo del pocillo. La etiqueta fluorescente se desprende del nucleótido tras su incorporación a la cadena de ADN, dejando una cadena de ADN sin modificar. Según Pacific Biosciences (PacBio), desarrollador de la tecnología SMRT, esta metodología permite detectar modificaciones de nucleótidos (como la metilación de citosina). Esto sucede mediante la observación de la cinética de la polimerasa. Este enfoque permite lecturas de 20.000 nucleótidos o más, con longitudes de lectura promedio de 5 kilobases. [88] [98] En 2015, Pacific Biosciences anunció el lanzamiento de un nuevo instrumento de secuenciación llamado Sequel System, con 1 millón de ZMW en comparación con 150 000 ZMW en el instrumento PacBio RS II. [99] [100] La secuenciación SMRT se conoce como secuenciación de " tercera generación " o de "lectura larga".

Secuenciación de ADN con nanoporos

El ADN que pasa a través del nanoporo cambia su corriente iónica. Este cambio depende de la forma, el tamaño y la longitud de la secuencia de ADN. Cada tipo de nucleótido bloquea el flujo de iones a través del poro durante un período de tiempo diferente. El método no requiere nucleótidos modificados y se realiza en tiempo real. La secuenciación de nanoporos se conoce como secuenciación de " tercera generación " o de "lectura larga", junto con la secuenciación SMRT.

Las primeras investigaciones industriales sobre este método se basaron en una técnica llamada "secuenciación de exonucleasas", donde la lectura de señales eléctricas se producía cuando los nucleótidos pasaban por los poros de alfa (α) -hemolisina unidos covalentemente con ciclodextrina . [101] Sin embargo, el método comercial posterior, la 'secuenciación de hebras', secuenció bases de ADN en una hebra intacta.

Dos áreas principales de secuenciación de nanoporos en desarrollo son la secuenciación de nanoporos en estado sólido y la secuenciación de nanoporos basada en proteínas. La secuenciación de nanoporos de proteínas utiliza complejos de proteínas de membrana como la α-hemolisina, MspA ( Mycobacterium smegmatis Porin A) o CssG, que se muestran muy prometedores dada su capacidad para distinguir entre nucleótidos individuales y grupos. [102] Por el contrario, la secuenciación de nanoporos en estado sólido utiliza materiales sintéticos como nitruro de silicio y óxido de aluminio y se prefiere por su capacidad mecánica superior y su estabilidad térmica y química. [103] El método de fabricación es esencial para este tipo de secuenciación dado que la matriz de nanoporos puede contener cientos de poros con diámetros inferiores a ocho nanómetros. [102]

El concepto se originó a partir de la idea de que las moléculas de ADN o ARN monocatenarias pueden ser impulsadas electroforéticamente en una secuencia lineal estricta a través de un poro biológico que puede tener menos de ocho nanómetros, y pueden detectarse dado que las moléculas liberan una corriente iónica mientras se mueven a través del poro. El poro contiene una región de detección capaz de reconocer diferentes bases, generando cada base varias señales específicas en el tiempo correspondientes a la secuencia de bases a medida que cruzan el poro, que luego se evalúan. [103] El control preciso sobre el transporte de ADN a través del poro es crucial para el éxito. Se han utilizado varias enzimas, como exonucleasas y polimerasas, para moderar este proceso colocándolas cerca de la entrada del poro. [104]

Métodos de secuenciación de lectura corta.

Secuenciación masiva de firmas paralelas (MPSS)

La primera de las tecnologías de secuenciación de alto rendimiento, la secuenciación masiva de firmas paralelas (o MPSS), se desarrolló en la década de 1990 en Lynx Therapeutics, una empresa fundada en 1992 por Sydney Brenner y Sam Eletr . MPSS era un método basado en cuentas que utilizaba un enfoque complejo de ligación de adaptadores seguido de decodificación del adaptador, leyendo la secuencia en incrementos de cuatro nucleótidos. Este método lo hizo susceptible a sesgos específicos de secuencia o pérdida de secuencias específicas. Debido a que la tecnología era tan compleja, Lynx Therapeutics solo realizó MPSS "internamente" y no se vendieron máquinas de secuenciación de ADN a laboratorios independientes. Lynx Therapeutics se fusionó con Solexa (luego adquirida por Illumina ) en 2004, lo que llevó al desarrollo de la secuenciación por síntesis, un enfoque más simple adquirido de Manteia Predictive Medicine , que dejó obsoleto el MPSS. Sin embargo, las propiedades esenciales de la salida MPSS eran típicas de tipos de datos posteriores de alto rendimiento, incluidos cientos de miles de secuencias cortas de ADN. En el caso de MPSS, estos se utilizaron normalmente para secuenciar ADNc para medir los niveles de expresión génica . [58]

Secuenciación polonia

El método de secuenciación polony , desarrollado en el laboratorio de George M. Church en Harvard, fue uno de los primeros sistemas de secuenciación de alto rendimiento y se utilizó para secuenciar un genoma completo de E. coli en 2005. [105] Combinaba un método de secuenciación emparejado in vitro. biblioteca de etiquetas con PCR en emulsión, un microscopio automatizado y química de secuenciación basada en ligación para secuenciar un genoma de E. coli con una precisión de >99,9999% y un costo de aproximadamente 1/9 del de la secuenciación de Sanger. [105] La tecnología obtuvo la licencia de Agencourt Biosciences, posteriormente se dividió en Agencourt Personal Genomics y, finalmente, se incorporó a la plataforma SOLiD de Applied Biosystems . Posteriormente, Applied Biosystems fue adquirida por Life Technologies , ahora parte de Thermo Fisher Scientific .

454 pirosecuenciación

454 Life Sciences , que desde entonces ha sido adquirida por Roche Diagnostics, desarrolló una versión paralelizada de pirosecuenciación . El método amplifica el ADN dentro de gotas de agua en una solución de aceite (PCR en emulsión), y cada gota contiene una única plantilla de ADN unida a una única perla recubierta con un cebador que luego forma una colonia clonal. La máquina de secuenciación contiene muchos pocillos de volumen de picolitros , cada uno de los cuales contiene una sola perla y enzimas de secuenciación. La pirosecuenciación utiliza luciferasa para generar luz para la detección de los nucleótidos individuales agregados al ADN naciente, y los datos combinados se utilizan para generar lecturas de secuencia . [68] Esta tecnología proporciona una longitud de lectura intermedia y un precio por base en comparación con la secuenciación Sanger en un extremo y Solexa y SOLiD en el otro. [77]

Secuenciación de Illumina (Solexa)

Solexa , ahora parte de Illumina , fue fundada por Shankar Balasubramanian y David Klenerman en 1998 y desarrolló un método de secuenciación basado en tecnología de terminadores de tinte reversibles y polimerasas diseñadas. [106] El concepto de química terminada reversible fue inventado por Bruno Canard y Simon Sarfati en el Instituto Pasteur de París. [107] [108] Fue desarrollado internamente en Solexa por aquellos nombrados en las patentes relevantes. En 2004, Solexa adquirió la empresa Manteia Predictive Medicine para obtener una tecnología de secuenciación paralela masiva inventada en 1997 por Pascal Mayer y Laurent Farinelli. [55] Se basa en "grupos de ADN" o "colonias de ADN", que implica la amplificación clonal del ADN en una superficie. La tecnología del clúster fue adquirida conjuntamente con Lynx Therapeutics de California. Solexa Ltd. posteriormente se fusionó con Lynx para formar Solexa Inc.

Un secuenciador Illumina HiSeq 2500
Celda de flujo Illumina NovaSeq 6000

En este método, las moléculas de ADN y los cebadores se unen primero a un portaobjetos o a una celda de flujo y se amplifican con polimerasa para que se formen colonias de ADN clonal locales, que más tarde se denominarán "grupos de ADN". Para determinar la secuencia, se añaden cuatro tipos de bases terminadoras reversibles (bases RT) y los nucleótidos no incorporados se eliminan por lavado. Una cámara toma imágenes de los nucleótidos marcados con fluorescencia . Luego, el tinte, junto con el bloqueador terminal 3', se elimina químicamente del ADN, lo que permite que comience el siguiente ciclo. A diferencia de la pirosecuenciación, las cadenas de ADN se extienden un nucleótido a la vez y la adquisición de imágenes se puede realizar en un momento retrasado, lo que permite capturar conjuntos muy grandes de colonias de ADN mediante imágenes secuenciales tomadas con una sola cámara.

Un secuenciador Illumina MiSeq

Desacoplar la reacción enzimática y la captura de imágenes permite un rendimiento óptimo y una capacidad de secuenciación teóricamente ilimitada. Con una configuración óptima, el rendimiento final alcanzable del instrumento viene dictado únicamente por la tasa de conversión de analógico a digital de la cámara, multiplicada por el número de cámaras y dividida por el número de píxeles por colonia de ADN necesarios para visualizarlas de forma óptima (aproximadamente 10 píxeles/colonia). En 2012, con cámaras funcionando a velocidades de conversión A/D de más de 10 MHz y sistemas ópticos, fluídicos y enzimáticos disponibles, el rendimiento puede ser múltiplos de 1 millón de nucleótidos/segundo, lo que corresponde aproximadamente a 1 equivalente de genoma humano con una cobertura de 1x por hora por instrumento. y 1 genoma humano resecuenciado (a aproximadamente 30x) por día por instrumento (equipado con una sola cámara). [109]

Síntesis combinatoria de anclaje de sonda (cPAS)

Este método es una modificación mejorada de la tecnología combinatoria de ligadura de anclaje de sonda (cPAL) descrita por Complete Genomics [110] , que desde 2013 pasó a formar parte de la empresa china de genómica BGI . [111] Las dos empresas han perfeccionado la tecnología para permitir lecturas más largas longitudes, reducciones del tiempo de reacción y tiempos más rápidos para obtener resultados. Además, los datos ahora se generan como lecturas completas contiguas en el formato de archivo FASTQ estándar y se pueden usar tal cual en la mayoría de los procesos de análisis bioinformáticos basados ​​en lecturas cortas. [112] [ cita necesaria ]

Las dos tecnologías que forman la base de esta tecnología de secuenciación de alto rendimiento son las nanobolas de ADN (DNB) y las matrices estampadas para la unión de nanobolas a una superficie sólida. [110] Las nanobolas de ADN se forman simplemente desnaturalizando bibliotecas bicatenarias ligadas a adaptadores y ligando la cadena delantera solo a un oligonucleótido férula para formar un círculo de ADN monocatenario. Se producen copias fieles de los círculos que contienen el inserto de ADN utilizando Rolling Circle Amplification, que genera aproximadamente entre 300 y 500 copias. La larga hebra de ADNss se pliega sobre sí misma para producir una estructura de nanobola tridimensional de aproximadamente 220 nm de diámetro. La creación de DNB reemplaza la necesidad de generar copias de PCR de la biblioteca en la celda de flujo y, como tal, puede eliminar grandes proporciones de lecturas duplicadas, ligaduras de adaptador-adaptador y errores inducidos por la PCR. [112] [ cita necesaria ]

Un secuenciador BGI MGISEQ-2000RS

La matriz estampada de puntos cargados positivamente se fabrica mediante fotolitografía y técnicas de grabado, seguidas de modificación química para generar una celda de flujo de secuenciación. Cada punto de la celda de flujo tiene aproximadamente 250 nm de diámetro, está separado por 700 nm (de centro a centro) y permite conectar fácilmente un único DNB con carga negativa a la celda de flujo y, por lo tanto, reducir la acumulación excesiva o insuficiente en la celda de flujo. [110] [ cita necesaria ]

Luego, la secuenciación se realiza mediante la adición de una sonda oligonucleotídica que se une en combinación a sitios específicos dentro del DNB. La sonda actúa como un ancla que luego permite que uno de los cuatro nucleótidos etiquetados e inactivados de forma reversible se una después de fluir a través de la celda de flujo. Los nucleótidos libres se eliminan antes de la excitación láser de las etiquetas adheridas, luego emiten fluorescencia y la señal es capturada por cámaras que se convierten en una salida digital para la llamada de bases. La base adjunta tiene su terminador y etiqueta escindidos químicamente al finalizar el ciclo. El ciclo se repite con otro flujo de nucleótidos libres marcados a través de la celda de flujo para permitir que el siguiente nucleótido se una y capture su señal. Este proceso se completa varias veces (generalmente de 50 a 300 veces) para determinar la secuencia del fragmento de ADN insertado a una velocidad de aproximadamente 40 millones de nucleótidos por segundo a partir de 2018. [ cita necesaria ]

secuenciación SÓLIDA

Preparación de biblioteca para la plataforma SOLiD
Esquema de codificación de dos bases. En la codificación de dos bases, a cada par único de bases en el extremo 3' de la sonda se le asigna uno de cuatro colores posibles. Por ejemplo, "AA" se asigna al azul, "AC" al verde, y así sucesivamente para los 16 pares únicos. Durante la secuenciación, cada base de la plantilla se secuencia dos veces y los datos resultantes se decodifican según este esquema.

La tecnología SOLiD de Applied Biosystems (ahora una marca de Life Technologies ) emplea secuenciación por ligación . Aquí, se marca un conjunto de todos los oligonucleótidos posibles de una longitud fija según la posición secuenciada. Los oligonucleótidos se hibridan y ligan; la ligación preferencial por la ADN ligasa para emparejar secuencias da como resultado una señal informativa del nucleótido en esa posición. Cada base de la plantilla se secuencia dos veces y los datos resultantes se decodifican según el esquema de codificación de 2 bases utilizado en este método. Antes de la secuenciación, el ADN se amplifica mediante PCR en emulsión. Las perlas resultantes, cada una de las cuales contiene copias individuales de la misma molécula de ADN, se depositan en un portaobjetos de vidrio. [113] El resultado son secuencias de cantidades y longitudes comparables a la secuenciación de Illumina. [77] Se ha informado que este método de secuenciación por ligadura tiene algunos problemas al secuenciar secuencias palindrómicas. [96]

Secuenciación de semiconductores Ion Torrent

Ion Torrent Systems Inc. (ahora propiedad de Life Technologies ) desarrolló un sistema basado en el uso de química de secuenciación estándar, pero con un novedoso sistema de detección basado en semiconductores. Este método de secuenciación se basa en la detección de iones de hidrógeno que se liberan durante la polimerización del ADN , a diferencia de los métodos ópticos utilizados en otros sistemas de secuenciación. Un micropocillo que contiene una cadena de ADN molde que se va a secuenciar se inunda con un único tipo de nucleótido . Si el nucleótido introducido es complementario al nucleótido molde principal, se incorpora a la cadena complementaria en crecimiento. Esto provoca la liberación de un ion de hidrógeno que activa un sensor de iones hipersensible, lo que indica que se ha producido una reacción. Si hay repeticiones de homopolímero presentes en la secuencia plantilla, se incorporarán múltiples nucleótidos en un solo ciclo. Esto conduce a una cantidad correspondiente de hidrógenos liberados y a una señal electrónica proporcionalmente mayor. [114]

Secuenciación de la plantilla TAGGCT con IonTorrent, PacBioRS y GridION

Secuenciación de nanobolas de ADN

La secuenciación de nanobolas de ADN es un tipo de tecnología de secuenciación de alto rendimiento que se utiliza para determinar la secuencia genómica completa de un organismo. La empresa Complete Genomics utiliza esta tecnología para secuenciar muestras enviadas por investigadores independientes. El método utiliza la replicación de círculos rodantes para amplificar pequeños fragmentos de ADN genómico en nanobolas de ADN. A continuación se utiliza la secuenciación no encadenada por ligación para determinar la secuencia de nucleótidos. [115] Este método de secuenciación de ADN permite secuenciar una gran cantidad de nanobolas de ADN por ejecución y con bajos costos de reactivos en comparación con otras plataformas de secuenciación de alto rendimiento. [116] Sin embargo, solo se determinan secuencias cortas de ADN a partir de cada nanobola de ADN, lo que dificulta el mapeo de las lecturas cortas a un genoma de referencia . [115]

Secuenciación de una sola molécula en heliscopio

La secuenciación con heliscopio es un método de secuenciación de una sola molécula desarrollado por Helicos Biosciences . Utiliza fragmentos de ADN con adaptadores de cola poli-A añadidos que se unen a la superficie de la celda de flujo. Los siguientes pasos implican la secuenciación basada en extensión con lavados cíclicos de la celda de flujo con nucleótidos marcados con fluorescencia (un tipo de nucleótido a la vez, como con el método Sanger). Las lecturas las realiza el secuenciador Heliscope. [117] [118] Las lecturas son cortas, con un promedio de 35 pb. [119] Lo que hizo que esta tecnología fuera especialmente novedosa fue que fue la primera de su clase en secuenciar ADN no amplificado, evitando así cualquier error de lectura asociado con los pasos de amplificación. [120] En 2009 se secuenció un genoma humano utilizando el Heliscopio, sin embargo, en 2012 la empresa quebró. [121]

Sistemas de microfluidos

Hay dos sistemas de microfluidos principales que se utilizan para secuenciar el ADN; Microfluidos basados ​​en gotas y microfluidos digitales . Los dispositivos de microfluidos resuelven muchas de las limitaciones actuales de las matrices de secuenciación actuales.

Abate et al. estudió el uso de dispositivos de microfluidos basados ​​en gotas para la secuenciación de ADN. [4] Estos dispositivos tienen la capacidad de formar y procesar gotas del tamaño de un picolitro a una velocidad de miles por segundo. Los dispositivos se crearon a partir de polidimetilsiloxano (PDMS) y utilizaron ensayos FRET de transferencia de energía por resonancia de Forster para leer las secuencias de ADN contenidas en las gotitas. Cada posición en la matriz se probó para una secuencia específica de 15 bases. [4]

Justo y col. utilizó dispositivos de microfluidos digitales para estudiar la pirosecuenciación del ADN . [122] Las ventajas importantes incluyen la portabilidad del dispositivo, el volumen de reactivo, la velocidad de análisis, la capacidad de fabricación en masa y el alto rendimiento. Este estudio proporcionó una prueba de concepto que muestra que los dispositivos digitales se pueden utilizar para la pirosecuenciación; El estudio incluyó el uso de síntesis, que implica la extensión de las enzimas y la adición de nucleótidos marcados. [122]

Boles et al. También estudió la pirosecuenciación en dispositivos de microfluidos digitales. [123] Utilizaron un dispositivo de electrohumectación para crear, mezclar y dividir gotas. La secuenciación utiliza un protocolo de tres enzimas y plantillas de ADN ancladas con perlas magnéticas. El dispositivo se probó utilizando dos protocolos y obtuvo una precisión del 100 % según los niveles de pirogramos sin procesar. Las ventajas de estos dispositivos de microfluidos digitales incluyen tamaño, costo y niveles alcanzables de integración funcional. [123]

La investigación de secuenciación de ADN, que utiliza microfluidos, también tiene la capacidad de aplicarse a la secuenciación de ARN , utilizando técnicas de microfluidos de gotas similares, como el método inDrops. [124] Esto muestra que muchas de estas técnicas de secuenciación de ADN podrán aplicarse más y usarse para comprender más sobre los genomas y transcriptomas.

Métodos en desarrollo

Los métodos de secuenciación de ADN actualmente en desarrollo incluyen la lectura de la secuencia a medida que una cadena de ADN transita a través de nanoporos (un método que ahora es comercial pero las generaciones posteriores, como los nanoporos de estado sólido, aún están en desarrollo), [125] [126] y técnicas basadas en microscopía. , como la microscopía de fuerza atómica o la microscopía electrónica de transmisión que se utilizan para identificar las posiciones de nucleótidos individuales dentro de fragmentos largos de ADN (>5000 pb) mediante el marcaje de nucleótidos con elementos más pesados ​​(p. ej., halógenos) para detección y registro visual. [127] [128] Las tecnologías de tercera generación tienen como objetivo aumentar el rendimiento y disminuir el tiempo para obtener resultados y el costo eliminando la necesidad de reactivos excesivos y aprovechando la procesividad de la ADN polimerasa. [129]

Secuenciación de ADN con corrientes de túnel

Otro enfoque utiliza mediciones de las corrientes eléctricas de túnel a través del ADN monocatenario a medida que se mueve a través de un canal. Dependiendo de su estructura electrónica, cada base afecta la corriente de túnel de manera diferente, [130] permitiendo la diferenciación entre diferentes bases. [131]

El uso de corrientes de túnel tiene el potencial de secuenciar órdenes de magnitud más rápido que los métodos de corriente iónica y ya se ha logrado la secuenciación de varios oligómeros de ADN y microARN. [132]

Secuenciación por hibridación.

La secuenciación por hibridación es un método no enzimático que utiliza un microarray de ADN . Un único conjunto de ADN cuya secuencia se va a determinar se marca con fluorescencia y se hibrida con una matriz que contiene secuencias conocidas. Las fuertes señales de hibridación procedentes de un punto determinado de la matriz identifican su secuencia en el ADN que se está secuenciando. [133]

Este método de secuenciación utiliza características de unión de una biblioteca de moléculas cortas de ADN monocatenario (oligonucleótidos), también llamadas sondas de ADN, para reconstruir una secuencia de ADN objetivo. Los híbridos no específicos se eliminan mediante lavado y se eluye el ADN diana. [134] Los híbridos se reorganizan de manera que se pueda reconstruir la secuencia de ADN. El beneficio de este tipo de secuenciación es su capacidad para capturar una gran cantidad de objetivos con una cobertura homogénea. [135] Generalmente se requiere una gran cantidad de productos químicos y ADN inicial. Sin embargo, con la llegada de la hibridación basada en soluciones, se necesitan muchos menos equipos y productos químicos. [134]

Secuenciación con espectrometría de masas.

Se puede utilizar espectrometría de masas para determinar secuencias de ADN. La espectrometría de masas de tiempo de vuelo por ionización y desorción láser asistida por matriz, o MALDI-TOF MS , se ha investigado específicamente como un método alternativo a la electroforesis en gel para visualizar fragmentos de ADN. Con este método, los fragmentos de ADN generados por reacciones de secuenciación de terminación de cadena se comparan por masa en lugar de por tamaño. La masa de cada nucleótido es diferente de los demás y esta diferencia es detectable mediante espectrometría de masas. Las mutaciones de un solo nucleótido en un fragmento se pueden detectar más fácilmente con la EM que mediante electroforesis en gel únicamente. MALDI-TOF MS puede detectar más fácilmente diferencias entre fragmentos de ARN, por lo que los investigadores pueden secuenciar indirectamente el ADN con métodos basados ​​en MS convirtiéndolo primero en ARN. [136]

La mayor resolución de los fragmentos de ADN permitida por los métodos basados ​​en MS es de especial interés para los investigadores en ciencias forenses, ya que es posible que deseen encontrar polimorfismos de un solo nucleótido en muestras de ADN humano para identificar individuos. Estas muestras pueden estar muy degradadas, por lo que los investigadores forenses suelen preferir el ADN mitocondrial por su mayor estabilidad y sus aplicaciones para estudios de linaje. Se han utilizado métodos de secuenciación basados ​​en MS para comparar las secuencias de ADN mitocondrial humano de muestras de una base de datos de la Oficina Federal de Investigaciones [137] y de huesos encontrados en fosas comunes de soldados de la Primera Guerra Mundial. [138]

Los métodos tempranos de terminación de cadena y TOF MS demostraron longitudes de lectura de hasta 100 pares de bases. [139] Los investigadores no han podido superar este tamaño de lectura promedio; Al igual que la secuenciación de terminación de cadena por sí sola, la secuenciación de ADN basada en MS puede no ser adecuada para grandes proyectos de secuenciación de novo . Aun así, un estudio reciente utilizó lecturas de secuencia corta y espectroscopia de masas para comparar polimorfismos de un solo nucleótido en cepas patógenas de Streptococcus . [140]

Secuenciación microfluídica de Sanger

En la secuenciación de microfluidos de Sanger, toda la amplificación por termociclado de los fragmentos de ADN, así como su separación por electroforesis, se realiza en una sola oblea de vidrio (aproximadamente 10 cm de diámetro), lo que reduce el uso de reactivos y el costo. [141] En algunos casos, los investigadores han demostrado que pueden aumentar el rendimiento de la secuenciación convencional mediante el uso de microchips. [142] Aún será necesario realizar investigaciones para que este uso de la tecnología sea eficaz.

Técnicas basadas en microscopía.

Este enfoque visualiza directamente la secuencia de moléculas de ADN mediante microscopía electrónica. La primera identificación de pares de bases de ADN dentro de moléculas de ADN intactas mediante la incorporación enzimática de bases modificadas, que contienen átomos de mayor número atómico, visualización directa e identificación de bases marcadas individualmente dentro de una molécula de ADN sintética de 3272 pares de bases y un genoma viral de 7249 pares de bases. ha sido demostrado. [143]

secuenciación de ARNP

Este método se basa en el uso de ARN polimerasa (RNAP), que está unida a una perla de poliestireno . Un extremo del ADN que se va a secuenciar se une a otra perla y ambas perlas se colocan en trampas ópticas. El movimiento de RNAP durante la transcripción acerca las perlas y su distancia relativa cambia, lo que luego se puede registrar con una resolución de un solo nucleótido. La secuencia se deduce basándose en las cuatro lecturas con concentraciones reducidas de cada uno de los cuatro tipos de nucleótidos, de manera similar al método de Sanger. [144] Se realiza una comparación entre regiones y la información de secuencia se deduce comparando las regiones de secuencia conocidas con las regiones de secuencia desconocida. [145]

Secuenciación de alto rendimiento de virus in vitro

Se ha desarrollado un método para analizar conjuntos completos de interacciones de proteínas utilizando una combinación de pirosecuenciación 454 y un método de visualización de ARNm de virus in vitro . Específicamente, este método une covalentemente proteínas de interés a los ARNm que las codifican y luego detecta los fragmentos de ARNm mediante PCR de transcripción inversa . A continuación, el ARNm puede amplificarse y secuenciarse. El método combinado se tituló IVV-HiTSeq y se puede realizar en condiciones libres de células, aunque sus resultados pueden no ser representativos de las condiciones in vivo . [146]

Cuota de mercado

Si bien hay muchas formas diferentes de secuenciar el ADN, sólo unas pocas dominan el mercado actual. Según esto, Illumina representa aproximadamente el 80% del mercado en 2022; el resto del mercado está en manos de unos pocos actores (PacBio, Oxford, 454, MGI) [147]

preparación de la muestra

El éxito de cualquier protocolo de secuenciación de ADN depende de la extracción y preparación de la muestra de ADN o ARN a partir del material biológico de interés.

Después de la extracción de ADN o ARN, es posible que las muestras requieran una preparación adicional según el método de secuenciación. Para la secuenciación Sanger, se requieren procedimientos de clonación o PCR antes de la secuenciación. En el caso de los métodos de secuenciación de próxima generación, se requiere la preparación de la biblioteca antes del procesamiento. [149] La evaluación de la calidad y cantidad de ácidos nucleicos después de la extracción y después de la preparación de la biblioteca identifica muestras degradadas, fragmentadas y de baja pureza y produce datos de secuenciación de alta calidad. [150]

La naturaleza de alto rendimiento de las tecnologías actuales de secuenciación de ADN/ARN ha planteado un desafío para la ampliación del método de preparación de muestras. Se están utilizando varios instrumentos de manipulación de líquidos para la preparación de un mayor número de muestras con un tiempo práctico total menor:

Iniciativas de desarrollo

Costo total de secuenciar un genoma humano a lo largo del tiempo según lo calculado por el NHGRI .

En octubre de 2006, la Fundación X Prize estableció una iniciativa para promover el desarrollo de tecnologías de secuenciación completa del genoma , llamada Premio Archon X , con la intención de otorgar 10 millones de dólares al "primer equipo que pueda construir un dispositivo y utilizarlo para secuenciar 100 genomas humanos". en 10 días o menos, con una precisión de no más de un error por cada 100.000 bases secuenciadas, con secuencias que cubran con precisión al menos el 98% del genoma y con un costo recurrente de no más de 10.000 dólares (EE.UU.) por genoma". [151]

Cada año, el Instituto Nacional de Investigación del Genoma Humano , o NHGRI, promueve subvenciones para nuevas investigaciones y desarrollos en genómica . Las subvenciones de 2010 y los candidatos de 2011 incluyen trabajo continuo en metodologías de secuenciación de microfluidos, polonia y bases pesadas. [152]

Desafíos computacionales

Las tecnologías de secuenciación que se describen aquí producen datos sin procesar que deben ensamblarse en secuencias más largas, como genomas completos ( ensamblaje de secuencias ). Hay muchos desafíos computacionales para lograr esto, como la evaluación de los datos de secuencia sin procesar que se realiza mediante programas y algoritmos como Phred y Phrap . Otros desafíos tienen que ver con secuencias repetitivas que a menudo impiden ensamblajes completos del genoma porque ocurren en muchos lugares del genoma. Como consecuencia, es posible que muchas secuencias no se asignen a cromosomas concretos . La producción de datos de secuencia sin procesar es sólo el comienzo de su análisis bioinformático detallado. [153] Sin embargo, se desarrollaron nuevos métodos para secuenciar y corregir errores de secuenciación. [154]

Leer recorte

A veces, las lecturas sin procesar producidas por el secuenciador son correctas y precisas sólo en una fracción de su longitud. El uso de la lectura completa puede introducir artefactos en los análisis posteriores, como el ensamblaje del genoma, la llamada de SNP o la estimación de la expresión genética. Se han introducido dos clases de programas de recorte, basados ​​en clases de algoritmos basados ​​en ventanas o de suma acumulada. [155] Esta es una lista parcial de los algoritmos de recorte disponibles actualmente, especificando la clase de algoritmo a la que pertenecen:

Cuestiones éticas

La genética humana ha sido incluida dentro del campo de la bioética desde principios de la década de 1970 [162] y el crecimiento en el uso de la secuenciación de ADN (particularmente la secuenciación de alto rendimiento) ha introducido una serie de cuestiones éticas. Una cuestión clave es la propiedad del ADN de un individuo y los datos producidos cuando se secuencia ese ADN. [163] Con respecto a la molécula de ADN en sí, el principal caso legal sobre este tema, Moore v. Regents de la Universidad de California (1990) dictaminó que los individuos no tienen derechos de propiedad sobre las células desechadas ni ningún beneficio obtenido utilizando estas células (por ejemplo, como línea celular patentada ). Sin embargo, las personas tienen derecho a obtener un consentimiento informado con respecto a la extracción y el uso de células. En cuanto a los datos producidos mediante la secuenciación del ADN, Moore no otorga al individuo ningún derecho sobre la información derivada de su ADN. [163]

A medida que la secuenciación del ADN se generaliza, el almacenamiento, la seguridad y el intercambio de datos genómicos también se han vuelto más importantes. [163] [164] Por ejemplo, una preocupación es que las aseguradoras puedan utilizar los datos genómicos de un individuo para modificar su cotización, dependiendo de la salud futura percibida del individuo en función de su ADN. [164] [165] En mayo de 2008, se firmó en los Estados Unidos la Ley de No Discriminación por Información Genética (GINA), que prohíbe la discriminación basada en información genética con respecto al seguro médico y el empleo. [166] [167] En 2012, la Comisión Presidencial de EE. UU. para el Estudio de Cuestiones Bioéticas informó que la legislación de privacidad existente para los datos de secuenciación de ADN, como GINA y la Ley de Responsabilidad y Portabilidad del Seguro Médico, eran insuficientes, y señaló que los datos de secuenciación del genoma completo eran insuficientes. particularmente sensible, ya que podría usarse para identificar no solo a la persona a partir de la cual se crearon los datos, sino también a sus familiares. [168] [169]

En la mayor parte de los Estados Unidos, el ADN "abandonado", como el que se encuentra en un sello o sobre lamido, en una taza de café, en un cigarrillo, en un chicle, en la basura doméstica o en el cabello caído en una acera pública, puede recolectarse legalmente. y secuenciados por cualquier persona, incluida la policía, investigadores privados, opositores políticos o personas involucradas en disputas de paternidad. En 2013, once estados tienen leyes que pueden interpretarse para prohibir el "robo de ADN". [170]

También han surgido cuestiones éticas por el uso cada vez mayor de pruebas de detección de variaciones genéticas, tanto en recién nacidos como en adultos, por parte de empresas como 23andMe . [171] [172] Se ha afirmado que la detección de variaciones genéticas puede ser dañina y aumentar la ansiedad en personas que tienen un mayor riesgo de enfermedad. [173] Por ejemplo, en un caso señalado en Time , los médicos que examinaban a un bebé enfermo en busca de variantes genéticas optaron por no informar a los padres sobre una variante no relacionada vinculada con la demencia debido al daño que causaría a los padres. [174] Sin embargo, un estudio de 2011 en The New England Journal of Medicine ha demostrado que las personas sometidas a un perfil de riesgo de enfermedad no mostraron mayores niveles de ansiedad. [173] Además, el desarrollo de tecnologías de secuenciación de próxima generación, como la secuenciación basada en nanoporos, también ha planteado más preocupaciones éticas. [175]

Ver también

Notas

  1. ^ La "próxima generación" sigue siendo de uso generalizado a partir de 2019. Por ejemplo, Straiton J, Free T, Sawyer A, Martin J (febrero de 2019). "Desde la secuenciación de Sanger hasta las bases de datos del genoma y más allá". BioTécnicas . 66 (2): 60–63. doi : 10.2144/btn-2019-0011 . PMID  30744413. Las tecnologías de secuenciación de próxima generación (NGS) han revolucionado la investigación genómica. (frase inicial del artículo)

Referencias

  1. ^ "Presentamos el 'ADN oscuro': el fenómeno que podría cambiar nuestra forma de pensar sobre la evolución". 24 de agosto de 2017.
  2. ^ Behjati S, Tarpey PS (diciembre de 2013). "¿Qué es la secuenciación de próxima generación?". Archivos de enfermedades en la infancia: edición de educación y práctica . 98 (6): 236–8. doi :10.1136/archdischild-2013-304340. PMC 3841808 . PMID  23986538. 
  3. ^ Chmielecki J, Meyerson M (14 de enero de 2014). "Secuenciación del ADN del cáncer: ¿qué hemos aprendido?". Revista Anual de Medicina . 65 (1): 63–79. doi : 10.1146/annurev-med-060712-200152 . PMID  24274178.
  4. ^ abcd Abate AR, Hung T, Sperling RA, Mary P, Rotem A, Agresti JJ, et al. (Diciembre 2013). "Análisis de secuencia de ADN con microfluidos basados ​​en gotas". Laboratorio en un chip . 13 (24): 4864–9. doi :10.1039/c3lc50905b. PMC 4090915 . PMID  24185402. 
  5. ^ Pekin D, Skhiri Y, Baret JC, Le Corre D, Mazutis L, Salem CB, et al. (Julio de 2011). "Detección cuantitativa y sensible de mutaciones raras mediante microfluidos basados ​​en gotas". Laboratorio en un chip . 11 (13): 2156–66. doi :10.1039/c1lc20128j. PMID  21594292.
  6. ^ Olsvik O, Wahlberg J, Petterson B, Uhlén M, Popovic T, Wachsmuth IK, Fields PI (enero de 1993). "Uso de secuenciación automatizada de amplicones generados por reacción en cadena de la polimerasa para identificar tres tipos de subunidad B de la toxina del cólera en cepas de Vibrio cholerae O1". J.Clin. Microbiol. 31 (1): 22-25. doi :10.1128/JCM.31.1.22-25.1993. PMC 262614 . PMID  7678018.  Icono de acceso abierto
  7. ^ Pettersson E, Lundeberg J, Ahmadian A (febrero de 2009). "Generaciones de tecnologías de secuenciación". Genómica . 93 (2): 105–11. doi : 10.1016/j.ygeno.2008.10.003 . PMID  18992322.
  8. ^ abc Jay E, Bambara R, Padmanabhan R, Wu R (marzo de 1974). "Análisis de secuencia de ADN: un método general, sencillo y rápido para secuenciar grandes fragmentos de oligodesoxirribonucleótidos mediante mapeo". Investigación de ácidos nucleicos . 1 (3): 331–53. doi :10.1093/nar/1.3.331. PMC 344020 . PMID  10793670. 
  9. ^ Hunt, Katie (17 de febrero de 2021). "El ADN más antiguo del mundo secuenciado de un mamut que vivió hace más de un millón de años". CNN . Consultado el 17 de febrero de 2021 .
  10. ^ Callaway, Ewen (17 de febrero de 2021). "Los genomas de mamut de millones de años rompen el récord de ADN antiguo más antiguo: los dientes conservados en el permafrost, de hasta 1,6 millones de años, identifican un nuevo tipo de mamut en Siberia". Naturaleza . 590 (7847): 537–538. Código Bib :2021Natur.590..537C. doi : 10.1038/d41586-021-00436-x . PMID  33597786.
  11. ^ abc Castro, Cristina; Marina, Raquel; Ramos, Eduardo; Ng, Terry Fei Fan (2019). "El efecto de la interferencia variante en el ensamblaje de novo para la secuenciación profunda viral". Genómica BMC . 21 (1): 421. bioRxiv 10.1101/815480 . doi : 10.1186/s12864-020-06801-w . PMC 7306937 . PMID  32571214.  
  12. ^ ab Wohl, Shirlee; Schaffner, Stephen F.; Sabeti, Pardis C. (2016). "Análisis genómico de brotes virales". Revista Anual de Virología . 3 (1): 173–195. doi :10.1146/annurev-virology-110615-035747. PMC 5210220 . PMID  27501264. 
  13. ^ Boicot, Kym M.; Vanstone, Megan R.; Bulman, Dennis E.; MacKenzie, Alex E. (octubre de 2013). "Genética de enfermedades raras en la era de la secuenciación de próxima generación: del descubrimiento a la traducción". Naturaleza Reseñas Genética . 14 (10): 681–691. doi :10.1038/nrg3555. PMID  23999272. S2CID  8496181.
  14. ^ Schleusener V, Köser CU, Beckert P, Niemann S, Feuerriegel S (2017). "Predicción de la resistencia de Mycobacterium tuberculosis y clasificación de linaje a partir de la secuenciación del genoma: comparación de herramientas de análisis automatizadas". Representante de ciencia . 7 : 46327. Código Bib : 2017NatSR...746327S. doi : 10.1038/srep46327 . PMC 7365310 . PMID  28425484. 
  15. ^ Mahé P, El Azami M, Barlas P, Tournoud M (2019). "Una evaluación a gran escala de TBProfiler y Mykrobe para la predicción de la resistencia a los antibióticos en Mycobacterium tuberculosis". PeerJ . 7 : e6857. doi : 10.7717/peerj.6857 . PMC 6500375 . PMID  31106066. 
  16. ^ Predictor Mykrobe: predicción de la resistencia a los antibióticos para S. aureus y M. tuberculosis a partir de datos de la secuencia del genoma completo
  17. ^ Bradley, Phelim; Gordon, N. Claire; Walker, Timothy M.; Dunn, Laura; Hola, Simón; Huang, Bill; Earle, Sara; Pankhurst, Louise J.; Anson, Lucas; de Cesare, Mariateresa; Plaza, Paolo; Votintseva, Antonina A.; Golubchik, Tanya; Wilson, Daniel J.; Wyllie, David H.; Diel, Roland; Niemann, Stefan; Feuerriegel, Silke; Kohl, Thomas A.; Ismail, Nazir; Omar, Shaheed V.; Smith, E. Gracia; Dólar, David; McVean, Gil; Walker, A. Sarah; Peto, Tim EA; Ladrón, Derrick W.; Iqbal, Zamin (21 de diciembre de 2015). "Predicciones rápidas de resistencia a los antibióticos a partir de datos de secuencia del genoma de Staphylococcus aureus y Mycobacterium tuberculosis". Comunicaciones de la naturaleza . 6 (1): 10063. Código bibliográfico : 2015NatCo...610063B. doi :10.1038/ncomms10063. PMC 4703848 . PMID  26686880. 
  18. ^ "Michael Mosley contra las superbacterias". Archivado desde el original el 24 de noviembre de 2020 . Consultado el 21 de octubre de 2019 .
  19. ^ Mykrobe, Mykrobe-tools, 24 de diciembre de 2022 , consultado el 2 de enero de 2023
  20. ^ Curtis C, Hereward J (29 de agosto de 2017). "De la escena del crimen a la sala del tribunal: el viaje de una muestra de ADN". La conversación .
  21. ^ Moréra S, Larivière L, Kurzeck J, Aschke-Sonnenborn U, Freemont PS, Janin J, Rüger W (agosto de 2001). "Estructuras cristalinas de alta resolución de la beta-glucosiltransferasa del fago T4: ajuste inducido y efecto de la unión del sustrato y el metal". Revista de biología molecular . 311 (3): 569–77. doi :10.1006/jmbi.2001.4905. PMID  11493010.
  22. ^ Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (abril de 1982). "Cantidad y distribución de 5-metilcitosina en el ADN humano de diferentes tipos de tejidos celulares". Investigación de ácidos nucleicos . 10 (8): 2709–21. doi :10.1093/nar/10.8.2709. PMC 320645 . PMID  7079182. 
  23. ^ Ehrlich M, Wang RY (junio de 1981). "5-Metilcitosina en ADN eucariota". Ciencia . 212 (4501): 1350–7. Código bibliográfico : 1981 Ciencia... 212.1350E. doi : 10.1126/ciencia.6262918. PMID  6262918.
  24. ^ Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q, Turner SW y col. (noviembre de 2011). "Secuenciación sensible y específica de una sola molécula de 5-hidroximetilcitosina". Métodos de la naturaleza . 9 (1): 75–7. doi :10.1038/nmeth.1779. PMC 3646335 . PMID  22101853. 
  25. ^ Czernecki, Dariusz; Bonhomme, Frédéric; Kaminski, Pierre-Alexandre; Delarue, Marc (5 de agosto de 2021). "Caracterización de una tríada de genes en el cianófago S-2L suficiente para reemplazar la adenina por 2-aminoadenina en el ADN bacteriano". Comunicaciones de la naturaleza . 12 (1): 4710. Código bibliográfico : 2021NatCo..12.4710C. doi : 10.1038/s41467-021-25064-x . PMC 8342488 . PMID  34354070. S2CID  233745192. 
  26. ^ Watson JD, Crick FH (1953). "La estructura del ADN". Puerto de primavera fría. Síntoma. Cuant. Biol . 18 : 123–31. doi :10.1101/SQB.1953.018.01.020. PMID  13168976.
  27. ^ Marks, L. "El camino hacia la secuenciación del ADN: la vida y obra de Frederick Sanger". ¿Qué es la Biotecnología? . Consultado el 27 de junio de 2023 .
  28. ^ Min Jou W, Haegeman G, Ysebaert M, Fiers W (mayo de 1972). "Secuencia de nucleótidos del gen que codifica la proteína de cubierta del bacteriófago MS2". Naturaleza . 237 (5350): 82–8. Código Bib :1972Natur.237...82J. doi :10.1038/237082a0. PMID  4555447. S2CID  4153893.
  29. ^ Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G, Ysebaert M (abril de 1976). "Secuencia completa de nucleótidos del ARN del bacteriófago MS2: estructura primaria y secundaria del gen de la replicasa". Naturaleza . 260 (5551): 500–7. Código Bib :1976Natur.260..500F. doi :10.1038/260500a0. PMID  1264203. S2CID  4289674.
  30. ^ Ozsolak F, Milos PM (febrero de 2011). "Secuenciación de ARN: avances, desafíos y oportunidades". Naturaleza Reseñas Genética . 12 (2): 87–98. doi :10.1038/nrg2934. PMC 3031867 . PMID  21191423. 
  31. ^ "Perfil de la facultad de Ray Wu". Universidad de Cornell. Archivado desde el original el 4 de marzo de 2009.
  32. ^ Padmanabhan R, Jay E, Wu R (junio de 1974). "Síntesis química de un cebador y su uso en el análisis de secuencia del gen de la lisozima del bacteriófago T4". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 71 (6): 2510–4. Código bibliográfico : 1974PNAS...71.2510P. doi : 10.1073/pnas.71.6.2510 . PMC 388489 . PMID  4526223. 
  33. ^ Onaga LA (junio de 2014). "Ray Wu como quinto negocio: demostrar la memoria colectiva en la historia de la secuenciación del ADN". Estudios de Historia y Filosofía de la Ciencia . Parte C.46 : 1–14. doi :10.1016/j.shpsc.2013.12.006. PMID  24565976.
  34. ^ Wu R (1972). "Análisis de secuencia de nucleótidos del ADN". Naturaleza Nueva Biología . 236 (68): 198–200. doi :10.1038/newbio236198a0. PMID  4553110.
  35. ^ Padmanabhan R, Wu R (1972). "Análisis de secuencia de nucleótidos del ADN. IX. Uso de oligonucleótidos de secuencia definida como cebadores en el análisis de secuencia de ADN". Bioquímica. Biofísica. Res. Comunitario . 48 (5): 1295–302. doi :10.1016/0006-291X(72)90852-2. PMID  4560009.
  36. ^ Wu R, Tu CD, Padmanabhan R (1973). "Análisis de secuencia de nucleótidos del ADN. XII. Síntesis química y análisis de secuencia de un dodecadeoxinucleótido que se une al gen de la endolisina del bacteriófago lambda". Bioquímica. Biofísica. Res. Comunitario . 55 (4): 1092–99. doi :10.1016/S0006-291X(73)80007-5. PMID  4358929.
  37. ^ ab Sanger F, Nicklen S, Coulson AR (diciembre de 1977). "Secuenciación de ADN con inhibidores terminadores de cadena". Proc. Nacional. Acad. Ciencia. EE.UU . 74 (12): 5463–77. Código bibliográfico : 1977PNAS...74.5463S. doi : 10.1073/pnas.74.12.5463 . PMC 431765 . PMID  271968. 
  38. ^ abc Maxam AM, Gilbert W (febrero de 1977). "Un nuevo método para secuenciar ADN". Proc. Nacional. Acad. Ciencia. EE.UU . 74 (2): 560–64. Código bibliográfico : 1977PNAS...74..560M. doi : 10.1073/pnas.74.2.560 . PMC 392330 . PMID  265521. 
  39. ^ Gilbert, W. Secuenciación de ADN y estructura genética. Conferencia Nobel, 8 de diciembre de 1980.
  40. ^ Gilbert W, Maxam A (diciembre de 1973). "La secuencia de nucleótidos del operador lac". Proc. Nacional. Acad. Ciencia. EE.UU . 70 (12): 3581–84. Código bibliográfico : 1973PNAS...70.3581G. doi : 10.1073/pnas.70.12.3581 . PMC 427284 . PMID  4587255. 
  41. ^ Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (febrero de 1977). "Secuencia de nucleótidos del ADN del bacteriófago phi X174". Naturaleza . 265 (5596): 687–95. Código Bib :1977Natur.265..687S. doi :10.1038/265687a0. PMID  870828. S2CID  4206886.
  42. ^ Marks, L. "La próxima frontera: los virus humanos". ¿Qué es la Biotecnología? . Consultado el 27 de junio de 2023 .
  43. ^ Beck S, PohlFM (1984). "Secuenciación de ADN con electroforesis por transferencia directa". EMBO J. 3 (12): 2905–09. doi :10.1002/j.1460-2075.1984.tb02230.x. PMC 557787 . PID  6396083. 
  44. ^ Patente de Estados Unidos 4.631.122 (1986)
  45. ^ Feldmann H, et al. (1994). "Secuencia completa de ADN del cromosoma II de levadura". EMBO J. 13 (24): 5795–809. doi :10.1002/j.1460-2075.1994.tb06923.x. PMC 395553 . PMID  7813418. 
  46. ^ Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE (12 de junio de 1986). "Detección de fluorescencia en análisis automatizado de secuencias de ADN". Naturaleza . 321 (6071): 674–79. Código Bib :1986Natur.321..674S. doi :10.1038/321674a0. PMID  3713851. S2CID  27800972.
  47. ^ Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K (16 de octubre de 1987). "Un sistema para la secuenciación rápida de ADN con didesoxinucleótidos terminales de cadena fluorescentes". Ciencia . 238 (4825): 336–41. Código Bib : 1987 Ciencia... 238.. 336P. doi : 10.1126/ciencia.2443975. PMID  2443975.
  48. ^ Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF (junio de 1991). "Secuenciación complementaria de ADN: etiquetas de secuencia expresada y proyecto del genoma humano". Ciencia . 252 (5013): 1651–56. Código bibliográfico : 1991 Ciencia... 252.1651A. doi : 10.1126/ciencia.2047873. PMID  2047873. S2CID  13436211.
  49. ^ Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (julio de 1995). "Secuenciación aleatoria y ensamblaje del genoma completo de Haemophilus influenzae Rd ". Ciencia . 269 ​​(5223): 496–512. Código Bib : 1995 Ciencia... 269.. 496F. doi : 10.1126/ciencia.7542800. PMID  7542800.
  50. ^ Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC y col. (Febrero de 2001). «Secuenciación inicial y análisis del genoma humano» (PDF) . Naturaleza . 409 (6822): 860–921. Código Bib :2001Natur.409..860L. doi : 10.1038/35057062 . PMID  11237011.
  51. ^ Venter JC, Adams MD y col. (Febrero de 2001). "La secuencia del genoma humano". Ciencia . 291 (5507): 1304–51. Código Bib : 2001 Ciencia... 291.1304V. doi : 10.1126/ciencia.1058040 . PMID  11181995.
  52. ^ Yang, Aimin; Zhang, Wei; Wang, Jiahao; Yang, Ke; Han, Yang; Zhang, Limin (2020). "Revisión sobre la aplicación de algoritmos de aprendizaje automático en la extracción de datos de secuencia de ADN". Fronteras en Bioingeniería y Biotecnología . 8 : 1032. doi : 10.3389/fbioe.2020.01032 . PMC 7498545 . PMID  33015010. 
  53. ^ "Espacenet - Datos bibliográficos". worldwide.espacenet.com .
  54. ^ Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996). "Secuenciación de ADN en tiempo real mediante detección de liberación de pirofosfato". Bioquímica Analítica . 242 (1): 84–89. doi :10.1006/abio.1996.0432. PMID  8923969.
  55. ^ ab Kawashima, Eric H.; Laurent Farinelli; Pascal Mayer (12 de mayo de 2005). "Patente: Método de amplificación de ácidos nucleicos". Archivado desde el original el 22 de febrero de 2013 . Consultado el 22 de diciembre de 2012 .
  56. ^ Ewing B, Green P (marzo de 1998). "Llamada base de trazas de secuenciador automatizado utilizando phred. II. Probabilidades de error". Res del genoma . 8 (3): 186–94. doi : 10.1101/gr.8.3.186 . PMID  9521922.
  57. ^ "Puntuaciones de calidad para la secuenciación de próxima generación" (PDF) . Ilumina . 31 de octubre de 2011 . Consultado el 8 de mayo de 2018 .
  58. ^ ab Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000). "Análisis de expresión génica mediante secuenciación masiva de firmas paralelas (MPSS) en matrices de microperlas". Biotecnología de la Naturaleza . 18 (6): 630–34. doi :10.1038/76469. PMID  10835600. S2CID  13884154.
  59. ^ "secuenciación de maxam gilbert". PubMed .
  60. ^ Sanger F, Coulson AR (mayo de 1975). "Un método rápido para determinar secuencias de ADN mediante síntesis preparada con ADN polimerasa". J. Mol. Biol . 94 (3): 441–48. doi :10.1016/0022-2836(75)90213-2. PMID  1100841.
  61. ^ Wetterstrand, Kris. "Costos de secuenciación de ADN: datos del programa de secuenciación del genoma (GSP) del NHGRI". Instituto Nacional de Investigaciones del Genoma Humano . Consultado el 30 de mayo de 2013 .
  62. ^ Nyren, P.; Pettersson, B.; Uhlen, M. (enero de 1993). "Minisecuenciación de ADN en fase sólida mediante un ensayo de detección de pirofosfato inorgánico luminométrico enzimático". Bioquímica Analítica . 208 (1): 171-175. doi :10.1006/abio.1993.1024. PMID  8382019.
  63. ^ Ronaghi, Mostafa; Uhlén, Mathías; Nyrén, Pål (17 de julio de 1998). "Un método de secuenciación basado en pirofosfato en tiempo real". Ciencia . 281 (5375): 363–365. doi : 10.1126/ciencia.281.5375.363. PMID  9705713. S2CID  26331871.
  64. ^ Codorniz MA, Gu Y, Swerdlow H, Mayho M (2012). "Evaluación y optimización de sistemas preparativos de electroforesis semiautomática para la preparación de bibliotecas Illumina". Electroforesis . 33 (23): 3521–28. doi :10.1002/elps.201200128. PMID  23147856. S2CID  39818212.
  65. ^ Duhaime MB, Deng L, Poulos BT, Sullivan MB (2012). "Hacia la metagenómica cuantitativa de virus salvajes y otras muestras de ADN de concentración ultrabaja: una evaluación rigurosa y optimización del método de amplificación del enlazador". Reinar. Microbiol . 14 (9): 2526–37. Código Bib : 2012EnvMi..14.2526D. doi :10.1111/j.1462-2920.2012.02791.x. PMC 3466414 . PMID  22713159. 
  66. ^ Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012). "RADseq de doble digestión: un método económico para el descubrimiento de SNP de novo y el genotipado en especies modelo y no modelo". MÁS UNO . 7 (5): e37135. Código Bib : 2012PLoSO...737135P. doi : 10.1371/journal.pone.0037135 . PMC 3365034 . PMID  22675423. 
  67. ^ Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD (2006). "Amplificación de bibliotecas de genes complejas mediante PCR en emulsión". Métodos de la naturaleza . 3 (7): 545–50. doi : 10.1038/nmeth896. PMID  16791213. S2CID  27459628.
  68. ^ ab Margulies M, Egholm M, et al. (Septiembre de 2005). "Secuenciación del genoma en reactores de picolitros de alta densidad microfabricados abiertos". Naturaleza . 437 (7057): 376–80. Código Bib :2005Natur.437..376M. doi : 10.1038/naturaleza03959. PMC 1464427 . PMID  16056220. 
  69. ^ Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005). "Secuenciación precisa de polonia múltiplex de un genoma bacteriano evolucionado". Ciencia . 309 (5741): 1728–32. Código bibliográfico : 2005 Ciencia... 309.1728S. doi : 10.1126/ciencia.1117389 . PMID  16081699. S2CID  11405973.
  70. ^ "Applied Biosystems: archivo no encontrado (error 404)". 16 de mayo de 2008. Archivado desde el original el 16 de mayo de 2008.
  71. ^ Goodwin S, McPherson JD, McCombie WR (mayo de 2016). "Mayoría de edad: diez años de tecnologías de secuenciación de próxima generación". Naturaleza Reseñas Genética . 17 (6): 333–51. doi :10.1038/nrg.2016.49. PMC 10373632 . PMID  27184599. S2CID  8295541. 
  72. ^ Staden R (11 de junio de 1979). "Una estrategia de secuenciación de ADN empleando programas informáticos". Investigación de ácidos nucleicos . 6 (7): 2601–10. doi :10.1093/nar/6.7.2601. PMC 327874 . PMID  461197. 
  73. ^ de Magalhães JP, Finch CE, Janssens G (2010). "Secuenciación de próxima generación en la investigación sobre el envejecimiento: aplicaciones emergentes, problemas, trampas y posibles soluciones". Reseñas de investigaciones sobre el envejecimiento . 9 (3): 315–23. doi :10.1016/j.arr.2009.10.006. PMC 2878865 . PMID  19900591. 
  74. ^ Grada A (agosto de 2013). "Secuenciación de próxima generación: metodología y aplicación". J Invest Dermatol . 133 (8): e11. doi : 10.1038/jid.2013.248 . PMID  23856935.
  75. ^ Salón N (mayo de 2007). "Tecnologías de secuenciación avanzadas y su impacto más amplio en microbiología". J. Exp. Biol. 210 (parte 9): 1518–25. doi : 10.1242/jeb.001370 . PMID  17449817. Icono de acceso abierto
  76. ^ Iglesia GM (enero de 2006). "Genomas para todos". Ciencia. Soy. 294 (1): 46–54. Código Bib : 2006SciAm.294a..46C. doi : 10.1038/scientificamerican0106-46. PMID  16468433. S2CID  28769137. (requiere suscripción)
  77. ^ abc Schuster SC (enero de 2008). "La secuenciación de próxima generación transforma la biología actual". Nat. Métodos . 5 (1): 16-18. doi : 10.1038/nmeth1156. PMID  18165802. S2CID  1465786.
  78. ^ Kalb, Gilbert; Moxley, Robert (1992). Computación masivamente paralela, óptica y neuronal en los Estados Unidos . IOS Presione . ISBN 978-90-5199-097-3.[ página necesaria ]
  79. ^ diez Bosch JR, Grody WW (2008). "Mantenerse al día con la próxima generación". La revista de diagnóstico molecular . 10 (6): 484–92. doi :10.2353/jmoldx.2008.080027. PMC 2570630 . PMID  18832462. Icono de acceso abierto
  80. ^ Tucker T, Marra M, Friedman JM (2009). "Secuenciación masiva paralela: el próximo gran avance en medicina genética". La Revista Estadounidense de Genética Humana . 85 (2): 142–54. doi :10.1016/j.ajhg.2009.06.022. PMC 2725244 . PMID  19679224. Icono de acceso abierto
  81. ^ ab Straiton J, Free T, Sawyer A, Martin J (febrero de 2019). "Desde la secuenciación de Sanger hasta las bases de datos del genoma y más allá". BioTécnicas . Ciencia del futuro. 66 (2): 60–63. doi : 10.2144/btn-2019-0011 . PMID  30744413.
  82. ^ Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (1 de enero de 2012). "Una historia de tres plataformas de secuenciación de próxima generación: comparación de los secuenciadores Ion Torrent, Pacific Biosciences e Illumina MiSeq". Genómica BMC . 13 (1): 341. doi : 10.1186/1471-2164-13-341 . PMC 3431227 . PMID  22827831. Icono de acceso abierto
  83. ^ Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (1 de enero de 2012). "Comparación de sistemas de secuenciación de próxima generación". Revista de Biomedicina y Biotecnología . 2012 : 251364. doi : 10.1155/2012/251364 . PMC 3398667 . PMID  22829749. Icono de acceso abierto
  84. ^ abc "Nuevo software, polimerasa para el sistema Sequel, aumenta el rendimiento y la asequibilidad: PacBio". 7 de marzo de 2018.
  85. ^ "Después de un año de pruebas, dos de los primeros clientes de PacBio esperan un uso más rutinario del secuenciador RS en 2012". GenomaWeb. 10 de enero de 2012.( Se requiere registro )
  86. ^ Inc., Pacific Biosciences (2013). "Pacific Biosciences presenta nueva química con longitudes de lectura más largas para detectar características novedosas en la secuencia de ADN y estudios avanzados del genoma de organismos grandes" (Comunicado de prensa). {{cite press release}}: |last=tiene nombre genérico ( ayuda )
  87. ^ Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013). "Ensamblajes de genoma microbiano terminados y no híbridos a partir de datos de secuenciación SMRT de lectura larga". Nat. Métodos . 10 (6): 563–69. doi :10.1038/nmeth.2474. PMID  23644548. S2CID  205421576.
  88. ^ ab "Ensamblaje del genoma bacteriano de novo: ¿un problema resuelto?". 5 de julio de 2013.
  89. ^ Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Møller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK (25 de agosto de 2011). "Orígenes de la cepa que causa un brote de síndrome urémico hemolítico en Alemania". N Inglés J Med . 365 (8): 709–17. doi :10.1056/NEJMoa1106920. PMC 3168948 . PMID  21793740. Icono de acceso abierto
  90. ^ Tran B, Brown AM, Bedard PL, Winquist E, Goss GD, Hotte SJ, Welch SA, Hirte HW, Zhang T, Stein LD , Ferretti V, Watt S, Jiao W, Ng K, Ghai S, Shaw P, Petrocelli T, Hudson TJ , Neel BG, Onetto N, Siu LL, McPherson JD, Kamel-Reid S, Dancey JE (1 de enero de 2012). "Viabilidad de la secuenciación de próxima generación en tiempo real de genes del cáncer vinculados a la respuesta a los fármacos: resultados de un ensayo clínico". En t. J. Cáncer . 132 (7): 1547–55. doi : 10.1002/ijc.27817 . PMID  22948899. S2CID  72705.(requiere suscripción)
  91. ^ Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP, Luong K, Fomenkov A, Turner SW, Korlach J, Roberts RJ (2 de octubre de 2012). "Los metilomas de seis bacterias". Investigación de ácidos nucleicos . 40 (22): 11450–62. doi : 10.1093/nar/gks891. PMC 3526280 . PMID  23034806. 
  92. ^ "Kit-Chef Ion 520 e Ion 530 ExT - Thermo Fisher Scientific". termofisher.com .
  93. ^ "Precisión bruta". Archivado desde el original el 30 de marzo de 2018 . Consultado el 29 de marzo de 2018 .
  94. ^ van Vliet AH (1 de enero de 2010). "Secuenciación de transcriptomas microbianos de próxima generación: desafíos y oportunidades". Cartas de microbiología FEMS . 302 (1): 1–7. doi : 10.1111/j.1574-6968.2009.01767.x . PMID  19735299.Icono de acceso abierto
  95. ^ "BGI y MGISEQ". es.mgitech.cn . Consultado el 5 de julio de 2018 .
  96. ^ ab Huang YF, Chen SC, Chiang YS, Chen TH, Chiu KP (2012). "La secuencia palindrómica impide el mecanismo de secuenciación por ligadura". Biología de sistemas BMC . 6 (Suplemento 2): S10. doi : 10.1186/1752-0509-6-S2-S10 . PMC 3521181 . PMID  23281822. 
  97. ^ Suelto, Mateo; Rakyan, Vardhman; Holmes, Nadine; Payne, Alexander (3 de mayo de 2018). "Observación de ballenas con BulkVis: un visor gráfico para archivos fast5 masivos de Oxford Nanopore". bioRxiv 10.1101/312256 . 
  98. ^ "Las ventas de PacBio comienzan a aumentar a medida que la empresa ofrece mejoras de productos". 12 de febrero de 2013.
  99. ^ "Mundo de la biotecnología". bio-itworld.com . Archivado desde el original el 29 de julio de 2020 . Consultado el 16 de noviembre de 2015 .
  100. ^ "PacBio lanza un sistema de secuenciación de una sola molécula de mayor rendimiento y menor costo". Octubre de 2015.
  101. ^ Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (abril de 2009). "Identificación continua de bases para la secuenciación de ADN de nanoporos de una sola molécula". Nanotecnología de la naturaleza . 4 (4): 265–70. Código bibliográfico : 2009NatNa...4..265C. doi :10.1038/nnano.2009.12. PMID  19350039.
  102. ^ ab dela Torre R, Larkin J, Singer A, Meller A (2012). "Fabricación y caracterización de matrices de nanoporos de estado sólido para secuenciación de ADN de alto rendimiento". Nanotecnología . 23 (38): 385308. Código bibliográfico : 2012 Nanot..23L5308D. doi :10.1088/0957-4484/23/38/385308. PMC 3557807 . PMID  22948520. 
  103. ^ ab Pathak B, Lofas H, Prasongkit J, Grigoriev A, Ahuja R, Scheicher RH (2012). "Electrodos de oro integrados en nanoporos de doble funcionalidad para una secuenciación rápida de ADN". Letras de Física Aplicada . 100 (2): 023701. Código bibliográfico : 2012ApPhL.100b3701P. doi : 10.1063/1.3673335.
  104. ^ Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL, Roitman DB, Pham TT, Otto GA, Foquet M, Turner SW (2008). "Pasivación selectiva de aluminio para la inmovilización dirigida de moléculas individuales de ADN polimerasa en nanoestructuras de guía de ondas de modo cero". Procedimientos de la Academia Nacional de Ciencias . 105 (4): 1176–81. Código Bib : 2008PNAS..105.1176K. doi : 10.1073/pnas.0710982105 . PMC 2234111 . PMID  18216253. 
  105. ^ ab Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (9 de septiembre de 2005). "Secuenciación polonia múltiplex precisa de un genoma bacteriano evolucionado". Ciencia . 309 (5741): 1728–32. Código bibliográfico : 2005 Ciencia... 309.1728S. doi : 10.1126/ciencia.1117389 . PMID  16081699. S2CID  11405973.
  106. ^ Bentley DR, Balasubramanian S, et al. (2008). "Secuenciación precisa del genoma humano completo mediante química terminadora reversible". Naturaleza . 456 (7218): 53–59. Código Bib :2008Natur.456...53B. doi : 10.1038/naturaleza07517. PMC 2581791 . PMID  18987734. 
  107. ^ Canard B, Sarfati S (13 de octubre de 1994), Nuevos derivados utilizables para la secuenciación de ácidos nucleicos , consultado el 9 de marzo de 2016.
  108. ^ Canard B, Sarfati RS (octubre de 1994). "Sustratos fluorescentes de ADN polimerasa con etiquetas 3' reversibles". Gen. _ 148 (1): 1–6. doi :10.1016/0378-1119(94)90226-7. PMID  7523248.
  109. ^ Mardis ER (2008). "Métodos de secuenciación de ADN de próxima generación". Annu Rev Genom Hum Genet . 9 : 387–402. doi : 10.1146/annurev.genom.9.081307.164359. PMID  18576944.
  110. ^ abc Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, et al. (Enero de 2010). "Secuenciación del genoma humano mediante lecturas de bases desencadenadas en nanoarrays de ADN autoensamblados". Ciencia . 327 (5961): 78–81. Código Bib : 2010 Ciencia... 327... 78D. doi : 10.1126/ciencia.1181498 . PMID  19892942. S2CID  17309571.
  111. ^ brandonvd. "Acerca de nosotros: genómica completa". Genómica completa . Consultado el 2 de julio de 2018 .
  112. ^ ab Huang J, Liang X, Xuan Y, Geng C, Li Y, Lu H, et al. (mayo de 2017). "Un conjunto de datos de referencia del genoma humano del secuenciador BGISEQ-500". GigaCiencia . 6 (5): 1–9. doi : 10.1093/gigascience/gix024. PMC 5467036 . PMID  28379488. 
  113. ^ Valoruev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SM (julio de 2008). "Un mapa de posición de nucleosomas de alta resolución de C. elegans revela una falta de posicionamiento universal dictado por secuencias". Res del genoma . 18 (7): 1051–63. doi :10.1101/gr.076463.108. PMC 2493394 . PMID  18477713. 
  114. ^ Bizcocho tostado N (2011). "Torrents de secuencia". Métodos Nat . 8 (1): 44. doi : 10.1038/nmeth.f.330 . S2CID  41040192.
  115. ^ ab Drmanac R, Sparks AB, et al. (2010). "Secuenciación del genoma humano mediante lecturas de bases desencadenadas en nanoarrays de ADN autoensamblables". Ciencia . 327 (5961): 78–81. Código Bib : 2010 Ciencia... 327... 78D. doi : 10.1126/ciencia.1181498 . PMID  19892942. S2CID  17309571.
  116. ^ Porreca GJ (2010). "Secuenciación del genoma en nanobolas". Biotecnología de la Naturaleza . 28 (1): 43–44. doi :10.1038/nbt0110-43. PMID  20062041. S2CID  54557996.
  117. ^ "Sistema analizador genético/secuenciación de genes HeliScope: Helicos BioSciences". 2 de noviembre de 2009. Archivado desde el original el 2 de noviembre de 2009.
  118. ^ Thompson JF, Steinmann KE (octubre de 2010). "Secuenciación de una sola molécula con un sistema de análisis genético HeliScope". Protocolos actuales en biología molecular . Capítulo 7: Unidad7.10. doi :10.1002/0471142727.mb0710s92. PMC 2954431 . PMID  20890904. 
  119. ^ "Explicación técnica de tSMS SeqLL". SeqLL. Archivado desde el original el 8 de agosto de 2014 . Consultado el 9 de agosto de 2015 .
  120. ^ Brezo, James M.; Chain, Benjamin (enero de 2016). "La secuencia de secuenciadores: la historia de la secuenciación de ADN". Genómica . 107 (1): 1–8. doi :10.1016/j.ygeno.2015.11.003. PMC 4727787 . PMID  26554401. 
  121. ^ Sara El-Metwally; Osama M. Ouda; Mohamed Helmy (2014). "Nuevos horizontes en la secuenciación de próxima generación". Tecnologías de secuenciación de próxima generación y desafíos en el ensamblaje de secuencias . SpringerBriefs en biología de sistemas. vol. 7. Tecnologías de secuenciación de próxima generación y desafíos en el ensamblaje de secuencias, Springer Briefs in Systems Biology Volumen 7, págs. doi :10.1007/978-1-4939-0715-1_6. ISBN 978-1-4939-0714-4.
  122. ^ ab Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Srinivasan V, Pamula VK, Pollack MG, Griffin PB, Zhou J (enero de 2007). "Aplicaciones químicas y biológicas de dispositivos microfluídicos digitales". Diseño y prueba de computadoras IEEE . 24 (1): 10–24. CiteSeerX 10.1.1.559.1440 . doi :10.1109/MDT.2007.8. hdl :10161/6987. S2CID  10122940. 
  123. ^ ab Boles DJ, Benton JL, Siew GJ, Levy MH, Thwar PK, Sandahl MA, et al. (noviembre de 2011). "Pirosecuenciación basada en gotas mediante microfluidos digitales". Química analítica . 83 (22): 8439–47. doi :10.1021/ac201416j. PMC 3690483 . PMID  21932784. 
  124. ^ Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, Mazutis L (enero de 2017). "Secuenciación y códigos de barras unicelulares mediante microfluidos de gotitas". Protocolos de la Naturaleza . 12 (1): 44–73. doi :10.1038/nprot.2016.154. PMID  27929523. S2CID  767782.
  125. ^ "El Grupo de Nanoporos de Harvard". Mcb.harvard.edu. Archivado desde el original el 21 de febrero de 2002 . Consultado el 15 de noviembre de 2009 .
  126. ^ "La secuenciación de nanoporos podría reducir los costos de análisis de ADN".
  127. ^ Patente de EE. UU. 20060029957, ZS Genetics, "Sistemas y métodos de análisis de polímeros de ácidos nucleicos y componentes relacionados", publicada el 14 de julio de 2005 
  128. ^ Xu M, Fujita D, Hanagata N (diciembre de 2009). "Perspectivas y desafíos de las tecnologías emergentes de secuenciación de ADN de una sola molécula". Pequeño . 5 (23): 2638–49. doi :10.1002/smll.200900976. PMID  19904762.
  129. ^ Schadt EE, Turner S, Kasarskis A (2010). "Una ventana a la secuenciación de tercera generación". Genética Molecular Humana . 19 (R2): R227–40. doi : 10.1093/hmg/ddq416 . PMID  20858600.
  130. ^ Xu M, Endres RG, Arakawa Y (2007). "Las propiedades electrónicas de las bases del ADN". Pequeño . 3 (9): 1539–43. doi : 10.1002/smll.200600732 . PMID  17786897.
  131. ^ Di Ventra M (2013). "La secuenciación rápida de ADN por medios eléctricos está cada vez más cerca". Nanotecnología . 24 (34): 342501. Código bibliográfico : 2013 Nanot..24H2501D. doi :10.1088/0957-4484/24/34/342501. PMID  23899780. S2CID  140101884.
  132. ^ Ohshiro T, Matsubara K, Tsutsui M, Furuhashi M, Taniguchi M, Kawai T (2012). "Resecuenciación aleatoria eléctrica de una sola molécula de ADN y ARN". Representante de ciencia . 2 : 501. Código Bib : 2012NatSR...2E.501O. doi :10.1038/srep00501. PMC 3392642 . PMID  22787559. 
  133. ^ Hanna GJ, Johnson VA, Kuritzkes DR , Richman DD, Martinez-Picado J, Sutton L, Hazelwood JD, D'Aquila RT (1 de julio de 2000). "Comparación de secuenciación por hibridación y secuenciación de ciclos para el genotipado de la transcriptasa inversa tipo 1 del virus de la inmunodeficiencia humana". J.Clin. Microbiol . 38 (7): 2715–21. doi :10.1128/JCM.38.7.2715-2721.2000. PMC 87006 . PMID  10878069. 
  134. ^ ab Morey M, Fernández-Marmiesse A, Castiñeiras D, Fraga JM, Couce ML, Cocho JA (2013). "Un vistazo a la secuenciación de ADN pasada, presente y futura". Genética molecular y metabolismo . 110 (1–2): 3–24. doi :10.1016/j.ymgme.2013.04.024. PMID  23742747.
  135. ^ Qin Y, Schneider TM, diputado de Brenner (2012). Gibas C (ed.). "Secuenciación por hibridación de objetivos largos". MÁS UNO . 7 (5): e35819. Código Bib : 2012PLoSO...735819Q. doi : 10.1371/journal.pone.0035819 . PMC 3344849 . PMID  22574124. 
  136. ^ Edwards JR, Ruparel H, Ju J (2005). "Secuenciación de ADN por espectrometría de masas". Investigación de mutaciones . 573 (1–2): 3–12. doi :10.1016/j.mrfmmm.2004.07.021. PMID  15829234.
  137. ^ Hall TA, Budowle B, Jiang Y, Blyn L, Eshoo M, Sannes-Lowery KA, Sampath R, Drader JJ, Hannis JC, Harrell P, Samant V, White N, Ecker DJ, Hofstadler SA (2005). "Análisis de la composición de bases del ADN mitocondrial humano mediante espectrometría de masas de ionización por electropulverización: una nueva herramienta para la identificación y diferenciación de humanos". Bioquímica Analítica . 344 (1): 53–69. doi :10.1016/j.ab.2005.05.028. PMID  16054106.
  138. ^ Howard R, Encheva V, Thomson J, Bache K, Chan YT, Cowen S, Debenham P, Dixon A, Krause JU, Krishan E, Moore D, Moore V, Ojo M, Rodrigues S, Stokes P, Walker J, Zimmermann W, Barallón R (15 de junio de 2011). "Análisis comparativo del ADN mitocondrial humano de muestras de hueso de la Primera Guerra Mundial mediante secuenciación de ADN y espectrometría de masas ESI-TOF". Ciencia Forense Internacional: Genética . 7 (1): 1–9. doi : 10.1016/j.fsigen.2011.05.009 . PMID  21683667.
  139. ^ Monforte JA, Becker CH (1 de marzo de 1997). "Análisis de ADN de alto rendimiento mediante espectrometría de masas de tiempo de vuelo". Medicina de la Naturaleza . 3 (3): 360–62. doi :10.1038/nm0397-360. PMID  9055869. S2CID  28386145.
  140. ^ Beres SB, Carroll RK, Shea PR, Sitkiewicz I, Martinez-Gutiérrez JC, Low DE, McGeer A, Willey BM, Green K, Tyrrell GJ, Goldman TD, Feldgarden M, Birren BW, Fofanov Y, Boos J, Wheaton WD , Honisch C, Musser JM (8 de febrero de 2010). "Complejidad molecular de sucesivas epidemias bacterianas desconvolucionadas por patogenómica comparada". Procedimientos de la Academia Nacional de Ciencias . 107 (9): 4371–76. Código Bib : 2010PNAS..107.4371B. doi : 10.1073/pnas.0911295107 . PMC 2840111 . PMID  20142485. 
  141. ^ Kan CW, Fredlake CP, Doherty EA, Barron AE (1 de noviembre de 2004). "Secuenciación de ADN y genotipado en sistemas de electroforesis miniaturizados". Electroforesis . 25 (21–22): 3564–88. doi :10.1002/elps.200406161. PMID  15565709. S2CID  4851728.
  142. ^ Chen YJ, Rodillo EE, Huang X (2010). "Secuenciación de ADN por desnaturalización: prueba experimental de concepto con un dispositivo fluídico integrado". Laboratorio en un chip . 10 (9): 1153–59. doi :10.1039/b921417h. PMC 2881221 . PMID  20390134. 
  143. ^ Bell DC, Thomas WK, Murtagh KM, Dionne CA, Graham AC, Anderson JE, Glover WR (9 de octubre de 2012). "Identificación de bases de ADN mediante microscopía electrónica". Microscopía y Microanálisis . 18 (5): 1049–53. Código Bib : 2012MiMic..18.1049B. doi :10.1017/S1431927612012615. PMID  23046798. S2CID  25713635.
  144. ^ Pareek CS, Smoczynski R, Tretyn A (noviembre de 2011). "Tecnologías de secuenciación y secuenciación del genoma". Revista de genética aplicada . 52 (4): 413–35. doi :10.1007/s13353-011-0057-x. PMC 3189340 . PMID  21698376. 
  145. ^ Pareek CS, Smoczynski R, Tretyn A (2011). "Tecnologías de secuenciación y secuenciación del genoma". Revista de genética aplicada . 52 (4): 413–35. doi :10.1007/s13353-011-0057-x. PMC 3189340 . PMID  21698376. 
  146. ^ Fujimori S, Hirai N, Ohashi H, Masuoka K, Nishikimi A, Fukui Y, Washio T, Oshikubo T, Yamashita T, Miyamoto-Sato E (2012). "Secuenciación de próxima generación junto con una tecnología de visualización sin células para una producción de alto rendimiento de datos confiables del interactoma". Informes científicos . 2 : 691. Código bibliográfico : 2012NatSR...2E.691F. doi :10.1038/srep00691. PMC 3466446 . PMID  23056904. 
  147. ^ "Cuota de mercado de secuenciación en 2022: igual que siempre (por ahora)". 25 de junio de 2023.
  148. ^ Heraldos M (2008). "El estado actual de la clonación de ADNc". Genómica . 91 (3): 232–42. doi : 10.1016/j.ygeno.2007.11.004 . PMID  18222633.
  149. ^ Alberti A, Belser C, Engelen S, Bertrand L, Orvain C, Brinas L, Cruaud C, et al. (2014). "La comparación de métodos de preparación de bibliotecas revela su impacto en la interpretación de datos metatranscriptómicos". Genómica BMC . 15 (1): 912–12. doi : 10.1186/1471-2164-15-912 . PMC 4213505 . PMID  25331572. 
  150. ^ "Evaluaciones escalables de la calidad de los ácidos nucleicos para la preparación de la biblioteca de secuenciación de próxima generación de Illumina" (PDF) . Consultado el 27 de diciembre de 2017 .
  151. ^ "Premio XPRIZE de Archon Genomics". Premio XPRIZE de Archon Genomics . Archivado desde el original el 17 de junio de 2013 . Consultado el 9 de agosto de 2007 .
  152. ^ "Información sobre la subvención". Instituto Nacional de Investigación del Genoma Humano (NHGRI) .
  153. ^ Severin J, Lizio M, Harshbarger J, Kawaji H, Daub CO, Hayashizaki Y, Bertin N, Forrest AR (2014). "Visualización interactiva y análisis de conjuntos de datos de secuenciación a gran escala utilizando ZENBU". Nat. Biotecnología . 32 (3): 217-19. doi :10.1038/nbt.2840. PMID  24727769. S2CID  26575621.
  154. ^ Shmilovici A, Ben-Gal I (2007). "Uso de un modelo VOM para reconstruir posibles regiones codificantes en secuencias EST" (PDF) . Estadística Computacional . 22 (1): 49–69. doi :10.1007/s00180-007-0021-8. S2CID  2737235. Archivado desde el original (PDF) el 31 de mayo de 2020 . Consultado el 10 de enero de 2014 .
  155. ^ Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM (2013). "Una evaluación exhaustiva de los efectos del recorte de lectura en el análisis de datos de Illumina NGS". MÁS UNO . 8 (12): e85024. Código Bib : 2013PLoSO...885024D. doi : 10.1371/journal.pone.0085024 . PMC 3871669 . PMID  24376861. 
  156. ^ Martín, Marcel (2 de mayo de 2011). "Cutadapt elimina secuencias de adaptadores de lecturas de secuenciación de alto rendimiento". Revista EMBnet . 17 (1): 10. doi : 10.14806/ej.17.1.200 .
  157. ^ Smeds L, Künstner A (19 de octubre de 2011). "ConDeTri: un recortador de lectura dependiente del contenido para datos de Illumina". MÁS UNO . 6 (10): e26314. Código Bib : 2011PLoSO...626314S. doi : 10.1371/journal.pone.0026314 . PMC 3198461 . PMID  22039460. 
  158. ^ Prezza N, Del Fabbro C, Vezzi F, De Paoli E, Policriti A (2012). "Erne-Bs5". Actas de la Conferencia ACM sobre Bioinformática, Biología Computacional y Biomedicina . vol. 12. págs. 12-19. doi :10.1145/2382936.2382938. ISBN 9781450316705. S2CID  5673753.
  159. ^ Schmieder R, Edwards R (marzo de 2011). "Control de calidad y preprocesamiento de conjuntos de datos metagenómicos". Bioinformática . 27 (6): 863–4. doi : 10.1093/bioinformática/btr026. PMC 3051327 . PMID  21278185. 
  160. ^ Bolger AM, Lohse M, Usadel B (agosto de 2014). "Trimmomatic: un recortador flexible para datos de secuencia de Illumina". Bioinformática . 30 (15): 2114–20. doi : 10.1093/bioinformática/btu170. PMC 4103590 . PMID  24695404. 
  161. ^ Cox MP, Peterson DA, Biggs PJ (septiembre de 2010). "SolexaQA: evaluación de la calidad de un vistazo de los datos de secuenciación de segunda generación de Illumina". Bioinformática BMC . 11 (1): 485. doi : 10.1186/1471-2105-11-485 . PMC 2956736 . PMID  20875133. 
  162. ^ Murray TH (enero de 1991). "Cuestiones éticas en la investigación del genoma humano". Revista FASEB . 5 (1): 55–60. doi : 10.1096/fasebj.5.1.1825074 . PMID  1825074. S2CID  20009748.
  163. ^ abc Robertson JA (agosto de 2003). "El genoma de 1000 dólares: cuestiones éticas y legales en la secuenciación del genoma completo de individuos". La Revista Estadounidense de Bioética . 3 (3): W-IF1. doi :10.1162/152651603322874762. PMID  14735880. S2CID  15357657.
  164. ^ ab Henderson, Mark (9 de septiembre de 2013). "Secuenciación del genoma humano: los verdaderos dilemas éticos". El guardián . Consultado el 20 de mayo de 2015 .
  165. ^ Harmon, Amy (24 de febrero de 2008). "Los temores a los seguros llevan a muchos a evitar las pruebas de ADN". Los New York Times . Consultado el 20 de mayo de 2015 .
  166. ^ Declaración de política administrativa, Oficina Ejecutiva del Presidente, Oficina de Gestión y Presupuesto, 27 de abril de 2007
  167. ^ Instituto Nacional de Investigación del Genoma Humano (21 de mayo de 2008). "El presidente Bush firma la Ley de no discriminación de información genética de 2008" . Consultado el 17 de febrero de 2014 .
  168. ^ Baker, Monya (11 de octubre de 2012). "Informes del panel de ética de EE. UU. sobre privacidad y secuenciación de ADN". Blog de noticias de naturaleza .
  169. ^ "Privacidad y progreso en la secuenciación del genoma completo" (PDF) . Comisión Presidencial para el Estudio de Cuestiones Bioéticas. Archivado desde el original (PDF) el 12 de junio de 2015 . Consultado el 20 de mayo de 2015 .
  170. ^ Hartnett, Kevin (12 de mayo de 2013). "El ADN de tu basura: en juego" . El Boston Globe . Consultado el 2 de enero de 2023 .
  171. ^ Goldenberg AJ, Sharp RR (febrero de 2012). "Los peligros éticos y los desafíos programáticos del cribado genómico de recién nacidos". JAMA . 307 (5): 461–2. doi :10.1001/jama.2012.68. PMC 3868436 . PMID  22298675. 
  172. ^ Hughes, Virginia (7 de enero de 2013). "Es hora de dejar de obsesionarse con los peligros de la información genética". Revista Pizarra . Consultado el 22 de mayo de 2015 .
  173. ^ ab Bloss CS, Schork Nueva Jersey, Topol EJ (febrero de 2011). "Efecto del perfil genómico directo al consumidor para evaluar el riesgo de enfermedad". El diario Nueva Inglaterra de medicina . 364 (6): 524–34. doi :10.1056/NEJMoa1011893. PMC 3786730 . PMID  21226570. 
  174. ^ Rochman, Bonnie (25 de octubre de 2012). "Lo que su médico no le dice sobre su ADN". Hora.com . Consultado el 22 de mayo de 2015 .
  175. ^ Sajeer P, Muhammad (4 de mayo de 2023). "Tecnología disruptiva: exploración de las implicaciones éticas, legales, políticas y sociales de la tecnología de secuenciación de nanoporos". Informes EMBO . 24 (5): e56619. doi :10.15252/embr.202256619. PMC  10157308. PMID  36988424. S2CID  257803254.

enlaces externos