stringtranslate.com

El principio de Bernoulli

Un flujo de aire a través de un medidor venturi . La energía cinética aumenta a expensas de la presión del fluido , como lo demuestra la diferencia de altura de las dos columnas de agua.
Vídeo de un medidor venturi utilizado en un experimento de laboratorio.

El principio de Bernoulli es un concepto clave en dinámica de fluidos que relaciona presión, velocidad y altura. El principio de Bernoulli establece que un aumento en la velocidad de una porción de fluido ocurre simultáneamente con una disminución en la presión o en la altura sobre un punto de referencia. [1] : Ch.3  [2] : 156–164, § 3.5  El principio lleva el nombre del matemático y físico suizo Daniel Bernoulli , quien lo publicó en su libro Hydrodynamica en 1738. [3] Aunque Bernoulli dedujo que la presión disminuye cuando A medida que aumenta la velocidad del flujo, fue Leonhard Euler quien en 1752 dedujo la ecuación de Bernoulli en su forma habitual. [4] [5]

El principio de Bernoulli se puede derivar del principio de conservación de la energía . Esto establece que, en un flujo estacionario, la suma de todas las formas de energía en un fluido es la misma en todos los puntos que están libres de fuerzas viscosas. Esto requiere que la suma de la energía cinética , la energía potencial y la energía interna permanezca constante. [2] : § 3.5  Así, un aumento en la velocidad del fluido, que implica un aumento en su energía cinética, ocurre con una disminución simultánea en (la suma de) su energía potencial (incluida la presión estática) y su energía interna. Si el fluido fluye fuera de un depósito, la suma de todas las formas de energía es la misma porque en un depósito la energía por unidad de volumen (la suma de la presión y el potencial gravitacional ρ g h ) es la misma en todas partes. [6] : Ejemplo 3.5 y p.116 

El principio de Bernoulli también puede derivarse directamente de la segunda ley del movimiento de Isaac Newton . Si un pequeño volumen de fluido fluye horizontalmente desde una región de alta presión a una región de baja presión, entonces hay más presión detrás que delante. Esto proporciona una fuerza neta sobre el volumen, acelerándolo a lo largo de la línea de corriente. [a B C ]

Las partículas de fluido están sujetas únicamente a la presión y a su propio peso. Si un fluido fluye horizontalmente y a lo largo de una sección de una línea de corriente, donde la velocidad aumenta solo puede deberse a que el fluido en esa sección se ha movido de una región de mayor presión a una región de menor presión; y si su velocidad disminuye, sólo puede ser porque se ha movido de una región de menor presión a una región de mayor presión. En consecuencia, dentro de un fluido que fluye horizontalmente, la velocidad más alta ocurre donde la presión es más baja y la velocidad más baja ocurre donde la presión es más alta. [10]

El principio de Bernoulli sólo es aplicable a flujos isentrópicos : cuando los efectos de procesos irreversibles (como la turbulencia ) y procesos no adiabáticos (por ejemplo, radiación térmica ) son pequeños y pueden despreciarse. Sin embargo, el principio se puede aplicar a varios tipos de flujo dentro de estos límites, lo que da como resultado varias formas de la ecuación de Bernoulli. La forma simple de la ecuación de Bernoulli es válida para flujos incompresibles (por ejemplo, la mayoría de los flujos líquidos y gases que se mueven con un número de Mach bajo ). Se pueden aplicar formas más avanzadas a flujos compresibles con números de Mach más altos.

Ecuación de flujo incompresible

En la mayoría de los flujos de líquidos y de gases con un número de Mach bajo , la densidad de una porción de fluido se puede considerar constante, independientemente de las variaciones de presión en el flujo. Por tanto, se puede considerar que el fluido es incompresible, y estos flujos se denominan flujos incompresibles . Bernoulli realizó sus experimentos con líquidos, por lo que su ecuación en su forma original es válida sólo para flujos incompresibles.

Una forma común de la ecuación de Bernoulli es:

dónde:

La ecuación de Bernoulli y la constante de Bernoulli son aplicables en cualquier región de flujo donde la energía por unidad de masa sea uniforme. Debido a que la energía por unidad de masa de líquido en un yacimiento bien mezclado es uniforme en todas partes, la ecuación de Bernoulli se puede utilizar para analizar el flujo de fluido en todas partes de ese yacimiento (incluidas las tuberías o campos de flujo que alimenta el yacimiento), excepto donde las fuerzas viscosas dominan y erosionan. la energía por unidad de masa. [6] : Ejemplo 3.5 y p.116 

Se deben cumplir los siguientes supuestos para que se aplique esta ecuación de Bernoulli: [2] : 265 

Para campos de fuerza conservadores (no limitados al campo gravitacional ), la ecuación de Bernoulli se puede generalizar como: [2] : 265 

ΨΨ = gz

Multiplicando por la densidad del fluido ρ , la ecuación ( A ) se puede reescribir como:

La constante de la ecuación de Bernoulli se puede normalizar. Un enfoque común es en términos de carga total o carga de energía H :

Las ecuaciones anteriores sugieren que existe una velocidad de flujo en la que la presión es cero y, a velocidades aún mayores, la presión es negativa. La mayoría de las veces, los gases y líquidos no son capaces de tener una presión absoluta negativa, o incluso una presión cero, por lo que claramente la ecuación de Bernoulli deja de ser válida antes de que se alcance la presión cero. En los líquidos, cuando la presión es demasiado baja, se produce cavitación . Las ecuaciones anteriores utilizan una relación lineal entre la velocidad del flujo al cuadrado y la presión. A velocidades de flujo más altas en gases, o para ondas sonoras en líquidos, los cambios en la densidad de masa se vuelven significativos, de modo que la suposición de densidad constante no es válida.

forma simplificada

En muchas aplicaciones de la ecuación de Bernoulli, el cambio en el término ρgz es tan pequeño comparado con los otros términos que puede ignorarse. Por ejemplo, en el caso de una aeronave en vuelo, el cambio en la altura z es tan pequeño que se puede omitir el término ρgz . Esto permite presentar la ecuación anterior en la siguiente forma simplificada:

p 0presión totalqpresión dinámica[14]pp 0qAerodinámica[1] : § 3.5 

La forma simplificada de la ecuación de Bernoulli se puede resumir en la siguiente ecuación memorable: [1] : § 3.5 

presión estática + presión dinámica = presión total

Cada punto en un fluido que fluye constantemente, independientemente de la velocidad del fluido en ese punto, tiene su propia presión estática p y presión dinámica q . Su suma p + q se define como la presión total p 0 . La importancia del principio de Bernoulli ahora se puede resumir en que "la presión total es constante en cualquier región libre de fuerzas viscosas". Si el flujo de fluido se detiene en algún punto, este punto se llama punto de estancamiento, y en este punto la presión estática es igual a la presión de estancamiento .

Si el flujo de fluido es irrotacional , la presión total es uniforme y el principio de Bernoulli se puede resumir como "la presión total es constante en todas partes del flujo de fluido". [1] : Ecuación 3.12  Es razonable suponer que existe flujo irrotacional en cualquier situación en la que una gran masa de fluido fluye junto a un cuerpo sólido. Algunos ejemplos son los aviones en vuelo y los barcos que se mueven en masas de agua abiertas. Sin embargo, es importante destacar que el principio de Bernoulli no se aplica en la capa límite , como en el flujo a través de tuberías largas .

Flujo potencial inestable

La ecuación de Bernoulli para el flujo potencial inestable se utiliza en la teoría de las ondas de la superficie del océano y la acústica . Para un flujo irrotacional, la velocidad del flujo se puede describir como el gradiente φ de un potencial de velocidad φ . En ese caso, y para una densidad constante ρ , las ecuaciones de momento de las ecuaciones de Euler se pueden integrar a: [2] : 383 

que es una ecuación de Bernoulli válida también para flujos inestables o dependientes del tiempo. Aquíφ/∂tdenota la derivada parcial del potencial de velocidad φ con respecto al tiempo t , y v = | φ | es la velocidad del flujo. La función f ( t ) depende sólo del tiempo y no de la posición en el fluido. Como resultado, la ecuación de Bernoulli en algún momento t se aplica en todo el dominio del fluido. Esto también es válido para el caso especial de un flujo irrotacional estable, en cuyo caso f yφ/∂tson constantes, por lo que la ecuación ( A ) se puede aplicar en cada punto del dominio del fluido. [2] : 383  Además, f ( t ) se puede hacer igual a cero incorporándolo al potencial de velocidad usando la transformación:

Tenga en cuenta que la relación del potencial con la velocidad del flujo no se ve afectada por esta transformación: ∇Φ = ∇ φ .

La ecuación de Bernoulli para el flujo potencial inestable también parece desempeñar un papel central en el principio variacional de Luke , una descripción variacional de los flujos en superficie libre que utiliza la mecánica lagrangiana .

Ecuación de flujo compresible

Bernoulli desarrolló su principio a partir de observaciones sobre líquidos, y la ecuación de Bernoulli es válida para fluidos ideales: aquellos que son incompresibles, irrotacionales, no viscosos y sujetos a fuerzas conservativas. A veces es válido para el flujo de gases: siempre que no haya transferencia de energía cinética o potencial desde el flujo de gas a la compresión o expansión del gas. Si tanto la presión como el volumen del gas cambian simultáneamente, entonces el gas realizará trabajo sobre el gas. En este caso, no se puede asumir que la ecuación de Bernoulli, en su forma de flujo incompresible, sea válida. Sin embargo, si el proceso del gas es completamente isobárico o isocórico , entonces no se realiza ningún trabajo sobre el gas (por lo que el equilibrio energético simple no se altera). Según la ley de los gases, un proceso isobárico o isocórico es normalmente la única manera de asegurar una densidad constante en un gas. Además la densidad del gas será proporcional a la relación entre presión y temperatura absoluta ; sin embargo, esta relación variará tras la compresión o expansión, sin importar qué cantidad de calor distinta de cero se agregue o elimine. La única excepción es si la transferencia neta de calor es cero, como en un ciclo termodinámico completo o en un proceso isentrópico individual ( adiabático sin fricción ), e incluso entonces este proceso reversible debe revertirse para restaurar el gas a su presión y volumen específicos originales. , y por tanto la densidad. Sólo entonces es aplicable la ecuación original de Bernoulli sin modificaciones. En este caso, la ecuación se puede utilizar si la velocidad del flujo del gas es suficientemente inferior a la velocidad del sonido , de modo que se pueda ignorar la variación en la densidad del gas (debido a este efecto) a lo largo de cada línea de corriente. Generalmente se considera que el flujo adiabático a menos de Mach 0,3 es bastante lento. [15]

Es posible utilizar los principios fundamentales de la física para desarrollar ecuaciones similares aplicables a fluidos compresibles. Existen numerosas ecuaciones, cada una diseñada para una aplicación particular, pero todas son análogas a la ecuación de Bernoulli y todas se basan nada más que en los principios fundamentales de la física, como las leyes del movimiento de Newton o la primera ley de la termodinámica .

Flujo compresible en dinámica de fluidos.

Para un fluido compresible, con una ecuación de estado barotrópica y bajo la acción de fuerzas conservativas, [16]

En situaciones de ingeniería, las elevaciones son generalmente pequeñas en comparación con el tamaño de la Tierra, y las escalas de tiempo del flujo de fluidos son lo suficientemente pequeñas como para considerar la ecuación de estado como adiabática. En este caso, la ecuación anterior para un gas ideal queda como: [1] : § 3.11 

En muchas aplicaciones de flujo compresible, los cambios en la elevación son insignificantes en comparación con los otros términos, por lo que se puede omitir el término gz . Una forma muy útil de la ecuación es entonces:

dónde:

Flujo compresible en termodinámica.

La forma más general de la ecuación, adecuada para su uso en termodinámica en caso de flujo (casi) estacionario, es: [2] : § 3.5  [17] : § 5  [18] : § 5.9 

Aquí w es la entalpía por unidad de masa (también conocida como entalpía específica), que a menudo también se escribe como h (no debe confundirse con "cabeza" o "altura").

Tenga en cuenta que

etermodinámicaenergía interna específica

La constante del lado derecho a menudo se denomina constante de Bernoulli y se denota por b . Para un flujo adiabático constante y no viscoso sin fuentes ni sumideros de energía adicionales, b es constante a lo largo de cualquier línea de corriente dada. De manera más general, cuando b puede variar a lo largo de las líneas de corriente, sigue siendo un parámetro útil, relacionado con la "altura" del fluido (ver más abajo).

Cuando se puede ignorar el cambio en Ψ , una forma muy útil de esta ecuación es:

w 0

Cuando hay ondas de choque presentes, en un sistema de referencia en el que el choque es estacionario y el flujo es estable, muchos de los parámetros de la ecuación de Bernoulli sufren cambios abruptos al pasar a través del choque. El parámetro Bernoulli no se ve afectado. Una excepción a esta regla son los choques radiativos, que violan los supuestos que conducen a la ecuación de Bernoulli, es decir, la falta de sumideros o fuentes de energía adicionales.

Flujo potencial inestable

Para un fluido compresible, con una ecuación de estado barotrópica, la ecuación de conservación del momento inestable

Con el supuesto irrotacional, es decir, la velocidad del flujo se puede describir como el gradiente φ de un potencial de velocidad φ . La ecuación de conservación del momento inestable se convierte en

En este caso, la ecuación anterior para el flujo isentrópico se convierte en:

Derivaciones

Ecuación de Bernoulli para fluidos incompresibles

La ecuación de Bernoulli para fluidos incompresibles se puede derivar integrando la segunda ley del movimiento de Newton o aplicando la ley de conservación de la energía , ignorando la viscosidad , la compresibilidad y los efectos térmicos.

Derivación mediante la integración de la Segunda Ley del Movimiento de Newton

La derivación más simple es ignorar primero la gravedad y considerar las constricciones y expansiones en tuberías que por lo demás son rectas, como se ve en el efecto Venturi . Deje que el eje x se dirija hacia abajo del eje de la tubería.

Defina una parcela de fluido que se mueve a través de una tubería con un área de sección transversal A , la longitud de la parcela es d x y el volumen de la parcela Ad x . Si la densidad de masa es ρ , la masa del paquete es la densidad multiplicada por su volumen m = ρA d x . El cambio de presión a lo largo de la distancia d x es d p y la velocidad del flujo v =d x/d t.

Aplique la segunda ley del movimiento de Newton (fuerza = masa × aceleración) y reconozca que la fuerza efectiva sobre la porción de fluido es Ad p . Si la presión disminuye a lo largo de la tubería, d p es negativo pero la fuerza resultante en el flujo es positiva a lo largo del eje x .

En flujo estacionario, el campo de velocidad es constante con respecto al tiempo, v = v ( x ) = v ( x ( t )) , por lo que v en sí no es directamente una función del tiempo t . Sólo cuando el paquete se mueve a través de x cambia el área de la sección transversal: v depende de t sólo a través de la posición de la sección transversal x ( t ) .

Con densidad ρ constante, la ecuación de movimiento se puede escribir como

integrando con respecto a x
donde C es una constante, a veces denominada constante de Bernoulli. No es una constante universal , sino más bien una constante de un sistema de fluidos particular. La deducción es: donde la velocidad es grande, la presión es baja y viceversa.

En la derivación anterior, no se invoca ningún principio externo de trabajo-energía. Más bien, el principio de Bernoulli se derivó de una simple manipulación de la segunda ley de Newton.

Un tubo de flujo de fluido que se mueve hacia la derecha. Se indican la presión, la elevación, la velocidad del flujo, la distancia ( s ) y el área de la sección transversal. Tenga en cuenta que en esta figura la elevación se denota como h , a diferencia del texto donde se indica con z .
Derivación mediante el uso de la conservación de la energía.

Otra forma de derivar el principio de Bernoulli para un flujo incompresible es aplicando la conservación de la energía. [19] En la forma del teorema trabajo-energía , afirmando que [20]

el cambio en la energía cinética E kin del sistema es igual al trabajo neto W realizado sobre el sistema ;

Por lo tanto,

el trabajo realizado por las fuerzas en el fluido es igual al aumento de la energía cinética .

El sistema está formado por el volumen de fluido, inicialmente entre las secciones transversales A 1 y A 2 . En el intervalo de tiempo Δ t los elementos del fluido inicialmente en la sección transversal de entrada A 1 se mueven una distancia s 1 = v 1 Δ t , mientras que en la sección transversal de salida el fluido se aleja de la sección transversal A 2 una distancia s 2 = v 2 Δ t . Los volúmenes de fluido desplazado en la entrada y salida son respectivamente A 1 s 1 y A 2 s 2 . Las masas de fluido desplazadas asociadas son (cuando ρ es la densidad de masa del fluido ) iguales a la densidad multiplicada por el volumen, por lo que ρA 1 s 1 y ρA 2 s 2 . Por conservación de masa, estas dos masas desplazadas en el intervalo de tiempo Δ t tienen que ser iguales, y esta masa desplazada se denota por  Δ m :

El trabajo realizado por las fuerzas consta de dos partes:

Ahora, el trabajo de la fuerza de gravedad es opuesto al cambio en la energía potencial , W gravedad = − ΔE pot,gravedad : mientras la fuerza de gravedad está en la dirección z negativa , el trabajo (fuerza de gravedad multiplicada por el cambio de elevación) será negativo para un cambio de elevación positivo Δ z = z 2z 1 , mientras que el cambio de energía potencial correspondiente es positivo. [21] : 14–4, §14–3  Entonces:
Y por lo tanto el trabajo total realizado en este intervalo de tiempo Δ t es
El aumento de energía cinética es
Juntándolos, el teorema del trabajo-energía cinética W = Δ E kin da: [19]
o
Después de dividir por la masa Δ m = ρA 1 v 1 Δ t = ρA 2 v 2 Δ t el resultado es: [19]
o, como se indica en el primer párrafo:

Una división adicional por g produce la siguiente ecuación. Tenga en cuenta que cada término se puede describir en la dimensión de longitud (como metros). Esta es la ecuación principal derivada del principio de Bernoulli:

El término medio, z , representa la energía potencial del fluido debido a su elevación con respecto a un plano de referencia. Ahora, z se llama altura de elevación y se le da la designación z elevación .

Una masa en caída libre desde una elevación z > 0 (en el vacío ) alcanzará una velocidad

al llegar a la elevación z = 0 . O cuando se reorganiza como cabeza :
El términov 2/2 gramosse llama carga de velocidad , expresada como una medida de longitud. Representa la energía interna del fluido debido a su movimiento.

La presión hidrostática p se define como

con p 0 cierta presión de referencia, o cuando se reorganiza como cabeza :
El términopag/ρgTambién se llama altura de presión , expresada como una medida de longitud. Representa la energía interna del fluido debido a la presión ejercida sobre el recipiente. La carga debida a la velocidad del flujo y la carga debida a la presión estática combinadas con la elevación sobre un plano de referencia, se obtiene una relación simple útil para fluidos incompresibles usando la carga de velocidad, la carga de elevación y la carga de presión.

Si la ecuación. 1 se multiplica por la densidad del fluido, se obtiene una ecuación con tres términos de presión:

Tenga en cuenta que la presión del sistema es constante en esta forma de ecuación de Bernoulli. Si la presión estática del sistema (el tercer término) aumenta, y si la presión debida a la elevación (el término medio) es constante, entonces la presión dinámica (el primer término) debe haber disminuido. En otras palabras, si la velocidad de un fluido disminuye y no se debe a una diferencia de elevación, debe deberse a un aumento de la presión estática que resiste el flujo.

Las tres ecuaciones son simplemente versiones simplificadas de un balance de energía en un sistema.

Ecuación de Bernoulli para fluidos compresibles.

La derivación para fluidos compresibles es similar. Nuevamente, la derivación depende de (1) la conservación de la masa y (2) la conservación de la energía. La conservación de masa implica que en la figura anterior, en el intervalo de tiempo Δ t , la cantidad de masa que pasa a través del límite definido por el área A 1 es igual a la cantidad de masa que pasa hacia afuera a través del límite definido por el área A 2 :

La conservación de energía se aplica de manera similar: se supone que el cambio de energía del volumen del tubo de corriente delimitado por A 1 y A 2 se debe enteramente a la energía que entra o sale por uno u otro de estos dos límites. Claramente, en una situación más complicada, como la de un flujo de fluido acoplado con radiación, tales condiciones no se cumplen. Sin embargo, suponiendo que este sea el caso y suponiendo que el flujo es estable de modo que el cambio neto en la energía sea cero,
donde Δ E 1 y Δ E 2 son la energía que entra por A 1 y sale por A 2 , respectivamente. La energía que ingresa por A 1 es la suma de la energía cinética que ingresa, la energía que ingresa en forma de energía gravitacional potencial del fluido, la energía interna termodinámica del fluido por unidad de masa ( ε 1 ) que ingresa y la energía que ingresa en el forma de trabajo mecánico p d V :
donde Ψ = gz es el potencial de fuerza debido a la gravedad de la Tierra , g es la aceleración debida a la gravedad y z es la elevación sobre un plano de referencia. Puede construirse fácilmente una expresión similar para Δ E 2 . Entonces ahora configuramos 0 = Δ E 1 − Δ E 2 :
que se puede reescribir como:
Ahora, utilizando el resultado obtenido previamente de la conservación de la masa, esto se puede simplificar para obtener
que es la ecuación de Bernoulli para flujo compresible.

Se puede escribir una expresión equivalente en términos de entalpía del fluido ( h ):

Aplicaciones

Condensación visible sobre la superficie superior del ala de un Airbus A340 causada por la caída de temperatura que acompaña a la caída de presión.

En la vida cotidiana moderna hay muchas observaciones que pueden explicarse exitosamente mediante la aplicación del principio de Bernoulli, aunque ningún fluido real es completamente viscoso, [22] y una pequeña viscosidad a menudo tiene un gran efecto en el flujo.

Conceptos erróneos

elevación del perfil aerodinámico

Una ilustración de la explicación incorrecta del tiempo de tránsito igual de la sustentación del perfil aerodinámico.

Una de las explicaciones erróneas más comunes de la sustentación aerodinámica afirma que el aire debe atravesar las superficies superior e inferior de un ala en la misma cantidad de tiempo, lo que implica que dado que la superficie superior presenta un recorrido más largo, el aire debe moverse sobre la parte superior del ala. el ala más rápido que sobre el fondo. Luego se cita el principio de Bernoulli para concluir que la presión en la parte superior del ala debe ser menor que en la parte inferior. [26] [27]

Sin embargo, no existe ningún principio físico que requiera que el aire atraviese las superficies superior e inferior en la misma cantidad de tiempo. De hecho, la teoría predice (y los experimentos lo confirman) que el aire atraviesa la superficie superior en un tiempo más corto que la superficie inferior; la explicación basada en el tiempo de tránsito igual es falsa. [28] [29] [30] Si bien la explicación del tiempo igual es falsa, no es el principio de Bernoulli el que es falso, porque este principio está bien establecido; La ecuación de Bernoulli se utiliza correctamente en tratamientos matemáticos comunes de sustentación aerodinámica. [31] [32]

Demostraciones comunes en el aula

Hay varias demostraciones comunes en el aula que a veces se explican incorrectamente utilizando el principio de Bernoulli. [33] Uno implica sostener un trozo de papel horizontalmente para que caiga hacia abajo y luego soplar sobre él. Cuando el manifestante sopla sobre el papel, éste se eleva. Luego se afirma que esto se debe a que "el aire que se mueve más rápido tiene una presión más baja". [34] [35] [36]

Un problema con esta explicación se puede ver soplando a lo largo de la parte inferior del papel: si la desviación fue causada por el aire que se mueve más rápido, entonces el papel debería desviarse hacia abajo; pero el papel se desvía hacia arriba independientemente de si el aire que se mueve más rápido está arriba o abajo. [37] Otro problema es que cuando el aire sale de la boca del manifestante tiene la misma presión que el aire circundante; [38] el aire no tiene menor presión solo porque está en movimiento; En la demostración, la presión estática del aire que sale de la boca del manifestante es igual a la presión del aire circundante. [39] [40] Un tercer problema es que es falso hacer una conexión entre el flujo en los dos lados del papel usando la ecuación de Bernoulli, ya que el aire arriba y abajo son campos de flujo diferentes y el principio de Bernoulli solo se aplica dentro de un campo de flujo. . [41] [42] [43] [44]

Como la redacción del principio puede cambiar sus implicaciones, es importante enunciar el principio correctamente. [45] Lo que realmente dice el principio de Bernoulli es que dentro de un flujo de energía constante, cuando el fluido fluye a través de una región de menor presión, se acelera y viceversa. [46] Por lo tanto, el principio de Bernoulli se ocupa de los cambios de velocidad y de presión dentro de un campo de flujo. No se puede utilizar para comparar diferentes campos de flujo.

Una explicación correcta de por qué el papel se eleva sería observar que la columna sigue la curva del papel y que una línea de corriente curva desarrollará un gradiente de presión perpendicular a la dirección del flujo, con la presión más baja en el interior de la curva. [47] [48] [49] [50] El principio de Bernoulli predice que la disminución de la presión está asociada con un aumento de la velocidad; en otras palabras, a medida que el aire pasa sobre el papel, se acelera y se mueve más rápido de lo que se movía cuando salió de la boca del manifestante. Pero esto no se desprende de la manifestación. [51] [52] [53]

Otras demostraciones comunes en el aula, como soplar entre dos esferas suspendidas, inflar una bolsa grande o suspender una pelota en una corriente de aire a veces se explican de manera igualmente engañosa diciendo que "el aire que se mueve más rápido tiene una presión más baja". [54] [55] [56] [57] [58] [59] [60] [61]

Ver también

Notas

  1. ^ Si la partícula está en una región de presión variable (un gradiente de presión que no desaparece en la dirección x ) y si la partícula tiene un tamaño finito l , entonces el frente de la partícula "verá" una presión diferente a la del trasero. Más precisamente, si la presión cae en la dirección x (dp/d x< 0 ) la presión en la parte trasera es mayor que en la parte delantera y la partícula experimenta una fuerza neta (positiva). Según la segunda ley de Newton, esta fuerza provoca una aceleración y la velocidad de la partícula aumenta a medida que se mueve a lo largo de la línea de corriente... La ecuación de Bernoulli describe esto matemáticamente (ver la derivación completa en el apéndice). [7]
  2. ^ La aceleración del aire es causada por gradientes de presión. El aire se acelera en la dirección de la velocidad si la presión disminuye. Por tanto, la disminución de la presión es la causa de una mayor velocidad. [8]
  3. ^ La idea es que a medida que el paquete avanza, siguiendo una línea de corriente, a medida que se mueve hacia un área de mayor presión, habrá una presión más alta adelante (más alta que la presión detrás) y esto ejercerá una fuerza sobre el paquete, ralentizándolo. . Por el contrario, si el paquete se mueve hacia una región de menor presión, habrá una presión más alta detrás de él (mayor que la presión adelante), lo que lo acelerará. Como siempre, cualquier fuerza desequilibrada provocará un cambio en el impulso (y la velocidad), como lo exigen las leyes del movimiento de Newton. [9]
  4. ^ "Cuando una corriente de aire pasa por un perfil aerodinámico, hay cambios locales en la velocidad alrededor del perfil aerodinámico y, en consecuencia, cambios en la presión estática, de acuerdo con el teorema de Bernoulli. La distribución de la presión determina la sustentación, el momento de cabeceo y la resistencia de forma del perfil aerodinámico y la posición de su centro de presión." [1] : § 5.5 

Referencias

  1. ^ abcdefg Clancy, LJ (1975). Aerodinámica. Wiley. ISBN 978-0-470-15837-1.
  2. ^ abcdefg Batchelor, GK (2000). Introducción a la dinámica de fluidos. Cambridge: Prensa de la Universidad de Cambridge . ISBN 978-0-521-66396-0.
  3. ^ "Hidrodinámica". Enciclopedia Británica en línea . Consultado el 30 de octubre de 2008 .
  4. ^ Anderson, JD (2016), "Algunas reflexiones sobre la historia de la dinámica de fluidos", en Johnson, RW (ed.), Manual de dinámica de fluidos (2ª ed.), CRC Press, ISBN 9781439849576
  5. ^ Darrigol, O.; Frisch, U. (2008), "De la mecánica de Newton a las ecuaciones de Euler", Physica D: fenómenos no lineales , 237 (14–17): 1855–1869, Bibcode :2008PhyD..237.1855D, doi :10.1016/j.physd. 2007.08.003
  6. ^ a b Streeter, Victor Lyle (1966). Mecánica de fluidos. Nueva York: McGraw-Hill.
  7. ^ Babinsky, Holger (noviembre de 2003), "¿Cómo funcionan las alas?", Educación Física , 38 (6): 497–503, Bibcode :2003PhyEd..38..497B, doi :10.1088/0031-9120/38/6 /001, S2CID  1657792
  8. ^ " Weltner, Klaus; Ingelman-Sundberg, Martin, Malas interpretaciones de la ley de Bernoulli, archivado desde el original el 29 de abril de 2009
  9. ^ Denker, John S. (2005). "3 perfiles aerodinámicos y flujo de aire". Vea cómo vuela . Consultado el 27 de julio de 2018 .
  10. ^ Resnick, R.; Halliday, D. (1960). Física . John Wiley e hijos. sección 18-4.
  11. ^ Mulley, Raymond (2004). Flujo de fluidos industriales: teoría y ecuaciones. Prensa CRC. págs. 43–44. ISBN 978-0-8493-2767-4.
  12. ^ Chanson, Hubert (2004). Hidráulica de Flujo en Canal Abierto. Elsevier. pag. 22.ISBN 978-0-08-047297-3.
  13. ^ Oertel, Herbert; Prandtl, Ludwig; Böhle, M.; Mayes, Katherine (2004). Fundamentos de la mecánica de fluidos de Prandtl. Saltador. págs. 70–71. ISBN 978-0-387-40437-0.
  14. ^ "Ecuación de Bernoulli". Centro de Investigación Glenn de la NASA. Archivado desde el original el 31 de julio de 2012 . Consultado el 4 de marzo de 2009 .
  15. ^ White, Frank M. Mecánica de fluidos (6ª ed.). Edición internacional McGraw-Hill. pag. 602.
  16. ^ Clarke, Cathie; Carswell, Bob (2007). Principios de la dinámica de fluidos astrofísicos. Prensa de la Universidad de Cambridge. pag. 161.ISBN 978-1-139-46223-5.
  17. ^ Landau, LD ; Lifshitz, EM (1987). Mecánica de fluidos . Curso de Física Teórica (2ª ed.). Prensa de Pérgamo. ISBN 978-0-7506-2767-2.
  18. ^ Van Wylen, Gordon J .; Sonntag, Richard E. (1965). Fundamentos de la termodinámica clásica. Nueva York: John Wiley and Sons.
  19. ^ abc Feynman, RP ; Leighton, RB ; Arenas, M. (1963). Las conferencias Feynman sobre física . vol. 2.ISBN 978-0-201-02116-5.: 40–6 a 40–9, §40–3 
  20. ^ Tipler, Paul (1991). Física para científicos e ingenieros: mecánica (3ª edición ampliada). WH Freeman. ISBN 978-0-87901-432-2., pag. 138.
  21. ^ Feynman, RP ; Leighton, RB ; Arenas, M. (1963). Las conferencias Feynman sobre física . vol. 1.ISBN 978-0-201-02116-5.
  22. ^ Thomas, John E. (mayo de 2010). "El gas Fermi casi perfecto" (PDF) . Física hoy . 63 (5): 34–37. Código Bib : 2010PhT....63e..34T. doi : 10.1063/1.3431329.
  23. ^ Resnick, R.; Halliday, D. (1960). Física . Nueva York: John Wiley & Sons. sección 18-5. Las líneas de corriente están más juntas por encima del ala que por debajo, de modo que el principio de Bernoulli predice la sustentación dinámica ascendente observada.
  24. ^ Eastlake, Charles N. (marzo de 2002). "La visión de un aerodinámico sobre la elevación, Bernoulli y Newton" (PDF) . El Profesor de Física . 40 (3): 166-173. Código bibliográfico : 2002PhTea..40..166E. doi :10.1119/1.1466553."La fuerza resultante se determina integrando la distribución de la presión superficial sobre la superficie del perfil aerodinámico".
  25. ^ Manual de referencia de ingeniería mecánica (9ª ed.).
  26. ^ Centro de investigaciones en educación técnica (2006). Física que funciona . Kendall Hunt. ISBN 0787291811. OCLC  61918633. Una de las explicaciones más difundidas, pero incorrecta, puede denominarse teoría del "camino más largo" o teoría del "tiempo de tránsito igual".
  27. ^ Smith, Norman F. (noviembre de 1972). "Bernoulli y Newton en mecánica de fluidos". El Profesor de Física . 10 (8): 451. Código bibliográfico : 1972PhTea..10..451S. doi : 10.1119/1.2352317. El perfil aerodinámico del ala de un avión, según la explicación del libro de texto que es más o menos estándar en los Estados Unidos, tiene una forma especial con más curvatura en la parte superior que en la inferior; en consecuencia, el aire debe viajar más lejos sobre la superficie superior que sobre la superficie inferior. Debido a que el aire debe recorrer las superficies superior e inferior en el mismo tiempo transcurrido..., la velocidad sobre la superficie superior será mayor que sobre la inferior. Según el teorema de Bernoulli, esta diferencia de velocidad produce una diferencia de presión que es la sustentación. [ enlace muerto permanente ]
  28. ^ Babinsky, Holger (2003). "¿Cómo funcionan las alas?" (PDF) . Educación Física . 38 (6): 497–503. Código bibliográfico : 2003PhyEd..38..497B. doi :10.1088/0031-9120/38/6/001. S2CID  1657792. ...a menudo se pregunta por qué las partículas de fluido deberían volver a encontrarse en el borde de salida. O, en otras palabras, ¿por qué dos partículas a cada lado del ala deberían tardar el mismo tiempo en viajar de S a T? No existe una explicación obvia y las observaciones de la vida real demuestran que esto es incorrecto.
  29. ^ "La velocidad real sobre la parte superior de un perfil aerodinámico es mucho más rápida que la predicha por la teoría del" camino más largo "y las partículas que se mueven sobre la parte superior llegan al borde de fuga antes que las partículas que se mueven debajo del perfil aerodinámico". Centro de investigación Glenn (16 de agosto de 2000). "Teoría del levantamiento incorrecto n.º 1". NASA. Archivado desde el original el 27 de abril de 2014 . Consultado el 27 de junio de 2021 .
  30. ^ Anderson, John (2005). Introducción al vuelo . Boston: Educación superior McGraw-Hill. pag. 355.ISBN 978-0072825695. Entonces se supone que estos dos elementos deben encontrarse en el borde de salida, y debido a que la distancia de recorrido sobre la superficie superior del perfil aerodinámico es mayor que la de la superficie inferior, el elemento sobre la superficie superior debe moverse más rápido. Esto simplemente no es cierto. Los resultados experimentales y los cálculos computacionales de dinámica de fluidos muestran claramente que un elemento fluido que se mueve sobre la superficie superior de un perfil aerodinámico abandona el borde de salida mucho antes de que su elemento compañero que se mueve sobre la superficie inferior llegue al borde de salida.
  31. ^ Anderson, David; Eberhardt, Scott. "Cómo vuelan los aviones". Cómo vuelan los aviones: una descripción física de la sustentación . Archivado desde el original el 26 de enero de 2016 . Consultado el 26 de enero de 2016 . No hay nada de malo en el principio de Bernoulli ni en la afirmación de que el aire pasa más rápido por la parte superior del ala. Pero, como sugiere la discusión anterior, nuestra comprensión no está completa con esta explicación. El problema es que nos falta una pieza vital cuando aplicamos el principio de Bernoulli. Podemos calcular las presiones alrededor del ala si conocemos la velocidad del aire sobre y debajo del ala, pero ¿cómo determinamos la velocidad?
  32. ^ Anderson, John D. (2016). "Capítulo 4. Aerodinámica básica". Introducción al vuelo (8ª ed.). Educación McGraw-Hill.
  33. ^ "La ley de Bernoulli y los experimentos que se le atribuyen son fascinantes. Desafortunadamente, algunos de estos experimentos se explican erróneamente ..." Weltner, Klaus; Ingelman-Sundberg, Martín. "Malas interpretaciones de la ley de Bernoulli". Departamento de Física, Universidad de Frankfurt. Archivado desde el original el 21 de junio de 2012 . Consultado el 25 de junio de 2012 .
  34. ^ Timonía, Cy. "Disco volador de origami". Revista HACER . Archivado desde el original el 3 de enero de 2013. Esto ocurre debido al principio de Bernoulli: el aire que se mueve rápidamente tiene una presión más baja que el aire que no se mueve.
  35. ^ "Efectos Bernoulli". Escuela de Física y Astronomía, Universidad de Minnesota . Archivado desde el original el 10 de marzo de 2012. Fluido que se mueve más rápido, menor presión. ... Cuando el manifestante sostiene el papel frente a su boca y sopla por encima, está creando un área de aire que se mueve más rápido.
  36. ^ "Paquete educativo" (PDF) . Festival de Grandes Veleros – Puerto de las Islas del Canal. Archivado desde el original (PDF) el 3 de diciembre de 2013 . Consultado el 25 de junio de 2012 . El Principio de Bernoulli establece que el aire que se mueve más rápido tiene una presión más baja... Puedes demostrar el Principio de Bernoulli soplando sobre un trozo de papel sostenido horizontalmente sobre tus labios.
  37. ^ Craig, Gale M. "Principios físicos del vuelo alado" . Consultado el 31 de marzo de 2016 a través de rcgroups.com. Si la elevación de la figura A fuera causada por el "principio de Bernoulli", entonces el papel de la figura B debería inclinarse aún más cuando sople aire por debajo. Sin embargo, como se muestra, aumenta cuando el gradiente de presión ascendente en el flujo que se curva hacia abajo se suma a la presión atmosférica en la superficie inferior del papel.
  38. ^ Babinsky, Holger (2003). "¿Cómo funcionan las alas" (PDF) . Educación Física . 38 (6). Publicación IOP: 497. Bibcode : 2003PhyEd..38..497B. doi :10.1088/0031-9120/38/6/001. S2CID  1657792 . Consultado el 7 de abril de 2022 a través de iopscience.iop.org. De hecho, la presión del aire que sale de los pulmones es igual a la del aire circundante...
  39. ^ Eastwell, Peter (2007). "¿Bernoulli? Quizás, pero ¿qué pasa con la viscosidad?" (PDF) . La revisión de la educación científica . 6 (1). Archivado desde el original (PDF) el 18 de marzo de 2018 . Consultado el 18 de marzo de 2018 . ... el aire no tiene una presión lateral reducida (o presión estática...) simplemente porque se le hace moverse, la presión estática del aire libre no disminuye a medida que aumenta la velocidad del aire, sugerir mal el principio de Bernoulli que esto es lo que nos dice, y el comportamiento del papel curvado se explica por otro razonamiento distinto al principio de Bernoulli.
  40. ^ Raskin, Jef (febrero de 2003). "Efecto Coanda: comprender por qué funcionan las alas". karmak.org . Haga una tira de papel de escribir de unos 5 cm × 25 cm. Sostenlo frente a tus labios para que cuelgue hacia afuera y hacia abajo formando una superficie convexa hacia arriba. Cuando soplas sobre la parte superior del papel, éste se eleva. Muchos libros atribuyen esto a la disminución de la presión del aire en la parte superior únicamente al efecto Bernoulli. Ahora use sus dedos para formar una curva con el papel que sea ligeramente cóncava hacia arriba en toda su longitud y nuevamente sople a lo largo de la parte superior de esta tira. El artículo ahora se inclina hacia abajo... un experimento citado con frecuencia, que generalmente se considera que demuestra la explicación común de la sustentación, no lo hace...
  41. ^ Babinsky, Holger (2003). "¿Cómo funcionan las alas" (PDF) . Educación Física . 38 (6). Publicación IOP: 497. Bibcode : 2003PhyEd..38..497B. doi :10.1088/0031-9120/38/6/001. S2CID  1657792 . Consultado el 7 de abril de 2022 a través de iopscience.iop.org. Soplar sobre un trozo de papel no demuestra la ecuación de Bernoulli. Si bien es cierto que un papel curvo se levanta cuando se aplica flujo en un lado, esto no se debe a que el aire se mueva a diferentes velocidades en los dos lados... Es falso hacer una conexión entre el flujo en los dos lados del papel. artículo usando la ecuación de Bernoulli.
  42. ^ Eastwell, Peter (2007). "¿Bernoulli? Quizás, pero ¿qué pasa con la viscosidad?" (PDF) . La revisión de la educación científica . 6 (1). Archivado desde el original (PDF) el 18 de marzo de 2018 . Consultado el 18 de marzo de 2018 . Una explicación basada en el principio de Bernoulli no es aplicable a esta situación, porque este principio no tiene nada que decir sobre la interacción de masas de aire que tienen diferentes velocidades... Además, si bien el principio de Bernoulli nos permite comparar velocidades y presiones de fluidos a lo largo de una sola línea de corriente y ... a lo largo de dos líneas de corriente diferentes que se originan en condiciones de fluido idénticas, utilizar el principio de Bernoulli para comparar el aire por encima y por debajo del papel curvado en la Figura 1 no tiene sentido; En este caso, ¡no hay ninguna línea debajo del papel!
  43. ^ Auerbach, David. "Por qué vuelan los aviones" (PDF) . Revista Europea de Física . 21 : 295 - vía iopscience.iop.org. La conocida demostración del fenómeno de la elevación mediante el levantamiento de una página en voladizo en la mano soplando horizontalmente a lo largo de ella es probablemente más una demostración de las fuerzas inherentes al efecto Coanda que una demostración de la ley de Bernoulli; porque, aquí, un chorro de aire sale de la boca y se adhiere a una superficie curva (y, en este caso, flexible). El borde superior es una complicada capa de mezcla cargada de vórtices y el flujo distante es inactivo, por lo que la ley de Bernoulli apenas es aplicable.
  44. ^ Smith, Norman F. (noviembre de 1972). "Bernoulli y Newton en mecánica de fluidos". El Profesor de Física . A millones de niños en clases de ciencias se les pide que soplen sobre trozos de papel curvos y observen que el papel se "levanta"... Luego se les pide que crean que el teorema de Bernoulli es el responsable... Desafortunadamente, el "ascenso dinámico" involucrado. ... no se explica adecuadamente mediante el teorema de Bernoulli.
  45. ^ Denker, John S. "Principio de Bernoulli". Vea cómo vuela , a través de av8n.com. El principio de Bernoulli es muy fácil de entender siempre que se enuncia correctamente. Sin embargo, debemos tener cuidado, porque cambios aparentemente pequeños en la redacción pueden llevar a conclusiones completamente erróneas.
  46. ^ Smith, Norman F. (1973). "Bernoulli, Newton y el levantamiento dinámico, parte I". Escuela de Ciencias y Matemáticas . 73 (3): 181–186. doi :10.1111/j.1949-8594.1973.tb08998.x – vía wiley.com. Un enunciado completo del teorema de Bernoulli es el siguiente: "En un flujo en el que no se añade ni se quita energía, la suma de sus diversas energías es una constante: en consecuencia, cuando la velocidad aumenta, la presión disminuye y viceversa".
  47. ^ Babinsky, Holger (2003). "¿Cómo funcionan las alas" (PDF) . Educación Física . 38 (6). Publicación IOP: 497. Bibcode : 2003PhyEd..38..497B. doi :10.1088/0031-9120/38/6/001. S2CID  1657792 . Consultado el 7 de abril de 2022 a través de iopscience.iop.org. ... si una línea de corriente es curva, debe haber un gradiente de presión a través de la línea de corriente, con la presión aumentando en la dirección que se aleja del centro de curvatura.
  48. ^ Smith, Norman F. (1973). "Bernoulli, Newton y Dynamic Lift Parte II". Escuela de Ciencias y Matemáticas . 73 (4): 3333. doi :10.1111/j.1949-8594.1973.tb09040.x - vía wiley.com. El papel curvado hace girar la corriente de aire hacia abajo y esta acción produce la reacción de elevación que eleva el papel.
  49. ^ Aeronáutica: una guía para educadores con actividades en educación científica, matemática y tecnológica (PDF) . NASA. pag. 26 - a través de nasa.gov. La superficie curva de la lengua crea una presión de aire desigual y una acción de elevación. ... La elevación es causada por el aire que se mueve sobre una superficie curva.
  50. ^ Anderson, David F .; Eberhardt, Scott. "La descripción newtoniana de la sustentación de un ala" (PDF) . pag. 12. Archivado desde el original (PDF) el 11 de marzo de 2016, a través de integener.com. La viscosidad hace que el aliento siga la superficie curva, la primera ley de Newton dice que hay una fuerza sobre el aire y la tercera ley de Newton dice que hay una fuerza igual y opuesta sobre el papel. La transferencia de impulso levanta la tira. La reducción de la presión que actúa sobre la superficie superior del papel hace que el papel suba.
  51. ^ Anderson, David F.; Eberhardt, Scott. Entendiendo el vuelo . pag. 229 - a través de Google Books.Las "demostraciones" del principio de Bernoulli se dan a menudo como demostraciones de la física de la sustentación. Son verdaderas demostraciones de elevación, pero ciertamente no del principio de Bernoulli.
  52. ^ Feil, máx. El Archivo de Aeronáutica. Archivado desde el original el 17 de mayo de 2015. Como ejemplo, tomemos el experimento engañoso que se utiliza con mayor frecuencia para "demostrar" el principio de Bernoulli. Sostenga un trozo de papel de modo que se curve sobre su dedo y luego sople por la parte superior. El papel subirá. Sin embargo, la mayoría de las personas no se dan cuenta de que el papel no se elevaría si fuera plano, incluso aunque esté soplando aire por encima a gran velocidad. El principio de Bernoulli no se aplica directamente en este caso. Esto se debe a que el aire en las dos caras del papel no proviene de la misma fuente. El aire de abajo es aire ambiental de la habitación, pero el aire de arriba vino de tu boca, donde en realidad aumentaste su velocidad sin disminuir su presión al forzarlo a salir de tu boca. Como resultado, el aire en ambos lados del papel plano tiene en realidad la misma presión, aunque el aire en la parte superior se mueve más rápido. La razón por la que un trozo de papel curvo se eleva es que el aire que sale de la boca se acelera aún más a medida que sigue la curva del papel, lo que a su vez reduce la presión, según Bernoulli.
  53. ^ Geurts, Pim. "Algunos experimentos sencillos". Sailtheory.com . Archivado desde el original el 3 de marzo de 2016 . Consultado el 7 de abril de 2022 . Algunas personas soplan sobre una hoja de papel para demostrar que el aire acelerado sobre la hoja produce una presión más baja. Se equivocan con su explicación. La hoja de papel sube porque desvía el aire, por efecto Coanda, y esa deflexión es la causa de la fuerza que levanta la hoja. Para demostrar que están equivocados, utilizo el siguiente experimento: si la hoja de papel se dobla previamente hacia el otro lado, primero la enrolla y si la soplas, se cae. Esto se debe a que el aire se desvía en sentido contrario. La velocidad del aire es aún mayor por encima de la hoja, por lo que eso no causa la presión más baja.
  54. ^ Bobrowsky, Matt. "P: ¿Es realmente causado por el efecto Bernoulli?". Ciencia 101 . Asociación Nacional de Enseñanza de Ciencias. El efecto Bernoulli se invoca habitualmente (e incorrectamente) para explicar: por qué dos globos suspendidos o pelotas de tenis de mesa se acercan uno hacia el otro cuando se sopla aire entre ellos; : por qué el papel se eleva cuando se sopla aire sobre él; :Por qué una pelota de béisbol lanzada se curva; :por qué se atrae una cuchara hacia un chorro de agua; :por qué una pelota permanece suspendida en un chorro de aire. Aquí está la noticia: Ninguno de estos fenómenos es el resultado del efecto Bernoulli.
  55. ^ Kamela, Martín (septiembre de 2007). "Pensando en Bernoulli". El Profesor de Física . 45 (6). Asociación Estadounidense de Profesores de Física: 379–381. Código Bib : 2007PhTea..45..379K. doi :10.1119/1.2768700. Archivado desde el original el 23 de febrero de 2013. Finalmente, volvamos al ejemplo inicial de una pelota levitando en un chorro de aire. La ingenua explicación de la estabilidad de la bola en la corriente de aire, "porque la presión en el chorro es menor que la presión en la atmósfera circundante", es claramente incorrecta. La presión estática en el chorro de aire libre es la misma que la presión en la atmósfera circundante...
  56. ^ Smith, Norman F. (noviembre de 1972). "Bernoulli y Newton en mecánica de fluidos". El Profesor de Física . 10 (8): 455. Código bibliográfico : 1972PhTea..10..451S. doi : 10.1119/1.2352317. El flujo asimétrico (no el teorema de Bernoulli) también explica la elevación de la pelota de ping-pong o de playa que flota tan misteriosamente en el escape inclinado de la aspiradora...
  57. ^ Bauman, Robert P. "El enigma de Bernoulli" (PDF) . introfísica.info . Departamento de Física, Universidad de Alabama en Birmingham. Archivado desde el original (PDF) el 25 de febrero de 2012 . Consultado el 25 de junio de 2012 . El teorema de Bernoulli a menudo queda oscurecido por demostraciones que involucran fuerzas ajenas a Bernoulli. Por ejemplo, una pelota puede estar sostenida sobre un chorro ascendente de aire o agua, porque cualquier fluido (el aire y el agua) tiene viscosidad, lo que retarda el deslizamiento de una parte del fluido que pasa sobre otra parte del fluido.
  58. ^ Craig, Gale M. "Principios físicos del vuelo alado" . Consultado el 31 de marzo de 2016 . En una demostración que a veces se describe erróneamente como que muestra la elevación debido a la reducción de la presión en el aire en movimiento o la reducción de la presión debido a la restricción de la trayectoria del flujo, una pelota o un globo está suspendido por un chorro de aire.
  59. ^ Anderson, David F.; Eberhardt, Scott. "La descripción newtoniana de la sustentación de un ala" (PDF) . pag. 12. Archivado desde el original (PDF) el 11 de marzo de 2016, a través de integener.com. Un segundo ejemplo es el confinamiento de una pelota de ping-pong en el escape vertical de un secador de pelo . Se nos dice que esto es una demostración del principio de Bernoulli. Pero ahora sabemos que el escape no tiene un valor más bajo de ps. Nuevamente, es la transferencia de impulso lo que mantiene la pelota en el flujo de aire. Cuando la bola se acerca al borde del escape, se produce un flujo asimétrico alrededor de la bola, que la aleja del borde del flujo. Lo mismo ocurre cuando se sopla entre dos pelotas de ping-pong que cuelgan de cuerdas.
  60. ^ "Hojas de metal delgadas - Efecto Coanda". física.umd.edu . Centro de conferencias y demostraciones de física, Universidad de Maryland. Archivado desde el original el 23 de junio de 2012 . Consultado el 23 de octubre de 2012 . Esta demostración a menudo se explica incorrectamente utilizando el principio de Bernoulli. Según la explicación INCORRECTA, el flujo de aire es más rápido en la región entre las sábanas, creando así una presión más baja en comparación con el aire silencioso en el exterior de las sábanas.
  61. ^ "Respuesta nº 256". física.umd.edu . Centro de conferencias y demostraciones de física, Universidad de Maryland. Archivado desde el original el 13 de diciembre de 2014 . Consultado el 9 de diciembre de 2014 . Aunque el efecto Bernoulli se utiliza a menudo para explicar esta demostración, y un fabricante vende el material para esta demostración como "bolsas Bernoulli", no puede explicarse por el efecto Bernoulli, sino más bien por el proceso de arrastre.

enlaces externos