stringtranslate.com

Partículas

Un gráfico de computadora que muestra cuántas partículas PM10 pueden envolver un cabello humano y cuántas partículas PM2.5 pueden envolver PM10.
PM 2,5 y PM 10 comparados con un cabello humano en un gráfico de la Agencia de Protección Ambiental

Las partículas o material particulado atmosférico (ver más abajo otros nombres) son partículas microscópicas de materia sólida o líquida suspendidas en el aire . El término aerosol se refiere comúnmente a la mezcla de partículas y aire , en contraposición a la materia particulada sola. [1] Las fuentes de material particulado pueden ser naturales o antropogénicas . [2] Tienen impactos en el clima y las precipitaciones que afectan negativamente a la salud humana , de maneras adicionales a la inhalación directa.

Los tipos de partículas atmosféricas incluyen materia particulada suspendida; partículas torácicas y respirables; [3] partículas gruesas inhalables, designadas PM 10 , que son partículas gruesas con un diámetro de 10 micrómetros (μm) o menos; partículas finas, designadas PM 2.5 , con un diámetro de 2,5 μm o menos; [4] partículas ultrafinas , con un diámetro de 100 nm o menos; y hollín .

Las partículas suspendidas en el aire son un carcinógeno del grupo 1. [5] Las partículas son la forma más dañina (aparte de las ultrafinas ) de contaminación del aire [6], ya que pueden penetrar profundamente en los pulmones y el cerebro desde el torrente sanguíneo, causando problemas de salud como enfermedades cardíacas , enfermedades pulmonares , cáncer y parto prematuro . [7] No existe un nivel seguro de partículas. En todo el mundo, la exposición a PM 2,5 contribuyó a 4,1 millones de muertes por enfermedades cardíacas, accidentes cerebrovasculares, cáncer de pulmón, enfermedades pulmonares crónicas e infecciones respiratorias en 2016. [8] En general, las partículas suspendidas en el ambiente son uno de los principales factores de riesgo de muerte prematura a nivel mundial. [9]

Fuentes

Emisión de partículas al utilizar herramientas eléctricas modernas durante la instalación de banda ancha en el hogar, Tai Po, Hong Kong
Excavadora (un tipo de equipo pesado que se utiliza habitualmente en sitios de construcción y obras viales) demoliendo los restos de la estación de tren postal 0880 de antes de la guerra (Dworzec Pocztowy) en la avenida Jerozolimskie, Polonia

Las actividades humanas generan cantidades significativas de partículas. Por ejemplo:

Algunos tipos de polvo, como las cenizas , el vidrio , el plástico y el polvo de ciertas fibras artificiales, que son frágiles y se rompen fácilmente (pueden “proliferar”), pueden suponer mayores amenazas e irritaciones para los seres humanos. Los que tienen bordes afilados pueden ser aún más problemáticos. La cantidad, las formas, la adherencia, etc. de las partículas también pueden verse alteradas por diferentes condiciones meteorológicas.

Los aerosoles creados por el hombre (antropogénicos) representan alrededor del 10 por ciento de la masa total de aerosoles en la atmósfera, según se estimó en 2010. El 90 por ciento restante proviene de fuentes naturales como volcanes , tormentas de polvo , incendios de bosques y pastizales , vegetación viva y rocío marino , que emiten partículas como ceniza volcánica, polvo del desierto, hollín y sal marina. [52]

Combustión doméstica y humo de leña

En el Reino Unido, la combustión doméstica es la mayor fuente individual de PM 2,5 y PM 10 al año, y la quema de leña doméstica tanto en estufas cerradas como en fuegos abiertos fue responsable del 38 % de PM 2,5 en 2019. [53] [54] [55] Para abordar el problema, se introdujeron algunas leyes nuevas desde 2021. En algunas ciudades y pueblos de Nueva Gales del Sur, el humo de leña puede ser responsable del 60 % de la contaminación del aire por partículas finas en invierno. [56]

Hay algunas maneras de reducir el humo de la madera, por ejemplo, comprando la estufa de leña adecuada y manteniéndola bien [57] , eligiendo la leña adecuada [58] y quemándola de la manera correcta. [59] También hay regulaciones en algunos países por las cuales las personas pueden reportar la contaminación por humo al ayuntamiento local. [60]

Composición

Retrato global de aerosoles producido mediante una simulación GEOS-5 a una resolución de 10 km, agosto de 2006 - abril de 2007.
Rojo/naranja: polvo (mineral) del desierto
Azul: sal marina
Verde: humo
Blanco: partículas de sulfato [61] [62]

La composición y toxicidad de los aerosoles , incluidas las partículas, depende de su origen y de la química atmosférica y varía ampliamente. El polvo mineral arrastrado por el viento [63] tiende a estar formado por óxidos minerales y otros materiales arrastrados por la corteza terrestre ; estas partículas absorben la luz . [64] La sal marina [65] se considera el segundo mayor contribuyente al presupuesto global de aerosoles y se compone principalmente de cloruro de sodio originado por la espuma marina ; otros componentes de la sal marina atmosférica reflejan la composición del agua de mar y, por lo tanto, incluyen magnesio , sulfato , calcio , potasio y otros. Además, los aerosoles de la espuma marina pueden contener compuestos orgánicos como ácidos grasos y azúcares, que influyen en su química. [66]

Algunas partículas secundarias se derivan de la oxidación de gases primarios como los óxidos de azufre y nitrógeno en ácido sulfúrico (líquido) y ácido nítrico (gaseoso) o de emisiones biogénicas. Los precursores de estos aerosoles, es decir, los gases de los que se originan, pueden tener un origen antropogénico (de la combustión de biomasa y combustibles fósiles ) así como un origen biogénico natural . En presencia de amoniaco , los aerosoles secundarios a menudo toman la forma de sales de amonio ; es decir, sulfato de amonio y nitrato de amonio (ambos pueden estar secos o en solución acuosa ); en ausencia de amoniaco, los compuestos secundarios toman una forma ácida como ácido sulfúrico (gotitas de aerosol líquido) y ácido nítrico (gas atmosférico).

Los aerosoles secundarios de sulfato y nitrato son fuertes dispersores de luz . [67] Esto se debe principalmente a que la presencia de sulfato y nitrato hace que los aerosoles aumenten hasta un tamaño que dispersa la luz de manera efectiva.

La materia orgánica (MO) presente en los aerosoles puede ser primaria o secundaria, siendo esta última parte derivada de la oxidación de compuestos orgánicos volátiles (COV); la materia orgánica presente en la atmósfera puede ser biogénica o antropogénica . La materia orgánica influye en el campo de radiación atmosférica tanto por dispersión como por absorción. Se prevé que algunos aerosoles incluyan material que absorba fuertemente la luz y se cree que producen un gran forzamiento radiativo positivo . Algunos aerosoles orgánicos secundarios (AOS) resultantes de los productos de combustión de los motores de combustión interna se han identificado como un peligro para la salud. [68] Se ha descubierto que la toxicidad de las partículas varía según la región y la contribución de la fuente, lo que afecta a la composición química de las partículas.

La composición química del aerosol afecta directamente la forma en que interactúa con la radiación solar. Los componentes químicos del aerosol modifican el índice de refracción general . El índice de refracción determinará cuánta luz se dispersa y se absorbe.

La composición de las partículas que generalmente causan efectos visuales, la neblina , consiste en dióxido de azufre, óxidos de nitrógeno, monóxido de carbono, polvo mineral y materia orgánica. Las partículas son higroscópicas debido a la presencia de azufre, y el SO2 se convierte en sulfato cuando hay alta humedad y bajas temperaturas. Esto causa una visibilidad reducida y colores rojo-naranja-amarillo. [69]

Distribución de tamaño

Los mapas en falso color se basan en datos del espectrorradiómetro de imágenes de resolución moderada (MODIS) del satélite Terra de la NASA. Verde: columnas de aerosol dominadas por partículas de mayor tamaño. Rojo: columnas de aerosol dominadas por partículas pequeñas. Amarillo: columnas en las que se entremezclan partículas de aerosol grandes y pequeñas. Gris: el sensor no recopiló datos. [70]

Los aerosoles producidos por el hombre, como la contaminación por partículas, tienden a tener un radio menor que las partículas de aerosol de origen natural (como el polvo arrastrado por el viento). Los mapas en falso color del mapa de distribución de partículas de aerosol de la derecha muestran dónde hay aerosoles naturales, contaminación humana o una mezcla de ambos, mensualmente.

Aerosoles más pequeños en el Norte

La serie temporal de distribución de tamaño muestra que en las latitudes más meridionales del planeta, casi todos los aerosoles son grandes, pero en las latitudes altas del norte, los aerosoles más pequeños son muy abundantes. La mayor parte del hemisferio sur está cubierta por el océano, donde la mayor fuente de aerosoles es la sal marina natural proveniente de la espuma marina seca. Debido a que la tierra se concentra en el hemisferio norte, la cantidad de aerosoles pequeños provenientes de incendios y actividades humanas es mayor allí que en el hemisferio sur. En tierra, aparecen parches de aerosoles de gran radio sobre desiertos y regiones áridas, más prominentemente, el desierto del Sahara en el norte de África y la península Arábiga, donde las tormentas de polvo son comunes. Los lugares donde la actividad de incendios naturales o provocados por humanos es común (incendios para desbrozar tierras en el Amazonas de agosto a octubre, por ejemplo, o incendios provocados por rayos en los bosques del norte de Canadá en el verano del hemisferio norte) están dominados por aerosoles más pequeños. La contaminación producida por el hombre (combustibles fósiles) es en gran medida responsable de las áreas de pequeños aerosoles en áreas desarrolladas como el este de Estados Unidos y Europa, especialmente en verano. [70] [ se necesita una mejor fuente ]

Las mediciones satelitales de aerosoles, llamadas espesor óptico de aerosoles, se basan en el hecho de que las partículas cambian la forma en que la atmósfera refleja y absorbe la luz visible e infrarroja. Como se muestra en esta página, un espesor óptico de menos de 0,1 (amarillo pálido) indica un cielo despejado con máxima visibilidad, mientras que un valor de 1 (marrón rojizo) indica condiciones muy brumosas. [ se necesita una mejor fuente ]

Procesos de deposición

En general, cuanto más pequeña y ligera sea una partícula, más tiempo permanecerá en el aire. Las partículas más grandes (de más de 10 micrómetros de diámetro) tienden a depositarse en el suelo por gravedad en cuestión de horas. Las partículas más pequeñas (de menos de 1 micrómetro) pueden permanecer en la atmósfera durante semanas y en su mayoría son eliminadas por las precipitaciones . Hay evidencia de que los aerosoles pueden "viajar a través del océano". Por ejemplo, en septiembre de 2017, los incendios forestales que ardieron en el oeste de Estados Unidos y Canadá, y se descubrió que el humo había llegado al Reino Unido y al norte de Francia en tres días, como lo muestran las imágenes satelitales. [71] Las partículas de material particulado diésel son más altas cerca de la fuente de emisión. [72] Cualquier información sobre DPM y la atmósfera, la flora, la altura y la distancia de las principales fuentes es útil para determinar los efectos sobre la salud.

Control

Tecnologías

Filtros de tela efecto Hepa : sin (exterior) y con filtro (interior)

Las emisiones de partículas en suspensión están muy reguladas en la mayoría de los países industrializados. Debido a las preocupaciones medioambientales , la mayoría de las industrias deben utilizar algún tipo de sistema de recolección de polvo. [73] Estos sistemas incluyen colectores inerciales ( separadores ciclónicos ), colectores de filtros de tela (filtros de mangas) , filtros electrostáticos utilizados en mascarillas, [74] depuradores húmedos y precipitadores electrostáticos .

Los separadores ciclónicos son útiles para eliminar partículas grandes y gruesas y, a menudo, se emplean como primer paso o "prelimpiador" de otros colectores más eficientes. Los separadores ciclónicos bien diseñados pueden ser muy eficientes para eliminar incluso partículas finas [75] y pueden funcionar de forma continua sin necesidad de paradas frecuentes para realizar tareas de mantenimiento. [ cita requerida ]

Los filtros de tela o filtros de mangas son los más comúnmente empleados en la industria en general. [76] Funcionan al forzar el aire cargado de polvo a través de un filtro de tela en forma de bolsa, dejando que las partículas se acumulen en la superficie exterior de la bolsa y permitiendo que el aire ahora limpio pase a través de él para ser expulsado a la atmósfera o, en algunos casos, recirculado a la instalación. Las telas más comunes incluyen poliéster y fibra de vidrio, y los revestimientos de tela más comunes incluyen PTFE (comúnmente conocido como teflón). Luego, el exceso de acumulación de polvo se limpia de las bolsas y se retira del colector.

Una gran cantidad de polvo de construcción emitido y elevado desde un edificio en rehabilitación un sábado por la tarde, Treasure Garden, Tai Po, Hong Kong. El plan de rehabilitación está subvencionado por el gobierno [77] [78] [79] y un contrato como este puede valer hasta cien millones. [80] La gente vive dentro del edificio durante todo el período de las obras de renovación , que suelen durar más de un año, [81] [82] y se puede predecir que la exposición de los residentes al polvo de la construcción es incluso más grave que la exposición ocupacional de los trabajadores. La posible presencia de amianto y polvo de pintura con plomo también es preocupante. Este tipo de obras de rehabilitación son muy comunes (más de 3000 edificios en los primeros 6 años del plan [83] ), especialmente en algunos distritos antiguos. Con una cantidad tan grande de polvo emitido, era obvio que no se estaba rociando agua ni se estaba utilizando un dispositivo de extracción de polvo, lo que era una violación de la ley local. [84]

Los depuradores húmedos hacen pasar el aire sucio a través de una solución depuradora (normalmente una mezcla de agua y otros compuestos) que permite que las partículas se adhieran a las moléculas del líquido. [85] Los precipitadores electrostáticos cargan eléctricamente el aire sucio a medida que pasa a través de ellos. El aire ahora cargado pasa a través de grandes placas electrostáticas que atraen las partículas cargadas en la corriente de aire, las recogen y dejan que el aire ahora limpio se extraiga o recircule. [86]

Medidas

En el caso de la construcción de edificios en general, algunos lugares que han reconocido los posibles riesgos para la salud del polvo de la construcción durante décadas exigen legalmente que el contratista correspondiente adopte medidas eficaces de control del polvo, aunque las inspecciones, las multas y los encarcelamientos son poco frecuentes en los últimos años (por ejemplo, dos procesos judiciales con multas totales de 6000 dólares de Hong Kong en Hong Kong en el año 2021). [87] [88]

Algunas de las medidas obligatorias de control del polvo incluyen [89] [84] [90] [91] cargar, descargar, manipular, transferir, almacenar o desechar cemento o cenizas de combustible pulverizadas secas en un sistema o instalación completamente cerrado, y equipar cualquier ventilación o escape con un filtro de tela eficaz o un sistema o equipo de control de la contaminación del aire equivalente, encerrar el andamio del edificio con pantallas de polvo, utilizar láminas impermeables para encerrar tanto el elevador de material como el conducto de escombros, mojar los escombros con agua antes de arrojarlos a un conducto de escombros, rociar agua sobre la superficie de la fachada antes y durante el trabajo de pulido, utilizar una amoladora equipada con aspiradora para el trabajo de pulido de la fachada, rociar agua continuamente sobre la superficie para cualquier perforación, corte, pulido u otra operación de rotura mecánica neumática o eléctrica que cause emisión de polvo, a menos que exista el funcionamiento de un dispositivo eficaz de extracción y filtrado de polvo, proporcionar vallas de no menos de 2,4 m de altura a lo largo de toda la longitud del límite del sitio, tener pavimento duro en el área abierta y lavar todos los vehículos que salen de los sitios de construcción. Utilización de equipos de riego automático, equipos de lavado automático de vehículos e instalación de sistema de videovigilancia para las instalaciones de control de la contaminación y conservación de los videos durante un mes para futuras inspecciones.

Además de eliminar las partículas de la fuente de contaminación, también se pueden limpiar al aire libre (por ejemplo, torres de smog , paredes de musgo y camiones cisterna), [92] mientras que otras medidas de control emplean el uso de barreras. [93]

Medición

Las partículas se han medido de formas cada vez más sofisticadas desde que se estudió sistemáticamente por primera vez la contaminación del aire a principios del siglo XX. Los primeros métodos incluían gráficos de Ringelmann relativamente rudimentarios , que eran tarjetas sombreadas en gris con las que se podían comparar visualmente las emisiones de las chimeneas, y medidores de depósitos , que recogían el hollín depositado en una ubicación particular para poder pesarlo. Los métodos modernos y automatizados de medición de partículas incluyen fotodetectores ópticos , microbalanzas oscilantes de elementos cónicos y Aethalómetros . [94] Además de medir la masa total de partículas por unidad de volumen de aire (concentración de masa de partículas), a veces es más útil medir el número total de partículas por unidad de volumen de aire (concentración de número de partículas). Esto se puede hacer utilizando un contador de partículas de condensación (CPC). [95] [96]

Para medir la composición atómica de muestras de partículas, se pueden utilizar técnicas como la espectrometría de rayos X. [97]

Efectos climáticos

Los aerosoles tienen un efecto de enfriamiento que es pequeño comparado con el forzamiento radiativo (efecto de calentamiento) de los gases de efecto invernadero. [98]

Los aerosoles atmosféricos afectan el clima de la Tierra modificando la cantidad de radiación solar entrante y de radiación terrestre de onda larga saliente retenida en el sistema terrestre. Esto ocurre a través de varios mecanismos distintos que se dividen en efectos directos, indirectos [99] [100] y semidirectos de los aerosoles. Los efectos climáticos de los aerosoles son la mayor fuente de incertidumbre en las predicciones climáticas futuras. [101] El Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC) declaró en 2001: [102]

Si bien el forzamiento radiativo debido a los gases de efecto invernadero puede determinarse con un grado razonablemente alto de precisión... las incertidumbres relacionadas con los forzamientos radiativos de los aerosoles siguen siendo grandes y dependen en gran medida de las estimaciones de estudios de modelos globales que son difíciles de verificar en la actualidad.

Aerosol radiactivo

Espesor óptico global de los aerosoles . La escala de aerosoles (de amarillo a marrón rojizo oscuro) indica la cantidad relativa de partículas que absorben la luz solar.
Cantidades promedio mensuales de aerosoles en todo el mundo, observaciones del espectrorradiómetro de imágenes de resolución moderada (MODIS) en el satélite Terra de la NASA.

Directo

Partículas en el aire que provocan tonos naranja, amarillo, rosa y gris en Mumbai durante la puesta de sol
Ciudad italiana contaminada por partículas y detector óptico de aire (láser)

El efecto directo de los aerosoles consiste en cualquier interacción directa de la radiación con los aerosoles atmosféricos, como la absorción o la dispersión. Afecta tanto a la radiación de onda corta como a la de onda larga para producir un forzamiento radiativo negativo neto. [103] La magnitud del forzamiento radiativo resultante debido al efecto directo de un aerosol depende del albedo de la superficie subyacente, ya que este afecta a la cantidad neta de radiación absorbida o dispersada al espacio. Por ejemplo, si un aerosol con alta capacidad de dispersión está por encima de una superficie de bajo albedo, tiene un mayor forzamiento radiativo que si estuviera por encima de una superficie de alto albedo. Lo inverso es cierto en el caso de los aerosoles absorbentes, ya que el mayor forzamiento radiativo surge de un aerosol con alta capacidad de absorción sobre una superficie de alto albedo. [99] El efecto directo de los aerosoles es un efecto de primer orden y, por lo tanto, el IPCC lo clasifica como un forzamiento radiativo . [101] La interacción de un aerosol con la radiación se cuantifica mediante el albedo de dispersión simple (SSA), la relación entre la dispersión sola y la dispersión más la absorción ( extinción ) de la radiación por una partícula. El SSA tiende a la unidad si predomina la dispersión, con relativamente poca absorción, y disminuye a medida que aumenta la absorción, llegando a cero para una absorción infinita. Por ejemplo, el aerosol de sal marina tiene un SSA de 1, ya que una partícula de sal marina solo se dispersa, mientras que el hollín tiene un SSA de 0,23, lo que demuestra que es un importante absorbente de aerosoles atmosféricos. [ cita requerida ]

Indirecto

El efecto indirecto de los aerosoles consiste en cualquier cambio en el balance radiativo de la Tierra debido a la modificación de las nubes por los aerosoles atmosféricos y consta de varios efectos distintos. Las gotitas de las nubes se forman sobre partículas de aerosol preexistentes, conocidas como núcleos de condensación de nubes (CCN). Las gotitas que se condensan alrededor de aerosoles producidos por el hombre, como los que se encuentran en la contaminación por partículas, tienden a ser más pequeñas y más numerosas que las que se forman alrededor de partículas de aerosol de origen natural (como el polvo arrastrado por el viento ). [52]

En cualquier condición meteorológica dada, un aumento en el CCN conduce a un aumento en el número de gotitas en las nubes. Esto conduce a una mayor dispersión de la radiación de onda corta, es decir, un aumento en el albedo de la nube, conocido como el efecto albedo de la nube , primer efecto indirecto o efecto Twomey . [100] Se ha observado evidencia que respalda el efecto albedo de la nube a partir de los efectos de las columnas de escape de los barcos [104] y la quema de biomasa [105] en el albedo de las nubes en comparación con las nubes ambientales. El efecto de aerosol del albedo de la nube es un efecto de primer orden y, por lo tanto, está clasificado como un forzamiento radiativo por el IPCC . [101]

Un aumento en el número de gotitas en las nubes debido a la introducción de aerosoles actúa para reducir el tamaño de las gotitas en las nubes, ya que la misma cantidad de agua se divide en más gotitas. Esto tiene el efecto de suprimir la precipitación, aumentando la vida útil de las nubes, conocido como el efecto aerosol de vida útil de las nubes, segundo efecto indirecto o efecto Albrecht. [101] Esto se ha observado como la supresión de la llovizna en las columnas de escape de los barcos en comparación con las nubes ambientales, [106] y la inhibición de la precipitación en las columnas de combustión de biomasa. [107] Este efecto de vida útil de las nubes se clasifica como una retroalimentación climática (en lugar de un forzamiento radiativo) por el IPCC debido a la interdependencia entre este y el ciclo hidrológico. [101] Sin embargo, anteriormente se ha clasificado como un forzamiento radiativo negativo. [108]

Semidirecto

El efecto semidirecto se refiere a cualquier efecto radiativo causado por la absorción de aerosoles atmosféricos como el hollín, aparte de la dispersión y absorción directas, que se clasifica como efecto directo. Abarca muchos mecanismos individuales y, en general, está menos definido y comprendido que los efectos directos e indirectos de los aerosoles. Por ejemplo, si los aerosoles absorbentes están presentes en una capa superior de la atmósfera, pueden calentar el aire circundante, lo que inhibe la condensación del vapor de agua, lo que resulta en una menor formación de nubes. [109] Además, el calentamiento de una capa de la atmósfera en relación con la superficie da como resultado una atmósfera más estable debido a la inhibición de la convección atmosférica . Esto inhibe la elevación convectiva de la humedad, [110] lo que a su vez reduce la formación de nubes. El calentamiento de la atmósfera en altura también conduce a un enfriamiento de la superficie, lo que resulta en una menor evaporación del agua superficial. Todos los efectos descritos aquí conducen a una reducción de la cobertura de nubes, es decir, un aumento del albedo planetario. El efecto semidirecto clasificado como una retroalimentación climática por el IPCC debido a la interdependencia entre él y el ciclo hidrológico. [101] Sin embargo, anteriormente se ha clasificado como un forzamiento radiativo negativo. [108]

Funciones específicas de los aerosoles

Sulfato

Los aerosoles de sulfato son en su mayoría compuestos de azufre inorgánicos como (SO 4 2- ), HSO 4 - y H 2 SO 4 - , [111] que se producen principalmente cuando el dióxido de azufre reacciona con vapor de agua para formar ácido sulfúrico gaseoso y varias sales (a menudo a través de una reacción de oxidación en las nubes ), que luego se cree que experimentan crecimiento higroscópico y coagulación y luego se encogen por evaporación . [112] [113] Algunos de ellos son biogénicos (normalmente producidos a través de reacciones químicas atmosféricas con sulfuro de dimetilo de plancton principalmente marino [114] ) o geológicos a través de volcanes o impulsados ​​por el clima de incendios forestales y otros eventos de combustión natural, [113] pero en las últimas décadas, los aerosoles de sulfato antropogénicos producidos a través de la combustión de combustibles fósiles con un alto contenido de azufre, principalmente carbón y ciertos combustibles menos refinados, como el combustible de aviación y búnker , habían dominado. [115] En 1990, las emisiones globales de azufre a la atmósfera causadas por el hombre se volvieron "al menos tan grandes" como todas las emisiones naturales de compuestos que contienen azufre combinadas , y eran al menos 10 veces más numerosas que los aerosoles naturales en las regiones más contaminadas de Europa y América del Norte, [116] donde representaron el 25% o más de toda la contaminación del aire. [117] Esto condujo a la lluvia ácida , [118] [119] y también contribuyó a las enfermedades cardíacas y pulmonares [117] e incluso al riesgo de parto prematuro y bajo peso al nacer . [120] La contaminación por sulfato también tiene una relación compleja con la contaminación por NOx y el ozono, reduciendo el también dañino ozono troposférico , pero capaz de dañar también la capa de ozono estratosférico. [121]

Los sulfatos estratosféricos provenientes de emisiones volcánicas causan un enfriamiento transitorio; la línea violeta que muestra un enfriamiento sostenido se debe a la contaminación por sulfatos troposféricos.

Una vez que el problema se hizo evidente, los esfuerzos para eliminar esta contaminación mediante medidas de desulfuración de gases de combustión y otros controles de la contaminación tuvieron un gran éxito, [122] reduciendo su prevalencia en un 53% y provocando ahorros en atención sanitaria valorados en 50.000 millones de dólares anuales solo en los Estados Unidos. [123] [117] [124] Sin embargo, casi al mismo tiempo, la investigación había demostrado que los aerosoles de sulfato estaban afectando tanto a la luz visible recibida por la Tierra como a su temperatura superficial , [125] y, a medida que el llamado oscurecimiento global ) comenzó a revertirse en la década de 1990 en consonancia con la reducción de la contaminación antropogénica por sulfatos, [126] [127] [128] el cambio climático se aceleró. [129] A partir de 2021, los modelos CMIP6 de última generación estiman que el enfriamiento total de los aerosoles actualmente presentes es de entre 0,1 °C (0,18 °F) y 0,7 °C (1,3 °F); [130] El Sexto Informe de Evaluación del IPCC utiliza la mejor estimación de 0,5 °C (0,90 °F), [131] con la incertidumbre causada principalmente por la investigación contradictoria sobre los impactos de los aerosoles de las nubes . [132] [133] [134] [135] [136] [137] Sin embargo, algunos están seguros de que enfrían el planeta, y esto llevó a propuestas de geoingeniería solar conocidas como inyección de aerosoles estratosféricos , que busca replicar y mejorar el enfriamiento de la contaminación por sulfato mientras minimiza los efectos negativos sobre la salud mediante el despliegue en la estratosfera , donde solo se necesitaría una fracción de la contaminación actual por azufre para evitar múltiples grados de calentamiento, [138] pero la evaluación de los costos y beneficios sigue siendo incompleta, [139] incluso con cientos de estudios sobre el tema completados a principios de la década de 2020. [140]

Carbono negro

El carbono negro (BC), o carbono negro de carbono, o carbono elemental (EC), a menudo llamado hollín, está compuesto de cúmulos de carbono puro, bolas de esqueleto y fulerenos , y es una de las especies de aerosol absorbentes más importantes en la atmósfera. Debe distinguirse del carbono orgánico (OC): moléculas orgánicas agrupadas o agregadas por sí solas o que permean una bola de EC. El IPCC estima en el Cuarto Informe de Evaluación del IPCC, 4AR, que el carbono negro de los combustibles fósiles contribuye a un forzamiento radiativo medio global de +0,2 W/m 2 (era +0,1 W/m 2 en el Segundo Informe de Evaluación del IPCC, SAR), con un rango de +0,1 a +0,4 W/m 2 . Sin embargo, un estudio publicado en 2013 afirma que "la mejor estimación para el forzamiento radiativo directo del carbono negro atmosférico en la era industrial (1750 a 2005) es de +0,71 W/m2 con límites de incertidumbre del 90% de (+0,08, +1,27) W/m2 " , y que "el forzamiento directo total de todas las fuentes de carbono negro, sin restar el fondo preindustrial, se estima en +0,88 (+0,17, +1,48) W/m2 " . [141]

Instancias

Reducción de la radiación solar debido a las erupciones volcánicas

Los volcanes son una gran fuente natural de aerosoles y se han vinculado a cambios en el clima de la Tierra, a menudo con consecuencias para la población humana. Las erupciones vinculadas a los cambios en el clima incluyen la erupción de Huaynaputina en 1600, que se relacionó con la hambruna rusa de 1601-1603 , [142] [143] [144] que provocó la muerte de dos millones de personas, y la erupción del monte Pinatubo en 1991 , que causó un enfriamiento global de aproximadamente 0,5 °C que duró varios años. [145] [146] Las investigaciones que rastrean el efecto de los aerosoles que dispersan la luz en la estratosfera durante 2000 y 2010 y comparan su patrón con la actividad volcánica muestran una correlación estrecha. Las simulaciones del efecto de las partículas antropogénicas mostraron poca influencia en los niveles actuales. [147] [148]

También se cree que los aerosoles afectan el tiempo y el clima a escala regional. La falta de monzón de la India se ha relacionado con la supresión de la evaporación del agua del océano Índico debido al efecto semidirecto del aerosol antropogénico. [149]

Estudios recientes sobre la sequía del Sahel [150] y los importantes aumentos desde 1967 en las precipitaciones en Australia sobre el Territorio del Norte , Kimberley , Pilbara y alrededor de la llanura de Nullarbor han llevado a algunos científicos a concluir que la neblina de aerosol sobre el sur y el este de Asia ha estado desplazando de manera constante las precipitaciones tropicales en ambos hemisferios hacia el sur. [149] [151]

Efectos sobre la salud

Estación de medición de la contaminación del aire en Emden , Alemania

El tamaño, la forma y la solubilidad son importantes

Tamaño

El tamaño de las partículas es el principal determinante de en qué parte del tracto respiratorio se asentarán cuando se inhalen. Las partículas más grandes generalmente se filtran en la nariz y la garganta a través de los cilios y la mucosidad, pero las partículas más pequeñas de unos 10 micrómetros pueden depositarse en los bronquios y los pulmones y causar problemas de salud. El tamaño de 10 micrómetros no representa un límite estricto entre partículas respirables y no respirables, pero la mayoría de las agencias reguladoras lo han acordado para el monitoreo de PM en el aire. Debido a su pequeño tamaño, las partículas del orden de 10 micrómetros o menos ( materia particulada gruesa , PM 10 ) pueden penetrar la parte más profunda de los pulmones, como los bronquiolos o los alvéolos . [152] Cuando los asmáticos se exponen a estas condiciones, puede desencadenar broncoconstricción. [153]

De manera similar, las partículas finas ( PM 2,5 ) tienden a penetrar en las regiones de intercambio de gases del pulmón (alvéolos), y las partículas muy pequeñas (partículas ultrafinas PM 0,1 ) pueden pasar a través de los pulmones y afectar a otros órganos. La penetración de las partículas no depende completamente de su tamaño; la forma y la composición química también influyen. Para evitar esta complicación, se utiliza una nomenclatura simple para indicar los diferentes grados de penetración relativa de una partícula PM en el sistema cardiovascular . Las partículas inhalables no penetran más allá de los bronquios , ya que son filtradas por los cilios . Las partículas torácicas pueden penetrar directamente en los bronquiolos terminales .

Por analogía, la fracción de polvo inhalable es la fracción de polvo que entra por la nariz y la boca y que puede depositarse en cualquier parte del tracto respiratorio. La fracción torácica es la fracción que entra en el tórax y se deposita en las vías respiratorias de los pulmones. La fracción respirable es la que se deposita en las regiones de intercambio de gases (alvéolos). [154]

Las partículas más pequeñas, las nanopartículas , que tienen un tamaño inferior a 180 nanómetros, pueden ser incluso más dañinas para el sistema cardiovascular. [155] [156] Las nanopartículas pueden atravesar las membranas celulares y migrar a otros órganos, incluido el cerebro. Las partículas emitidas por los motores diésel modernos (comúnmente denominadas partículas de diésel o DPM) suelen tener un tamaño de 100 nanómetros (0,1 micrómetros). Estas partículas de hollín también llevan carcinógenos como los benzopirenos adsorbidos en su superficie.

La masa de partículas no es una medida adecuada del riesgo para la salud. Una partícula de 10 μm de diámetro tiene aproximadamente la misma masa que 1 millón de partículas de 100 nm de diámetro, pero es mucho menos peligrosa, ya que es poco probable que entre en los alvéolos. Por lo tanto, los límites legislativos para las emisiones de los motores basados ​​en la masa no son protectores. Existen propuestas de nuevas regulaciones en algunos países, [¿ cuáles? ] con sugerencias de limitar la superficie de las partículas o el recuento de partículas (cantidad numérica) / concentración de número de partículas (PNC) en su lugar. [157] [158]

Solubilidad

El lugar y el grado de absorción de los gases y vapores inhalados están determinados por su solubilidad en agua. La absorción también depende de los caudales de aire y de la presión parcial de los gases en el aire inspirado. El destino de un contaminante específico depende de la forma en que se encuentre (aerosol o partículas). La inhalación también depende de la frecuencia respiratoria del sujeto. [159]

Forma

Otra complejidad que no está del todo documentada es cómo la forma de las partículas en suspensión puede afectar a la salud, a excepción de la forma en forma de aguja de las fibras de amianto que pueden alojarse en los pulmones. Las formas geométricamente angulares tienen más superficie que las formas más redondeadas, lo que a su vez afecta a la capacidad de unión de la partícula con otras sustancias posiblemente más peligrosas. [ cita requerida ] La siguiente tabla enumera los colores y formas de algunas partículas atmosféricas comunes: [160]

La composición, la cantidad y la duración son importantes.

Trabajador en una nube de polvo de hormigón

La composición de las partículas puede variar mucho según sus fuentes y cómo se producen. Por ejemplo, el polvo emitido por la quema de vegetación viva y muerta sería diferente del emitido por la quema de papel de incienso o desechos de construcción . Las partículas emitidas por la combustión de combustible no son las mismas que las emitidas por la combustión de desechos. La materia particulada generada por el incendio de un patio de reciclaje [161] o un barco lleno de chatarra [162] [163] puede contener más sustancias tóxicas que otros tipos de combustión.

Los diferentes tipos de actividades de remodelación de edificios también producen diferentes tipos de polvo. La composición de PM generada al cortar o mezclar hormigón hecho con cemento Portland sería diferente de la generada al cortar o mezclar hormigón hecho con diferentes tipos de escoria (por ejemplo , GGBFS , escoria de EAF [164] ), cenizas volantes o incluso polvo de EAF (EAFD), [165] mientras que el EFAD, la escoria y las cenizas volantes probablemente sean más tóxicas ya que contienen metales pesados . Además del cemento de escoria que se vende y se usa como un producto respetuoso con el medio ambiente, [166] [167] [168] el cemento falso (adulterado), donde se añaden diferentes tipos de escoria, cenizas volantes u otras sustancias desconocidas, también es muy común en algunos lugares [169] [170] debido al coste de producción mucho menor. [171] Para abordar los problemas de calidad [172] y toxicidad, algunos lugares están empezando a prohibir el uso de escoria de EAF en el cemento utilizado en edificios. [173] La composición de los humos de soldadura también varía mucho y depende de los metales en el material que se está soldando, la composición de los recubrimientos, electrodos, etc., y por lo tanto, muchos problemas de salud (por ejemplo, envenenamiento por plomo , fiebre por humos metálicos , cánceres, náuseas, irritación, daño renal y hepático, problemas del sistema nervioso central, asma, neumonía, etc.) pueden ser resultado de los diferentes tipos de emisiones tóxicas. [174]

Los estudios han demostrado que los niveles de plomo en la sangre de las personas en China están altamente correlacionados con la concentración ambiental de PM 2,5 , así como con el contenido de plomo en la capa superficial del suelo, lo que indica que el aire y el suelo (por ejemplo, por la inhalación de partículas de suelo resuspendidas, el consumo de cultivos o agua contaminados, etc.) son fuentes importantes de exposición al plomo. [175] [176]

Además de la composición, la cantidad y la duración de la exposición también son importantes, ya que afectarían al desencadenamiento y la gravedad de una enfermedad. Las partículas que ingresan al interior afectarían directamente la calidad del aire interior . La posible contaminación secundaria, similar al humo de tercera mano , también es motivo de preocupación. [177] [178]

En pocas palabras, si bien la concentración de fondo es importante, la mera "mejora de la calidad del aire" o la "disminución de la concentración ambiental de PM" no necesariamente significan una mejor salud. El impacto en la salud depende principalmente de la toxicidad (o fuente [179] ) de las partículas a las que está expuesta una persona, la cantidad a la que está expuesta y durante cuánto tiempo, y también del tamaño, la forma y la solubilidad de las PM.

Dado que los proyectos de construcción y remodelación son fuentes importantes de material particulado, esto implica que tales proyectos, que son muy comunes en algunos lugares, [180] [181] deben evitarse en los centros de salud que ya han comenzado y están en funcionamiento en la medida de lo posible. Para los proyectos inevitables, se deben introducir mejores planificaciones y medidas de mitigación con respecto a la emisión de PM. El uso de herramientas eléctricas, equipos pesados, combustibles diésel y materiales de construcción potencialmente tóxicos (por ejemplo, hormigón , metales, soldadura , pintura, etc.) debe controlarse estrictamente para garantizar que los pacientes que están allí buscando tratamientos para enfermedades o posibilidades de sobrevivir no se vean afectados negativamente.

Problemas de salud

Muertes por contaminación del aire en comparación con otras causas comunes
Información sobre la calidad del aire en PM 10 mostrada en Katowice , Polonia

Los efectos de la inhalación de material particulado que se han estudiado ampliamente en humanos y animales incluyen COVID-19 , [182] [183] ​​[184] [185] [186] asma , cáncer de pulmón, enfermedades respiratorias como la silicosis , [187] [188] enfermedad cardiovascular, parto prematuro , defectos de nacimiento, bajo peso al nacer , trastornos del desarrollo, [189] [190] [191] [192] trastornos neurodegenerativos [193] [194] trastornos mentales, [195] [196] [197] y muerte prematura. Las partículas finas al aire libre con un diámetro inferior a 2,5 micrones son responsables de 4,2 millones de muertes anuales en todo el mundo y más de 103 millones de años de vida ajustados por discapacidad perdidos , lo que la convierte en el quinto factor de riesgo principal de muerte. La contaminación del aire también se ha relacionado con una variedad de otros problemas psicosociales. [196] Las partículas pueden causar daño tisular al entrar en los órganos directamente o indirectamente a través de una inflamación sistémica . Pueden producirse efectos adversos incluso con niveles de exposición inferiores a los estándares de calidad del aire publicados que se consideran seguros. [198] [199]

Partículas finas antropogénicas como principal peligro

El aumento de los niveles de partículas finas en el aire como resultado de la contaminación atmosférica por partículas antropogénicas "se relaciona de forma consistente e independiente con los efectos más graves, incluido el cáncer de pulmón [200] y otras muertes cardiopulmonares ". [201] La asociación entre un gran número de muertes [202] y otros problemas de salud y la contaminación por partículas se demostró por primera vez a principios de la década de 1970 [203] y se ha reproducido muchas veces desde entonces. Se estima que la contaminación por PM causa entre 22 000 y 52 000 muertes al año en los Estados Unidos (desde 2000) [204] y contribuyó a unas 370 000 muertes prematuras en Europa durante 2005. [205] y 3,22 millones de muertes a nivel mundial en 2010 según la colaboración sobre la carga mundial de enfermedades . [206] Un estudio de la Agencia Europea del Medio Ambiente estima que 307 000 personas han muerto prematuramente en 2019 debido a la contaminación por partículas finas en los 27 estados miembros de la UE. [207]

En un estudio realizado en 2000 en Estados Unidos se analizó cómo las partículas finas pueden ser más dañinas que las gruesas. El estudio se basó en seis ciudades diferentes y se descubrió que las muertes y las visitas al hospital causadas por partículas en el aire se debían principalmente a partículas finas. [208] De manera similar, un estudio de 1987 sobre datos de contaminación del aire en Estados Unidos descubrió que las partículas finas y los sulfatos, a diferencia de las partículas más gruesas, se correlacionaban de manera más consistente y significativa con las tasas de mortalidad anual total en áreas estadísticas metropolitanas estándar . [209]

Un estudio publicado en 2022 en GeoHealth concluyó que eliminar las emisiones de combustibles fósiles relacionadas con la energía en los Estados Unidos evitaría entre 46.900 y 59.400 muertes prematuras cada año y proporcionaría entre 537.000 y 678.000 millones de dólares en beneficios por evitar enfermedades y muertes relacionadas con PM 2,5 . [210]

Infertilidad, embarazo, fetos y defectos de nacimiento

Se ha relacionado la exposición a partículas con mayores tasas de infertilidad. [211] La exposición materna a PM 2,5 durante el embarazo también se asocia con presión arterial alta en los niños. [212]

La inhalación de PM 2,5 a PM 10 se asocia con un riesgo elevado de resultados adversos del embarazo, como bajo peso al nacer. [ 213] La exposición a PM 2,5 se ha asociado con mayores reducciones en el peso al nacer que la exposición a PM 10. [214] La exposición a PM puede causar inflamación, estrés oxidativo, alteración endocrina y deterioro del acceso del transporte de oxígeno a la placenta, [215] todos los cuales son mecanismos para aumentar el riesgo de bajo peso al nacer. [216] La evidencia epidemiológica y toxicológica general sugiere que existe una relación causal entre las exposiciones a largo plazo a PM 2,5 y los resultados del desarrollo (es decir, bajo peso al nacer). [214] Los estudios que investigan la importancia de la exposición específica del trimestre han demostrado ser poco concluyentes, [217] y los resultados de los estudios internacionales han sido inconsistentes al establecer asociaciones entre la exposición prenatal a material particulado y el bajo peso al nacer. [214] Dado que los resultados perinatales se han asociado con la salud de por vida [218] [219] y la exposición a partículas en suspensión es generalizada, esta cuestión es de importancia crítica para la salud pública.

Enfermedades cardiovasculares y respiratorias

PM 2.5 conduce a altos depósitos de placa en las arterias , causando inflamación vascular y aterosclerosis , un endurecimiento de las arterias que reduce la elasticidad, lo que puede provocar ataques cardíacos y otros problemas cardiovasculares . [220] Un metaanálisis de 2014 informó que la exposición a largo plazo a material particulado está relacionada con eventos coronarios. El estudio incluyó 11 cohortes que participaron en el Estudio Europeo de Cohortes para Efectos de la Contaminación del Aire (ESCAPE) con 100,166 participantes, seguidos durante un promedio de 11.5 años. Un aumento en la exposición anual estimada a PM 2.5 de solo 5 μg/m 3 se relacionó con un aumento del 13% en el riesgo de ataques cardíacos. [221] No solo afecta a las células y tejidos humanos, PM también impacta en las bacterias que causan enfermedades en los humanos. [222] La formación de biopelículas , la tolerancia a los antibióticos y la colonización tanto de Staphylococcus aureus como de Streptococcus pneumoniae se alteraron por la exposición al carbono negro .

El estudio más grande de Estados Unidos sobre los efectos agudos para la salud de la contaminación por partículas gruesas entre 2,5 y 10 micrómetros de diámetro se publicó en 2008 y encontró una asociación con las admisiones hospitalarias por enfermedades cardiovasculares, pero ninguna evidencia de una asociación con el número de admisiones hospitalarias por enfermedades respiratorias. [223] Después de tener en cuenta los niveles de partículas finas (PM 2,5 y menos), la asociación con las partículas gruesas se mantuvo, pero ya no fue estadísticamente significativa, lo que significa que el efecto se debe a la subsección de partículas finas.

La agencia gubernamental de Mongolia registró un aumento del 45% en la tasa de enfermedades respiratorias en los últimos cinco años (según se informó en 2011). [224] El asma bronquial, la enfermedad pulmonar obstructiva crónica y la neumonía intersticial fueron las enfermedades más comunes tratadas por los hospitales de la zona. Los niveles de muerte prematura, bronquitis crónica y enfermedades cardiovasculares están aumentando a un ritmo rápido. [69]

Riesgos cognitivos y salud mental

Los efectos de la contaminación del aire y de las partículas en suspensión sobre el rendimiento cognitivo se han convertido en un área activa de investigación. [225]

La contaminación del aire puede aumentar el riesgo de trastornos del desarrollo (p. ej., autismo ), [189] [190] [191] [192] trastornos neurodegenerativos, [193] [194] trastornos mentales, [195] [196 ] [197] y suicidio , [195] [197] [226] aunque los estudios sobre el vínculo entre la depresión y algunos contaminantes del aire no son consistentes. [227] Al menos un estudio ha identificado "la abundante presencia en el cerebro humano de nanopartículas de magnetita que coinciden precisamente con las nanoesferas de magnetita de alta temperatura, formadas por combustión y/o calentamiento derivado de la fricción, que son prolíficas en la materia particulada (PM) urbana transportada por el aire". [228]

Las partículas también parecen tener un papel en la patogénesis de la enfermedad de Alzheimer y el envejecimiento prematuro del cerebro. Cada vez hay más pruebas que sugieren una correlación entre la exposición a PM 2,5 y la prevalencia de enfermedades neurodegenerativas como el Alzheimer. Varios estudios epidemiológicos han sugerido un vínculo entre la exposición a PM 2,5 y el deterioro cognitivo, en particular en el desarrollo de enfermedades neurodegenerativas como el Alzheimer.

Utilizando técnicas de análisis geoespacial, "los investigadores financiados por el NIEHS pudieron confirmar una fuerte asociación entre los casos de enfermedad de Parkinson y las partículas finas (conocidas como PM 2.5 ) en los EE. UU. En el estudio, las regiones del país con una alta tasa de enfermedad de Parkinson se asociaron generalmente con niveles más altos de PM 2.5 , cuyas fuentes incluyen vehículos de motor, incendios forestales y plantas de energía". [229] Si bien los mecanismos exactos detrás del vínculo entre la exposición a PM 2.5 y el deterioro cognitivo no se comprenden completamente, la investigación sugiere que las partículas finas pueden ingresar al cerebro a través del nervio olfativo y causar inflamación y estrés oxidativo, lo que puede dañar las células cerebrales y contribuir al desarrollo de enfermedades neurodegenerativas. [230]

Aumento de la mortalidad

La Organización Mundial de la Salud (OMS) estimó en 2005 que "... la contaminación del aire por partículas finas (PM(2,5)), causa alrededor del 3% de la mortalidad por enfermedades cardiopulmonares, alrededor del 5% de la mortalidad por cáncer de tráquea, bronquios y pulmón, y alrededor del 1% de la mortalidad por infecciones respiratorias agudas en niños menores de 5 años, en todo el mundo". [231] Un estudio de 2011 concluyó que los gases de escape del tráfico son la causa evitable más grave de ataque cardíaco en la población general, la causa del 7,4% de todos los ataques. [232]

Los estudios sobre partículas en suspensión realizados en Bangkok (Tailandia) en 2008 indicaron un aumento del 1,9% en el riesgo de morir de enfermedades cardiovasculares y del 1,0% en el riesgo de sufrir cualquier enfermedad por cada 10 microgramos por metro cúbico. Los niveles promedio fueron de 65 en 1996, 68 en 2002 y 52 en 2004. La disminución de los niveles puede atribuirse a la conversión de la combustión de diésel a gas natural, así como a una mejora de las reglamentaciones. [233]

Disparidades raciales

Se han realizado muchos estudios que vinculan la raza con una mayor proximidad a las partículas en suspensión y, por lo tanto, con una mayor susceptibilidad a los efectos adversos para la salud de la exposición a largo plazo. Un estudio estadounidense mostró que "la proporción de residentes negros en una zona residencial estaba vinculada a tasas más altas de asma". [234] Muchos académicos vinculan esta desproporción con la segregación racial en la vivienda y sus respectivas desigualdades en "exposiciones tóxicas". [234] Esta realidad se agrava por el hallazgo de que "la atención sanitaria se produce en el contexto de una desigualdad social y económica histórica y contemporánea más amplia y una discriminación racial y étnica persistente en muchos sectores de la vida estadounidense". [235] La proximidad residencial a instalaciones que emiten partículas aumenta la exposición a PM 2,5, lo que está vinculado a mayores tasas de morbilidad y mortalidad. [236] Múltiples estudios confirman que la carga de emisiones de PM es mayor entre las poblaciones no blancas y en situación de pobreza, [236] aunque algunos dicen que los ingresos no impulsan estas diferencias. [237] Esta correlación entre la raza y las repercusiones para la salud relacionadas con la vivienda se deriva de un problema de justicia ambiental de larga data vinculado a la práctica histórica de la segregación residencial. Un ejemplo de estos factores contextualizados es una zona del sureste de Luisiana, conocida coloquialmente como " Cancer Alley " por su alta concentración de muertes relacionadas con el cáncer debido a las plantas químicas vecinas. [238] El hecho de que Cancer Alley sea una comunidad mayoritariamente afroamericana, y que el vecindario más cercano a la planta sea 90% negro, [238] perpetúa la narrativa científica de que las poblaciones negras están ubicadas desproporcionadamente más cerca de las áreas de alta producción de PM que las poblaciones blancas. Un artículo de 2020 relaciona los efectos a largo plazo sobre la salud de vivir en altas concentraciones de PM con un mayor riesgo, propagación y tasas de mortalidad por el SARS-CoV-2 o COVID-19 , y culpa a una historia de racismo por este resultado. [238]

Riesgo de humo por incendios forestales

En las regiones donde los incendios forestales son persistentes, el riesgo de exposición a partículas aumenta. El humo de los incendios forestales puede afectar a grupos sensibles como los ancianos, los niños, las mujeres embarazadas y las personas con enfermedades pulmonares y cardiovasculares. [239] Se encontró que en la temporada de incendios forestales de 2008 en California, las partículas en suspensión eran mucho más tóxicas para los pulmones humanos, ya que se observó un mayor infiltrado de neutrófilos , afluencia de células y edema en comparación con las partículas en suspensión del aire ambiente. [240] Además, las partículas en suspensión de los incendios forestales se han relacionado con un factor desencadenante de eventos coronarios agudos, como la cardiopatía isquémica. [241] Los incendios forestales también se han asociado con un aumento de las visitas a los servicios de urgencias debido a la exposición a partículas en suspensión, así como con un mayor riesgo de eventos relacionados con el asma. [242] [243] Se ha descubierto un vínculo entre las PM 2,5 de los incendios forestales y un mayor riesgo de hospitalizaciones por enfermedades cardiopulmonares. [244] La evidencia también sugiere que el humo de los incendios forestales reduce el rendimiento mental. [245]

Conocimientos de la industria energética y respuesta a los efectos adversos para la salud

Las muertes causadas por accidentes y contaminación del aire derivadas del uso de combustibles fósiles en las centrales eléctricas superan a las causadas por la producción de energía renovable . [246]

Las grandes compañías energéticas comprendían, al menos desde los años 1960, que el uso de sus productos causaba efectos adversos generalizados para la salud y muertes, pero continuaron con su agresivo cabildeo político en Estados Unidos y en otros países contra la regulación del aire limpio y lanzaron importantes campañas de propaganda corporativa para sembrar dudas sobre el vínculo causal entre la quema de combustibles fósiles y los grandes riesgos para la vida humana. Los memorandos internos de las empresas revelan que los científicos y ejecutivos de la industria energética sabían que los contaminantes del aire creados por los combustibles fósiles se alojan profundamente en el tejido pulmonar humano y causan defectos de nacimiento en los hijos de los trabajadores de la industria petrolera. Los memorandos de la industria reconocen que los automóviles "son, con mucho, las mayores fuentes de contaminación del aire" y también que la contaminación del aire causa efectos adversos para la salud y aloja toxinas, incluidos carcinógenos , "profundamente en los pulmones que de otro modo se eliminarían por la garganta". [247]

En respuesta a la creciente preocupación pública, la industria acabó creando la Coalición Mundial por el Clima , un grupo de presión de la industria, para descarrilar los intentos de los gobiernos de regular la contaminación del aire y crear confusión en la mente del público sobre la necesidad de dicha regulación. El Instituto Americano del Petróleo , una asociación comercial de la industria del petróleo y el gas, y el centro de estudios privado negacionista del cambio climático , The Heartland Institute , emprendieron esfuerzos similares de cabildeo y relaciones públicas corporativas. "La respuesta de los intereses de los combustibles fósiles ha seguido el mismo esquema: primero saben, luego traman, luego niegan y luego demoran. Han recurrido a la demora, formas sutiles de propaganda y al debilitamiento de la regulación", dijo Geoffrey Supran, un investigador de la Universidad de Harvard sobre la historia de las empresas de combustibles fósiles y el cambio climático. Estos esfuerzos han sido comparados, por analistas de políticas como Carroll Muffett, del Centro de Derecho Ambiental Internacional , con la estrategia de la industria tabacalera de cabildeo y campañas de propaganda corporativa para crear dudas sobre la conexión causal entre el tabaquismo y el cáncer y para impedir su regulación. Además, los defensores financiados por la industria, cuando fueron designados para altos cargos gubernamentales en los Estados Unidos, revisaron los hallazgos científicos que mostraban los efectos mortales de la contaminación del aire y revocaron su regulación. [247] [248] [249]

Efectos sobre la vegetación

Las partículas en suspensión pueden obstruir las aberturas estomáticas de las plantas e interferir con las funciones de la fotosíntesis. [250] De esta manera, las altas concentraciones de partículas en suspensión en la atmósfera pueden provocar retraso del crecimiento o mortalidad en algunas especies de plantas. [ cita requerida ]

Regulación

La mayoría de los gobiernos han creado regulaciones tanto para las emisiones permitidas de ciertos tipos de fuentes de contaminación (vehículos de motor, emisiones industriales, etc.) como para la concentración ambiental de partículas. El IARC y la OMS designan a las partículas como un carcinógeno del Grupo 1. Las partículas son la forma más mortal de contaminación del aire debido a su capacidad de penetrar profundamente en los pulmones y el torrente sanguíneo sin filtrar, causando enfermedades respiratorias , ataques cardíacos y muerte prematura . [251] En 2013, el estudio ESCAPE que involucró a 312.944 personas en nueve países europeos reveló que no había un nivel seguro de partículas y que por cada aumento de 10 μg/m 3 en PM 10 , la tasa de cáncer de pulmón aumentaba un 22%. Para PM 2,5 hubo un aumento del 36% en el cáncer de pulmón por cada 10 μg/m 3 . [200] En un metanálisis de 2014 de 18 estudios a nivel mundial, incluidos los datos de ESCAPE, por cada aumento de 10 μg/m 3 en PM 2,5 , la tasa de cáncer de pulmón aumentó un 9%. [252]

Límites/normas establecidas por los gobiernos

Canadá

En Canadá, el estándar para las partículas en suspensión lo establece a nivel nacional el Consejo Canadiense de Ministros de Medio Ambiente (CCME), organismo federal y provincial. Las jurisdicciones (provincias y territorios) pueden establecer estándares más estrictos. El estándar del CCME para las partículas en suspensión de 2,5 (PM 2,5 ) a partir de 2015 es de 28 μg/m 3 (calculado utilizando el promedio de 3 años del percentil 98 anual de las concentraciones promedio diarias de 24 horas) y 10 μg/m 3 (promedio de 3 años de la media anual). Los estándares para PM 2,5 aumentarán en rigurosidad en 2020. [266]

unión Europea

La Unión Europea ha establecido las normas europeas de emisiones , que incluyen límites para las partículas en el aire: [255]

Reino Unido

Para mitigar el problema de la quema de leña, a partir de mayo de 2021 ya no se podrá vender el carbón doméstico tradicional (carbón bituminoso) ni la madera húmeda, dos de los combustibles más contaminantes. La madera vendida en volúmenes inferiores a 2 m3 debe estar certificada como "Ready to Burn", lo que significa que tiene un contenido de humedad del 20% o menos. Los combustibles sólidos manufacturados también deben estar certificados como "Ready to Burn" para garantizar que cumplen los límites de emisión de azufre y humo. [267] A partir de enero de 2022, todas las nuevas estufas de leña deben cumplir con las nuevas normas de EcoDesign (las estufas de Ecodesign producen 450 veces más contaminación atmosférica tóxica que la calefacción central de gas. Las estufas más antiguas, cuya venta está prohibida ahora, producen 3.700 veces más). [268]

En 2023, la cantidad de humo que pueden emitir por hora los quemadores en las "áreas de control del humo" (la mayoría de las ciudades y pueblos de Inglaterra) se reducirá de 5 g a 3 g. Las infracciones se sancionarán con una multa de hasta 300 libras esterlinas. Quienes no cumplan pueden incluso quedar con antecedentes penales. [269]

Estados Unidos

Tendencias de la calidad del aire en Estados Unidos. El área azul muestra el rango del 80% medio de los sitios de monitoreo. [270]

La Agencia de Protección Ambiental de los Estados Unidos (EPA) ha establecido estándares para las concentraciones de PM 10 y PM 2,5 . [263] (Véase Estándares nacionales de calidad del aire ambiente ).

California

Tendencias de la calidad del aire en el oeste de Estados Unidos. El área azul muestra el rango del 80 % central de los sitios de monitoreo.

En octubre de 2008, el Departamento de Control de Sustancias Tóxicas (DTSC), dentro de la Agencia de Protección Ambiental de California , anunció su intención de solicitar información sobre métodos de prueba analíticos, destino y transporte en el medio ambiente, y otra información relevante de los fabricantes de nanotubos de carbono . [271] DTSC está ejerciendo su autoridad bajo el Código de Salud y Seguridad de California, Capítulo 699, secciones 57018-57020. [272] Estas secciones se agregaron como resultado de la adopción del Proyecto de Ley de la Asamblea AB 289 (2006). [272] Tienen como objetivo hacer que la información sobre el destino y el transporte, la detección y el análisis, y otra información sobre los productos químicos sea más disponible. La ley coloca la responsabilidad de proporcionar esta información al departamento en aquellos que fabrican o importan los productos químicos.

El 22 de enero de 2009, se envió una carta de solicitud de información formal [273] a los fabricantes que producen o importan nanotubos de carbono en California, o que pueden exportar nanotubos de carbono al Estado. [274] Esta carta constituye la primera implementación formal de las facultades que establece la ley AB 289 y está dirigida a los fabricantes de nanotubos de carbono, tanto industriales como académicos dentro del Estado, y a los fabricantes fuera de California que exportan nanotubos de carbono a California. Los fabricantes deben satisfacer esta solicitud de información en el plazo de un año. El DTSC está esperando la próxima fecha límite del 22 de enero de 2010 para recibir las respuestas a la solicitud de datos.

El 16 de noviembre de 2009, la Red de la Industria Nano de California y el DTSC organizaron un simposio de un día completo en Sacramento (California). Este simposio brindó la oportunidad de escuchar a expertos de la industria de la nanotecnología y debatir las futuras consideraciones regulatorias en California. [275]

DTSC está ampliando la convocatoria de información química específica a los miembros de los óxidos nanometálicos; la información más reciente se puede encontrar en su sitio web. [276]

Colorado

Tendencias de la calidad del aire en el suroeste de Estados Unidos. El área azul muestra el rango del 80 % central de los sitios de monitoreo.

Los puntos clave del Plan de Colorado incluyen la reducción de los niveles de emisiones y las soluciones por sector. La agricultura, el transporte, la electricidad ecológica y la investigación sobre energías renovables son los conceptos y objetivos principales de este plan. Los programas políticos como las pruebas obligatorias de emisiones de vehículos y la prohibición de fumar en espacios cerrados son acciones adoptadas por el gobierno local para crear conciencia y participación pública en favor de un aire más limpio. La ubicación de Denver junto a las Montañas Rocosas y una amplia extensión de llanuras hace que el área metropolitana de la capital de Colorado sea un lugar propenso a la contaminación atmosférica y al smog. [ cita requerida ]

Zonas afectadas

Diferencia entre los niveles de PM 2,5 en el aire en 2019 y 2022 entre 70 capitales [277]

Para analizar la tendencia de la contaminación del aire, los expertos en aire mapearon 480 ciudades de todo el mundo (excluida Ucrania) [277] para calcular el nivel promedio de PM 2,5 de los primeros nueve meses de 2019 en comparación con el de 2022. [278] Los niveles promedio de PM 2,5 se midieron utilizando los datos del Índice de calidad del aire mundial de aqicn.org, y se utilizó una fórmula desarrollada por AirNow para convertir la cifra de PM 2,5 en microgramos por metro cúbico de aire (microgramos/metros 3) valores.

Entre las 70 capitales investigadas, Bagdad , Irak, es la que tiene el peor desempeño, con niveles de PM 2.5 que subieron +31.6  .microgramos/metros 3 . Ulan Bator (Ulaanbaatar), la capital de Mongolia, es la que tiene el mejor desempeño, con niveles de PM 2.5 cayendo un -23.4  microgramos/metros 3Anteriormente era una de las capitales más contaminadas del mundo. Un plan de mejora de la calidad del aire en 2017 parece estar dando resultados positivos .

De las 480 ciudades, Dammam en Arabia Saudita es la que tiene el peor desempeño, con niveles de PM 2.5 aumentando +111.1  .microgramos/metros 3La ciudad es un importante centro de la industria petrolera saudí y alberga el aeropuerto más grande del mundo y el puerto más grande del Golfo Pérsico. Actualmente es la ciudad más contaminada de las que se han estudiado .

En Europa, las ciudades con peores resultados se encuentran en España. Se trata de Salamanca y Palma , con un aumento de los niveles de PM 2,5 del +5,1  microgramos/metros 3 y +3,7  microgramos/metros 3 respectivamente. La ciudad con mejor desempeño es Skopje , la capital de Macedonia del Norte, con niveles de PM 2.5 que cayeron un -12.4  microgramos/metros 3 . Alguna vez fue la capital más contaminada de Europa y aún tiene un largo camino por recorrer para lograr un aire limpio.

En EE. UU., Salt Lake City , Utah y Miami , Florida son las dos ciudades con los mayores aumentos en el nivel de PM 2,5 (+1,8  microgramos/metros 3 ). Salt Lake City sufre un fenómeno meteorológico conocido como "inversión". Ubicada en un valle, el aire más frío y contaminado queda atrapado cerca del nivel del suelo debajo del aire más cálido que se encuentra arriba cuando se produce la inversión. Por otro lado, Omaha , Nebraska, es la que tiene el mejor desempeño y tiene una disminución de -1.1  microgramos/metros 3 en niveles de PM 2.5 .

La ciudad más limpia en este informe es Zúrich , Suiza, con niveles de PM 2,5 de solo 0,5  .microgramos/metros 3, ocupó el primer lugar tanto en 2019 como en 2022. La segunda ciudad más limpia es Perth , con 1,7 microgramos/metros 3 y los niveles de PM 2.5 bajan un -6.2  microgramos/metros 3 desde 2019. De las diez ciudades más limpias, cinco son de Australia . Son Hobart, Wollongong, Launceston, Sydney y Perth. Honolulu es la única ciudad estadounidense en la lista de las diez mejores, ocupando el décimo lugar con niveles de 4  microgramos/metros 3 , con un pequeño aumento desde 2019.

Casi todas las diez ciudades más contaminadas se encuentran en Oriente Medio y Asia. La peor es Dammam, en Arabia Saudita, con un nivel de PM 2,5 de 155  .microgramos/metros 3Lahore en Pakistán es el segundo peor con  98,1microgramos/metros 3 . La tercera es Dubái , donde se encuentra el edificio más alto del mundo. Entre las diez últimas se encuentran tres ciudades de la India : Muzaffarnagar, Delhi y Nueva Delhi. A continuación, se incluye una lista de las 30 ciudades más contaminadas por PM 2,5 , de enero a septiembre de 2022: [277]

La encuesta anterior tiene sus límites. Por ejemplo, no se abarcan todas las ciudades del mundo y el número de estaciones de monitoreo para cada ciudad no sería el mismo. Los datos son solo de referencia.

Australia

La contaminación por PM10 en las zonas de extracción de carbón de Australia, como el valle de Latrobe en Victoria y la región de Hunter en Nueva Gales del Sur, aumentó significativamente entre 2004 y 2014. Aunque el aumento no contribuyó significativamente a las estadísticas de incumplimiento, la tasa de aumento ha aumentado cada año entre 2010 y 2014. [279]

Porcelana

Algunas ciudades del norte de China y el sur de Asia han tenido concentraciones superiores a 200 μg/m 3 . [280] Los niveles de PM en las ciudades chinas fueron extremos entre 2010 y 2014, alcanzando un máximo histórico en Beijing el 12 de enero de 2013, de 993 μg/m 3 , [69] pero han estado mejorando gracias a las acciones de aire limpio. [281] [282]

Para monitorear la calidad del aire del sur de China, el Consulado de EE. UU. en Guangzhou instaló un monitor de PM 2,5 y PM 10 en la isla Shamian en Guangzhou y muestra las lecturas en su sitio web oficial y plataformas sociales. [283]

Europa

Concentración de PM 10 [205] en Europa, 2005

Italia

Concentración de PM 2,5 (Índice Europeo de Calidad del Aire) durante una franja horaria en una ciudad de Italia 2019-2020

Corea del Sur

En 2017, Corea del Sur tenía la peor contaminación del aire entre las naciones desarrolladas de la OCDE (Organización para la Cooperación y el Desarrollo Económicos). [284] Según un estudio realizado por la NASA y el NIER , el 52% de las PM 2,5 medidas en el Parque Olímpico de Seúl en mayo y junio de 2016 procedían de emisiones locales. El resto era contaminación transfronteriza procedente de la provincia china de Shandong (22%), Corea del Norte (9%), Pekín (7%), Shanghái (5%) y un 5% combinado de la provincia china de Liaoning, Japón y el Mar del Oeste. [285] En diciembre de 2017, los ministros de medio ambiente de Corea del Sur y China firmaron el Plan de Cooperación Ambiental China-Corea (2018-22), un plan de cinco años para resolver conjuntamente los problemas del aire, el agua, el suelo y los residuos. También se puso en marcha un centro de cooperación medioambiental en 2018 para ayudar a la cooperación. [286]

Tailandia

La calidad del aire en Tailandia está empeorando en 2023, lo que se describe como una "situación de vuelta a la normalidad post-COVID". Además de la capital , Bangkok , la calidad del aire en Chiang Mai , un popular destino turístico, también se está deteriorando. Chiang Mai fue incluida como la ciudad más contaminada en una clasificación en vivo realizada por una empresa suiza de calidad del aire el 27 de marzo de 2023. La clasificación incluye datos de alrededor de 100 ciudades del mundo para las que se dispone de datos medidos de PM 2,5 . [287] [288]

Ulán Bator

La capital de Mongolia , Ulaanbaatar, tiene una temperatura media anual de unos 0 °C, lo que la convierte en la capital más fría del mundo. Alrededor del 40% de la población vive en apartamentos, el 80% de los cuales cuentan con sistemas de calefacción central procedentes de tres plantas de cogeneración. En 2007, las centrales eléctricas consumieron casi 3,4 millones de toneladas de carbón. La tecnología de control de la contaminación está en malas condiciones. [ cita requerida ]

El 60% restante de la población vive en barrios marginales (distritos Ger), que se han desarrollado debido a la nueva economía de mercado del país y a las estaciones de invierno muy frías. Los pobres de estos distritos cocinan y calientan sus casas de madera con estufas de interior alimentadas con leña o carbón. La contaminación del aire resultante se caracteriza por niveles elevados de dióxido de azufre y óxido de nitrógeno y concentraciones muy altas de partículas en suspensión y material particulado (PM). [69] Se han registrado concentraciones medias anuales estacionales de material particulado de hasta 279 μg/m 3 (microgramos por metro cúbico). [ cita requerida ] El nivel medio anual recomendado de PM 10 por la Organización Mundial de la Salud es de 20 μg/m 3 , [289] lo que significa que los niveles medios anuales de PM 10 de Ulaanbaatar son 14 veces superiores a los recomendados. [ cita requerida ]

Durante los meses de invierno, en particular, la contaminación del aire oscurece el aire, afectando la visibilidad en la ciudad hasta tal punto que en algunas ocasiones se impide a los aviones aterrizar en el aeropuerto. [290]

Además de las emisiones de las chimeneas, otra fuente que no se tiene en cuenta en el inventario de emisiones son las cenizas volantes de los estanques de cenizas, el lugar de disposición final de las cenizas volantes que se han recogido en los tanques de sedimentación. Los estanques de cenizas sufren una erosión continua por el viento durante el invierno. [291]

Estados Unidos

Del informe "Estado del Aire 2022" elaborado por la Asociación Estadounidense del Pulmón con datos de la Agencia de Protección Ambiental de Estados Unidos de 2018 a 2020, [292] las ciudades de California son las más contaminadas (por PM 2,5 ) de Estados Unidos, mientras que la Costa Este es más limpia.

Sin embargo, otro estudio ha llegado a una conclusión muy diferente. Según Forbes, un sitio de comparación de seguros de viaje InsureMyTrip realizó una encuesta de 50 ciudades de EE. UU. en 2020 y las clasificó por limpieza con criterios como la demanda de desinfectante para manos, la limpieza de los restaurantes, la cantidad de recolectores de reciclaje, la satisfacción con la eliminación de basura, la participación de mercado de vehículos eléctricos y la contaminación. [293] En su lista de las diez ciudades más limpias, siete son de California, incluidas Long Beach (n.º 1), San Diego (n.º 2), Sacramento (n.º 3), San José (n.º 6), Oakland (n.º 7), Bakersfield (n.º 9) y San Francisco (n.º 10). Las discrepancias pueden deberse a las diferencias en la elección de datos, los métodos de cálculo, las definiciones de "limpieza" y una gran variación de la calidad del aire en el mismo estado, etc. Esto demuestra nuevamente que uno debe ser muy cuidadoso al sacar conclusiones de las muchas clasificaciones de calidad del aire disponibles en Internet.

A mediados de 2023, la calidad del aire en el este de Estados Unidos disminuyó significativamente debido a que las partículas de los incendios forestales de Canadá se dispersaron. Según la NASA, algunos de los incendios fueron provocados por rayos . [294] [12]

Véase también

Efectos sobre la salud:

Relacionado con la salud:

Otros nombres

Notas

  1. ^ Límite de PM 10 desde el 1 de enero de 2005
  2. ^ Límite de PM 2,5 desde el 1 de enero de 2015
  3. ^ Desde el 1 de enero de 2014
  4. ^ PM 10 se denomina materia particulada en suspensión
  5. ^ Límite de PM 2,5 desde el 21 de septiembre de 2009
  6. ^ Límite de PM 10 desde el 4 de diciembre de 2006
  7. ^ Límite de PM 2,5 desde el 27 de marzo de 2018
  8. ^ límite anual desde 2024
  9. ^ límite diario desde 2007
  10. ^ límite anual eliminado en 2006
  11. ^ límite diario desde 1987 [264]
  12. ^ Promedio de 3 años del percentil 98 anual

Referencias

  1. ^ Seinfeld J, Pandis S (1998). Química y física atmosférica: de la contaminación del aire al cambio climático (2.ª ed.). Hoboken, Nueva Jersey: John Wiley & Sons . pág. 97. ISBN 978-0-471-17816-3.
  2. ^ Plainiotis S, Pericleous KA, Fisher BE, Shier L (enero de 2010). "Aplicación de modelos de dispersión de partículas lagrangianas a la evaluación de la calidad del aire en la región Trans-Manche de Nord-Pas-de-Calais (Francia) y Kent (Gran Bretaña)" (PDF) . Revista internacional de medio ambiente y contaminación . 40 (1/2/3): 160–74. doi :10.1504/IJEP.2010.030891.
  3. ^ Brown JS, Gordon T, Price O, Asgharian B (abril de 2013). "Definiciones de partículas torácicas y respirables para la evaluación de riesgos para la salud humana". Toxicología de partículas y fibras . 10 (1): 12. Bibcode :2013PFTox..10...12B. doi : 10.1186/1743-8977-10-12 . PMC 3640939 . PMID  23575443. 
  4. ^ ab US EPA, OAR (19 de abril de 2016). "Particulate Matter (PM) Basics". US EPA . Consultado el 5 de octubre de 2019 .
  5. ^ "EHP – Exposición a partículas en el aire libre y cáncer de pulmón: una revisión sistemática y un metaanálisis". ehp.niehs.nih.gov . Archivado desde el original el 29 de mayo de 2016 . Consultado el 29 de diciembre de 2016 .
  6. ^ Wasley, Andrew; Heal, Alexandra; Harvey, Fiona; Lainio, Mie (13 de junio de 2019). "Revelado: el gobierno del Reino Unido no logra abordar el aumento de contaminantes atmosféricos graves". The Guardian .
  7. ^ Thangavel, Prakash; Park, Duckshin; Lee, Young-Chul (19 de junio de 2022). "Información reciente sobre la toxicidad mediada por material particulado (PM2.5) en humanos: una descripción general". Revista internacional de investigación ambiental y salud pública . 19 (12): 7511. doi : 10.3390/ijerph19127511 . ISSN  1660-4601. PMC 9223652 . PMID  35742761. 
  8. ^ "EL ESTADO DEL AIRE MUNDIAL/2018: INFORME ESPECIAL SOBRE LA EXPOSICIÓN MUNDIAL A LA CONTAMINACIÓN DEL AIRE Y SU CARGA DE ENFERMEDADES" (PDF) . Health Effects Institute. 2018.
  9. ^ "El peso de los números: contaminación del aire y PM2.5". Undark . Consultado el 6 de septiembre de 2018 .
  10. ^ Omidvarborna; et al. (2015). "Estudios recientes sobre modelado de hollín para combustión diésel". Renewable and Sustainable Energy Reviews . 48 : 635–647. Bibcode :2015RSERv..48..635O. doi :10.1016/j.rser.2015.04.019.
  11. ^ "Calidad del aire, EASA Eco".
  12. ^ ab Lee, Giyoon; Ahn, Jinho; Park, Seung-Myung; Moon, Jonghan; Park, Rokjin; Sim, Min Sub; Choi, Hanna; Park, Jinsoo; Ahn, Joon-Young (17 de septiembre de 2023). "Distribución de fuentes y mecanismos de control de sulfato de PM2.5 basados ​​en isótopos de azufre en Seúl, Corea del Sur durante el invierno y principios de la primavera (2017-2020)". Science of the Total Environment . 905 . doi :10.1016/j.scitotenv.2023.167112. PMID  37717778. S2CID  262046328.
  13. ^ Lin C, Huang RJ, Duan J, Zhong H, Xu W, Wu Y, Zhang R (abril de 2022). "Gran contribución de las actividades de culto a las partículas de hollín atmosférico en el noroeste de China". Environ Pollut . 299 : 118907. Bibcode :2022EPoll.29918907L. doi :10.1016/j.envpol.2022.118907. PMID  35091017. S2CID  246355499.
  14. ^ Giang, Lam Van; Thanh, Tran; Hien, Truong Thanh; Tan, Lam Van; Thi Bich Phuong, Tran; Huu Loc, Ho (2021). "Emisiones de metales pesados ​​de los rituales de quema de papel joss y la calidad del aire alrededor de un incinerador específico". Materials Today: Proceedings . 38 : 2751–2757. doi :10.1016/j.matpr.2020.08.686. S2CID  226353498.
  15. ^ Shen H, Tsai CM, Yuan CS, Jen YH, Ie IR (enero de 2017). "¿Cómo influye la quema de incienso y papel de incienso durante las actividades de adoración en las concentraciones ambientales de mercurio en ambientes interiores y exteriores de un templo asiático?". Chemosphere . 167 : 530–540. Bibcode :2017Chmsp.167..530S. doi :10.1016/j.chemosphere.2016.09.159. PMID  27764746.
  16. ^ Ramadán, Bimastyaji Surya; Rosmalina, Raden Tina; Syafrudin; Munawir; Khair, Hafizhul; Rachman, Indriyani; Matsumoto, Toru (2023). "Riesgos potenciales de la quema de residuos a cielo abierto a nivel doméstico: un estudio de caso de Semarang, Indonesia". Investigación de aerosoles y calidad del aire . 23 (5). Asociación de Taiwán para la investigación de aerosoles: 220412. doi :10.4209/aaqr.220412. ISSN  1680-8584. S2CID  257202752.
  17. ^ Shah R, Limaye S, Ujagare D, Madas S, Salvi S (2019). "Exposición personal a la contaminación por material particulado de diámetro aerodinámico medio de masa <2,5 μm (PM2,5) durante la quema de seis petardos de uso más común en la India". Lung India . 36 (4): 324–329. doi : 10.4103/lungindia.lungindia_440_18 . PMC 6625239 . PMID  31290418. 
  18. ^ Roy, Rajarshi; Schooff, Brian; Li, Xiaolong; Montgomery, Scott; Tuttle, Jacob; Wendt, Jost OL; Dickson, Kingsley; Iverson, Brian; Fry, Andrew (1 de mayo de 2023). "Distribución del tamaño de las partículas de aerosol de ceniza, composición y comportamiento de deposición durante la co-combustión de carbón y biomasa explotada con vapor en una cámara de combustión de 1,5 MWth". Tecnología de procesamiento de combustible . 243 : 107674. doi :10.1016/j.fuproc.2023.107674. S2CID  256529257.
  19. ^ Azarmi, Farhad; Kumar, Prashant (2016). "Exposición ambiental a emisiones de partículas gruesas y finas provenientes de la demolición de edificios". Atmospheric Environment . 137 : 62–79. Bibcode :2016AtmEn.137...62A. doi :10.1016/j.atmosenv.2016.04.029.
  20. ^ "Emisiones de contaminantes del aire en el Reino Unido: partículas (PM10 y PM2,5)".
  21. ^ "Las obras de construcción son responsables del 18% de la contaminación por partículas de gran tamaño en el Reino Unido". 21 de octubre de 2022.
  22. ^ "El polvo mortal de Delhi: cómo las obras de construcción están asfixiando la ciudad". 15 de febrero de 2017.
  23. ^ "Emisiones de material particulado procedentes de actividades de rehabilitación de edificios".
  24. ^ "一家三口中鉛毒 疑含鉛船用油漆髹浴室門所致 衛生署提家中裝修注意事項 (14:05)". -即時新聞 noticias instantáneas (en chino tradicional). Junio ​​de 2024.
  25. ^ "GovHK: Consejos ecológicos para la renovación del hogar". GovHK . 16 de septiembre de 2024 . Consultado el 22 de septiembre de 2024 .
  26. ^ "Se ordenó el cierre de la planta de hormigón de SF que fue el foco del informe de investigación de NBC Bay Area". 11 de marzo de 2022.
  27. ^ Primicia, contaminación en la planta dosificadora de cemento de Yau Tong. HK: TVB.
  28. ^ Orirental Daily News reveló una vez más que la planta de concreto de Yau Tong violó las regulaciones y emitió una gran cantidad de humo y polvo, hasta 40 metros. HK: Oriental Daily News.
  29. ^ Kholodov A, Zakharenko A, Drozd V, Chernyshev V, Kirichenko K, Seryodkin I, Karabtsov A, Olesik S, Khvost E, Vakhnyuk I, Chaika V, Stratidakis A, Vinceti M, Sarigiannis D, Hayes AW, Tsatsakis A, Golokhvast K (febrero de 2020). "Identificación de cemento en material particulado atmosférico utilizando el método híbrido de análisis de difracción láser y espectroscopia Raman". Heliyon . 6 (2): e03299. Bibcode :2020Heliy...603299K. doi : 10.1016/j.heliyon.2020.e03299 . PMC 7042420 . PMID  32128461. 
  30. ^ "Reducir el polvo de la construcción" (PDF) .
  31. ^ "Cobertura adecuada de material polvoriento en camiones volquete". www.epd.gov.hk .
  32. ^ "Material polvoriento: una descripción general | Temas de ScienceDirect". www.sciencedirect.com .
  33. ^ Kim JY, Chen JC, Boyce PD, Christiani DC (marzo de 2005). "La exposición a humos de soldadura se asocia con respuestas inflamatorias sistémicas agudas". Occup Environ Med . 62 (3): 157–63. doi :10.1136/oem.2004.014795. PMC 1740976 . PMID  15723880. 
  34. ^ Bruschweiler ED, Danuser B, Huynh CK, Wild P, Schupfer P, Vernez D, Boiteux P, Hopf NB (2012). "Generación de hidrocarburos aromáticos policíclicos (HAP) durante las operaciones de carpintería". Front Oncol . 2 : 148. doi : 10.3389/fonc.2012.00148 . PMC 3475003 . PMID  23087908. 
  35. ^ "Temas de salud en la carpintería: inhalación de polvo de madera".
  36. ^ Patel, Sameer; Sankhyan, Sumit; Boedicker, Erin K.; DeCarlo, Peter F.; Farmer, Delphine K.; Goldstein, Allen H.; Katz, Erin F.; Nazaroff, William W.; Tian, ​​Yilin; Vanhanen, Joonas; Vance, Marina E. (16 de junio de 2020). "Materia particulada en interiores durante HOMEChem: concentraciones, distribuciones de tamaño y exposiciones". Environmental Science & Technology . 54 (12): 7107–7116. Bibcode :2020EnST...54.7107P. doi :10.1021/acs.est.0c00740. ISSN  0013-936X. PMID  32391692. Archivado desde el original el 28 de abril de 2023 . Recuperado el 11 de abril de 2024 .
  37. ^ "Consejos sobre el polvo para empresas - EPA Victoria".
  38. ^ Henneman L, Choirat C, Dedoussi I, Dominici F, Roberts J, Zigler C (noviembre de 2023). "Riesgo de mortalidad de la generación de electricidad a partir de carbón en Estados Unidos". Science . 382 (6673): 941–946. Bibcode :2023Sci...382..941H. doi :10.1126/science.adf4915. PMC 10870829 . PMID  37995235. 
  39. ^ Lin Y, Zou J, Yang W, Li CQ (marzo de 2018). "Una revisión de los avances recientes en la investigación sobre PM2.5 en China". Int J Environ Res Public Health . 15 (3): 438. doi : 10.3390/ijerph15030438 . PMC 5876983 . PMID  29498704. 
  40. ^ Sharma R, Sharma M, Sharma R, Sharma V (2013). "El impacto de los incineradores en la salud humana y el medio ambiente". Rev Environ Health . 28 (1): 67–72. doi :10.1515/reveh-2012-0035. PMID  23612530. S2CID  21271240.
  41. ^ Emisiones de partículas no emitidas por el transporte por carretera . OCDE. 2020. doi :10.1787/4a4dc6ca-en. ISBN . 978-92-64-88885-2.S2CID136987659  .​
  42. ^ Khan RK, Strand MA (2018). "El polvo de la carretera y su efecto en la salud humana: una revisión de la literatura". Epidemiol Health . 40 : e2018013. doi :10.4178/epih.e2018013. PMC 5968206 . PMID  29642653. 
  43. ^ Fan, Long; Liu, Shimin (2021). "Generaciones de nanopartículas respirables y su patogénesis en lugares de trabajo mineros: una revisión". Revista internacional de ciencia y tecnología del carbón . 8 (2): 179–198. Código Bibliográfico :2021IJCST...8..179F. doi :10.1007/s40789-021-00412-w. S2CID  233890096.
  44. ^ Petavratzi, E.; Kingman, S.; Lowndes, I. (2005). "Partículas de las operaciones mineras: una revisión de las fuentes, los efectos y las regulaciones". Ingeniería de minerales . 18 (12): 1183–1199. Bibcode :2005MiEng..18.1183P. doi :10.1016/j.mineng.2005.06.017.
  45. ^ Jeong H, Choi JY, Ra K (marzo de 2021). "Contaminación por elementos potencialmente tóxicos en sedimentos depositados en carreteras alrededor de la industria de fundición activa de Corea". Sci Rep . 11 (1): 7238. doi :10.1038/s41598-021-86698-x. PMC 8012626. PMID  33790361 . 
  46. ^ McLaughlin, Tim (6 de enero de 2022). "El hollín nocivo no se controla mientras las grandes petroleras se enfrentan a la EPA por las pruebas". Reuters .
  47. ^ Chandrappa, R.; Chandra Kulshrestha, U. (2016). "Contaminación del aire y desastres". Gestión sostenible de la contaminación del aire . Ciencias ambientales e ingeniería. págs. 325–343. doi :10.1007/978-3-319-21596-9_8. ISBN 978-3-319-21595-2. Número de pieza  7121041 .
  48. ^ "Arena, polvo y partículas: salud pública".
  49. ^ Zalakeviciute, Rasa; Mejía, Danilo; Álvarez, Hermel; Bermeo, Javier; Bonilla-Bedoya, Santiago; Rybarczyk, Yves; Cordero, Brian (2022). "Impacto de la guerra en la calidad del aire en Ucrania". Sostenibilidad . 14 (21): 13832. doi : 10.3390/su142113832 .
  50. ^ Xie Y, Li Y, Feng Y, Cheng W, Wang Y (abril de 2022). "Los microplásticos inhalables prevalecen en el aire: exploración del límite de detección de tamaño". Environ Int . 162 : 107151. Bibcode :2022EnInt.16207151X. doi :10.1016/j.envint.2022.107151. PMID  35228011.
  51. ^ Liu C, Li J, Zhang Y, Wang L, Deng J, Gao Y, Yu L, Zhang J, Sun H (julio de 2019). "Distribución generalizada de microplásticos de PET y PC en el polvo en las zonas urbanas de China y su exposición humana estimada". Environ Int . 128 : 116–124. Bibcode :2019EnInt.128..116L. doi :10.1016/j.envint.2019.04.024. PMID  31039519.
  52. ^ ab Hardin M, Kahn R (2 de noviembre de 2010). "Aerosoles y cambio climático".
  53. ^ "Emisiones de contaminantes atmosféricos". 22 de febrero de 2023.
  54. ^ Hawkes N (mayo de 2015). "Contaminación del aire en el Reino Unido: un problema de salud pública que no desaparecerá". BMJ . 350 : h2757. doi :10.1136/bmj.h2757. PMID  26001592. S2CID  40717317.
  55. ^ Carrington, Damian (16 de febrero de 2021). "La quema de leña en el hogar es ahora la mayor causa de contaminación por partículas en el Reino Unido". The Guardian . Consultado el 13 de febrero de 2022 .
  56. ^ "Los calentadores de leña y su salud - Hojas informativas".
  57. ^ "Cómo elegir y mantener un calentador de leña - EPA Victoria".
  58. ^ "Cómo elegir la madera adecuada para su calentador de leña - EPA Victoria".
  59. ^ "Cómo encender y mantener el fuego de su calentador de leña - EPA Victoria".
  60. ^ "El humo y la ley - EPA Victoria".
  61. ^ "Simulating the Transport of Aerosols with GEOS-5, GMAO".
  62. ^ "GMAO - Global Modeling and Assimilation Office Research Site". gmao.gsfc.nasa.gov.
  63. ^ "Primary and Secondary Sources of Aerosols: Soil dust". Climate Change 2001: Working Group 1. UNEP. 2001. Archived from the original on 28 February 2008. Retrieved 6 February 2008.
  64. ^ Perraud V, Bruns EA, Ezell MJ, Johnson SN, Yu Y, Alexander ML, et al. (February 2012). "Nonequilibrium atmospheric secondary organic aerosol formation and growth". Proceedings of the National Academy of Sciences of the United States of America. 109 (8): 2836–41. Bibcode:2012PNAS..109.2836P. doi:10.1073/pnas.1119909109. PMC 3286997. PMID 22308444.
  65. ^ "Primary and Secondary Sources of Aerosols: Sea salt". Climate Change 2001: Working Group 1. UNEP. 2001. Archived from the original on 28 February 2008. Retrieved 6 February 2008.
  66. ^ Schiffer, J. M.; Mael, L. E.; Prather, K. A.; Amaro, R. E.; Grassian, V. H. (2018). "Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry". ACS Central Science. 4 (12): 1617–1623. doi:10.1021/acscentsci.8b00674. PMC 6311946. PMID 30648145.
  67. ^ "Primary and Secondary Sources of Aerosols: Primary biogenic aerosols". Climate Change 2001: Working Group 1. UNEP. 2001. Archived from the original on 28 February 2008. Retrieved 6 February 2008.
  68. ^ Barringer, Felicity (18 February 2012). "Scientists Find New Dangers in Tiny but Pervasive Particles in Air Pollution". The New York Times. Retrieved 19 February 2012.
  69. ^ a b c d "Mongolia: Air Pollution in Ulaanbaatar – Initial Assessment of Current Situations and Effects of Abatement Measures" (PDF). The World Bank. 2010. Archived from the original (PDF) on 19 September 2016.
  70. ^ a b "Aerosol Size, Earth Observatory". NASA. 31 August 2016.Dominio público This article incorporates text from this source, which is in the public domain.
  71. ^ "An American Aerosol in Paris". 15 September 2017.
  72. ^ Goswami A, Barman J, Rajput K, Lakhlani HN (2013). "Behaviour Study of Particulate Matter and Chemical Composition with Different Combustion Strategies". SAE Technical Paper Series. Vol. 1. doi:10.4271/2013-01-2741. Retrieved 17 June 2016.
  73. ^ "Effect Of Particulate Matter On Plants Climate, Ecosystem and Human Health" (PDF). www.ijates.com. April 2014. Retrieved 3 February 2016.
  74. ^ "What are PM2.5 filters and why are they effective?". Puraka Masks.
  75. ^ Chen, J.; Jiang, Z. A.; Chen, J. (2018). "Effect of Inlet Air Volumetric Flow Rate on the Performance of a Two-Stage Cyclone Separator". ACS Omega. 3 (10): 13219–13226. doi:10.1021/acsomega.8b02043. PMC 6644756. PMID 31458040.
  76. ^ Dominick DalSanto (February 2011). "The Encyclopedia of Dust Collection".
  77. ^ "Integrated Building Rehabilitation Assistance Scheme".
  78. ^ "Operation Building Bright 2.0".
  79. ^ "DEVB - Press Releases: Operation Building Bright launched (with photos, 2009)".
  80. ^ "Hong Kong watchdog arrests 49 suspects in housing renovation scam involving contracts worth HK$500 million". 6 January 2023.
  81. ^ "大廈外牆維修,你地會搬走嗎?" [Will you move out because there is building exterior wall repair work?] (in Chinese).
  82. ^ "買樓難題:大廈維修,住得難頂嗎?" [The problem of buying a house: Is it difficult to live in a building under rehabilitation?] (in Chinese).
  83. ^ "Operation Building Bright improves living environment of residents (with photos/video)".
  84. ^ a b "Hong Kong eLegislation, AIR POLLUTION CONTROL (CONSTRUCTION DUST) REGULATION (Cap.311 section 43) 16 June 1997, L.N. 304 of 1997".
  85. ^ "Monitoring by Control Technique - Wet Scrubber For Particulate Matter". 25 May 2016.
  86. ^ "Monitoring by Control Technique - Electrostatic Precipitators". 24 May 2016.
  87. ^ "Enforcement Activities and Statistics under the Air Pollution Control Ordinance and the Ozone Layer Protection Ordinance 2021".
  88. ^ "Construction contractor fined for carrying out building demolition work in Shek O without appropriate dust control measures".
  89. ^ "Pollution Problems & Practical Solutions".
  90. ^ "Delhi Govt To Impose Fines On Violation Of Anti-Dust Norms". 6 October 2022.
  91. ^ "Management Regulations for Construction Project Air Pollution Control Facilities".
  92. ^ "Revised GRAP to deal with adverse air quality scenario".
  93. ^ "Achievements in environmental pollution control on construction activities, 2004".
  94. ^ "Particulate Matter in the United Kingdom Summary" (PDF). Air Quality Expert Group. Defra. 2005. Retrieved 28 June 2023.
  95. ^ "Condensation particle counters". Center for Atmospheric Science. University of Manchester. Retrieved 5 July 2023.
  96. ^ Department for Environment, Food and Rural Affairs (Defra) webmaster@defra gsi gov uk. "Particle Numbers and Concentrations Network- Defra, UK". uk-air.defra.gov.uk.
  97. ^ Gilfrich, J; Burkhalter, P; Birks, L (1973). "X-ray spectrometry for particulate air pollution—a quantitative comparison of techniques". Anal Chem. 45 (12): 2002–9. doi:10.1021/ac60334a033. PMID 4762375.
  98. ^ Forster, Piers M.; Smith, Christopher J.; Walsh, Tristram; Lamb, William F.; et al. (2023). "Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence" (PDF). Earth System Science Data. 15 (6). Copernicus Programme: 2295–2327. Bibcode:2023ESSD...15.2295F. doi:10.5194/essd-15-2295-2023. Fig. 2(a).
  99. ^ a b Haywood, James; Boucher, Olivier (November 2000). "Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review". Reviews of Geophysics. 38 (4): 513–543. Bibcode:2000RvGeo..38..513H. doi:10.1029/1999RG000078. S2CID 129107853.
  100. ^ a b Twomey S (1977). "The influence of pollution on the shortwave albedo of clouds". Journal of the Atmospheric Sciences. 34 (7): 1149–1152. Bibcode:1977JAtS...34.1149T. doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.
  101. ^ a b c d e f Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, et al. (October 2007). "Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change in Climate Change 2007: The Physical Science Basis". In Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.). Changes in Atmospheric Constituents and in Radiative Forcing. Cambridge, United Kingdom and New York, NY, US: Cambridge University Press. pp. 129–234.
  102. ^ "6.7.8 Discussion of Uncertainties". IPCC Third Assessment Report – Climate Change 2001. Archived from the original on 28 February 2002. Retrieved 14 July 2012.
  103. ^ Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (January 1992). "Climate forcing by anthropogenic aerosols". Science. 255 (5043): 423–30. Bibcode:1992Sci...255..423C. doi:10.1126/science.255.5043.423. PMID 17842894. S2CID 26740611.
  104. ^ Ackerman AS, Toon OB, Taylor JP, Johnson DW, Hobbs PV, Ferek RJ (2000). "Effects of Aerosols on Cloud Albedo: Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks". Journal of the Atmospheric Sciences. 57 (16): 2684–2695. Bibcode:2000JAtS...57.2684A. doi:10.1175/1520-0469(2000)057<2684:EOAOCA>2.0.CO;2.
  105. ^ Kaufman YJ, Fraser RS (1997). "The Effect of Smoke Particles on Clouds and Climate Forcing". Science. 277 (5332): 1636–1639. doi:10.1126/science.277.5332.1636.
  106. ^ Ferek RJ, Garrett T, Hobbs PV, Strader S, Johnson D, Taylor JP, Nielsen K, Ackerman AS, Kogan Y, Liu Q, Albrecht BA, et al. (2000). "Drizzle Suppression in Ship Tracks". Journal of the Atmospheric Sciences. 57 (16): 2707–2728. Bibcode:2000JAtS...57.2707F. doi:10.1175/1520-0469(2000)057<2707:DSIST>2.0.CO;2. hdl:10945/46780. S2CID 40273867.
  107. ^ Rosenfeld D (1999). "TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall". Geophysical Research Letters. 26 (20): 3105–3108. Bibcode:1999GeoRL..26.3105R. doi:10.1029/1999GL006066.
  108. ^ a b Hansen J, Sato M, Ruedy R (1997). "Radiative forcing and climate response". Journal of Geophysical Research. 102 (D6): 6831–6864. Bibcode:1997JGR...102.6831H. doi:10.1029/96JD03436.
  109. ^ Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V, Welton EJ (May 2000). "Reduction of tropical cloudiness by soot". Science. 288 (5468): 1042–7. Bibcode:2000Sci...288.1042A. doi:10.1126/science.288.5468.1042. PMID 10807573.
  110. ^ Koren I, Kaufman YJ, Remer LA, Martins JV (February 2004). "Measurement of the effect of Amazon smoke on inhibition of cloud formation". Science. 303 (5662): 1342–5. Bibcode:2004Sci...303.1342K. doi:10.1126/science.1089424. PMID 14988557. S2CID 37347993.
  111. ^ Riva, Matthieu; Chen, Yuzhi; Zhang, Yue; Lei, Ziying; Olson, Nicole E.; Boyer, Hallie C.; Narayan, Shweta; Yee, Lindsay D.; Green, Hilary S.; Cui, Tianqu; Zhang, Zhenfa; Baumann, Karsten; Fort, Mike; Edgerton, Eric; Budisulistiorini, Sri H. (6 August 2019). "Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties". Environmental Science & Technology. 53 (15): 8682–8694. Bibcode:2019EnST...53.8682R. doi:10.1021/acs.est.9b01019. ISSN 0013-936X. PMC 6823602. PMID 31335134.
  112. ^ Seinfeld, John H.; Pandis, Spyros N (1998). Atmospheric Chemistry and Physics — From Air Pollution to Climate Change. John Wiley and Sons, Inc. ISBN 978-0-471-17816-3
  113. ^ a b Legras, Bernard; Duchamp, Clair; Sellitto, Pasquale; Podglajen, Aurélien; Carboni, Elisa; Siddans, Richard; Grooß, Jens-Uwe; Khaykin, Sergey; Ploeger, Felix (23 November 2022). "The evolution and dynamics of the Hunga Tonga plume in the stratosphere". Atmospheric Chemistry and Physics. 22 (22): 14957–14970. doi:10.5194/acp-22-14957-2022. S2CID 253875202.
  114. ^ Charlson, Robert J.; Wigley, Tom M. L. (1994). "Sulfate Aerosol and Climatic Change". Scientific American. 270 (2): 48–57. Bibcode:1994SciAm.270b..48C. doi:10.1038/scientificamerican0294-48. ISSN 0036-8733. JSTOR 24942590.
  115. ^ Allen, Bob (6 April 2015). "Atmospheric Aerosols: What Are They, and Why Are They So Important?". NASA. Retrieved 17 April 2023.
  116. ^ IPCC, 1990: Chapter 1: Greenhouse Gases and Aerosols [R.T. Watson, H. Rodhe, H. Oeschger and U. Siegenthaler]. In: Climate Change: The IPCC Scientific Assessment [J.T.Houghton, G.J.Jenkins and J.J.Ephraums (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 31–34,
  117. ^ a b c Effects of Acid Rain – Human Health Archived January 18, 2008, at the Wayback Machine. Epa.gov (June 2, 2006). Retrieved on 2013-02-09.
  118. ^ "Effects of Acid Rain - Surface Waters and Aquatic Animals". US EPA. Archived from the original on 14 May 2009.
  119. ^ Likens, G. E.; Driscoll, C. T.; Buso, D. C. (1996). "Long-Term Effects of Acid Rain: Response and Recovery of a Forest Ecosystem" (PDF). Science. 272 (5259): 244. Bibcode:1996Sci...272..244L. doi:10.1126/science.272.5259.244. S2CID 178546205. Archived (PDF) from the original on 24 December 2012. Retrieved 9 February 2013.
  120. ^ Wang, X.; Ding, H.; Ryan, L.; Xu, X. (1 May 1997). "Association between air pollution and low birth weight: a community-based study". Environmental Health Perspectives. 105 (5): 514–20. doi:10.1289/ehp.97105514. ISSN 0091-6765. PMC 1469882. PMID 9222137. S2CID 2707126.
  121. ^ Tie, X.; et al. (2003). "Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence". J. Geophys. Res. 108 (D4): 8364. Bibcode:2003JGRD..108.8364T. doi:10.1029/2001JD001508.
  122. ^ Clean Air Act Reduces Acid Rain In Eastern United States Archived August 8, 2018, at the Wayback Machine, ScienceDaily, September 28, 1998
  123. ^ "Air Emissions Trends – Continued Progress Through 2005". U.S. Environmental Protection Agency. 8 July 2014. Archived from the original on 17 March 2007. Retrieved 17 March 2007.
  124. ^ Moses, Elizabeth; Cardenas, Beatriz; Seddon, Jessica (25 February 2020). "The Most Successful Air Pollution Treaty You've Never Heard Of".
  125. ^ Stanhill, G.; S. Cohen (2001). "Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences". Agricultural and Forest Meteorology. 107 (4): 255–278. Bibcode:2001AgFM..107..255S. doi:10.1016/S0168-1923(00)00241-0.
  126. ^ Cohen, Shabtai; Stanhill, Gerald (1 January 2021), Letcher, Trevor M. (ed.), "Chapter 32 – Changes in the Sun's radiation: the role of widespread surface solar radiation trends in climate change: dimming and brightening", Climate Change (Third Edition), Elsevier, pp. 687–709, doi:10.1016/b978-0-12-821575-3.00032-3, ISBN 978-0-12-821575-3, S2CID 234180702, retrieved 26 April 2023
  127. ^ "Global 'Sunscreen' Has Likely Thinned, Report NASA Scientists". NASA. 15 March 2007. Archived from the original on 22 December 2018. Retrieved 28 June 2023.
  128. ^ "A bright sun today? It's down to the atmosphere". The Guardian. 2017. Archived from the original on 20 May 2017. Retrieved 19 May 2017.
  129. ^ Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S. M.; Wehner, M.; Zhou, B. (2021). Masson-Delmotte, V.; Zhai, P.; Piran, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). "Weather and Climate Extreme Events in a Changing Climate" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021: 1238. Bibcode:2021AGUFM.U13B..05K. doi:10.1017/9781009157896.007.
  130. ^ Gillett, Nathan P.; Kirchmeier-Young, Megan; Ribes, Aurélien; Shiogama, Hideo; Hegerl, Gabriele C.; Knutti, Reto; Gastineau, Guillaume; John, Jasmin G.; Li, Lijuan; Nazarenko, Larissa; Rosenbloom, Nan; Seland, Øyvind; Wu, Tongwen; Yukimoto, Seiji; Ziehn, Tilo (18 January 2021). "Constraining human contributions to observed warming since the pre-industrial period" (PDF). Nature Climate Change. 11 (3): 207–212. Bibcode:2021NatCC..11..207G. doi:10.1038/s41558-020-00965-9. S2CID 231670652.
  131. ^ IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3–32, doi:10.1017/9781009157896.001.
  132. ^ Andrew, Tawana (27 September 2019). "Behind the Forecast: How clouds affect temperatures". Science Behind the Forecast. LOUISVILLE, Ky. (WAVE). Retrieved 4 January 2023.
  133. ^ McCoy, Daniel T.; Field, Paul; Gordon, Hamish; Elsaesser, Gregory S.; Grosvenor, Daniel P. (6 April 2020). "Untangling causality in midlatitude aerosol–cloud adjustments". Atmospheric Chemistry and Physics. 20 (7): 4085–4103. Bibcode:2020ACP....20.4085M. doi:10.5194/acp-20-4085-2020.
  134. ^ Rosenfeld, Daniel; Zhu, Yannian; Wang, Minghuai; Zheng, Youtong; Goren, Tom; Yu, Shaocai (2019). "Aerosol-driven droplet concentrations dominate coverage and water of oceanic low level clouds" (PDF). Science. 363 (6427): eaav0566. doi:10.1126/science.aav0566. PMID 30655446. S2CID 58612273.
  135. ^ Glassmeier, Franziska; Hoffmann, Fabian; Johnson, Jill S.; Yamaguchi, Takanobu; Carslaw, Ken S.; Feingold, Graham (29 January 2021). "Aerosol-cloud-climate cooling overestimated by ship-track data". Science. 371 (6528): 485–489. Bibcode:2021Sci...371..485G. doi:10.1126/science.abd3980. PMID 33510021.
  136. ^ Manshausen, Peter; Watson-Parris, Duncan; Christensen, Matthew W.; Jalkanen, Jukka-Pekka; Stier, Philip Stier (7 March 2018). "Invisible ship tracks show large cloud sensitivity to aerosol". Nature. 610 (7930): 101–106. doi:10.1038/s41586-022-05122-0. PMC 9534750. PMID 36198778.
  137. ^ Jongebloed, U. A.; Schauer, A. J.; Cole-Dai, J.; Larrick, C. G.; Wood, R.; Fischer, T. P.; Carn, S. A.; Salimi, S.; Edouard, S. R.; Zhai, S.; Geng, L.; Alexander, B. (2 January 2023). "Underestimated Passive Volcanic Sulfur Degassing Implies Overestimated Anthropogenic Aerosol Forcing". Geophysical Research Letters. 50 (1): e2022GL102061. Bibcode:2023GeoRL..5002061J. doi:10.1029/2022GL102061. S2CID 255571342.
  138. ^ Visioni, Daniele; Slessarev, Eric; MacMartin, Douglas G; Mahowald, Natalie M; Goodale, Christine L; Xia, Lili (1 September 2020). "What goes up must come down: impacts of deposition in a sulfate geoengineering scenario". Environmental Research Letters. 15 (9): 094063. Bibcode:2020ERL....15i4063V. doi:10.1088/1748-9326/ab94eb. ISSN 1748-9326.
  139. ^ Andrew Charlton-Perez & Eleanor Highwood. "Costs and benefits of geo-engineering in the Stratosphere" (PDF). Archived from the original (PDF) on 14 January 2017. Retrieved 17 February 2009.
  140. ^ Trisos, Christopher H.; Geden, Oliver; Seneviratne, Sonia I.; Sugiyama, Masahiro; van Aalst, Maarten; Bala, Govindasamy; Mach, Katharine J.; Ginzburg, Veronika; de Coninck, Heleen; Patt, Anthony (2021). "Cross-Working Group Box SRM: Solar Radiation Modification" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021: 1238. Bibcode:2021AGUFM.U13B..05K. doi:10.1017/9781009157896.007.
  141. ^ Bond, T. C. (2013). "Bounding the role of black carbon in the climate system: A scientific assessment". Journal of Geophysical Research: Atmospheres. 118 (11): 5380–5552. Bibcode:2013JGRD..118.5380B. doi:10.1002/jgrd.50171.
  142. ^ "La erupción de 1600 causó una disrupción global" Archivado el 15 de febrero de 2011 en Wayback Machine , Geology Times , 25 de abril de 2008, consultado el 13 de noviembre de 2010
  143. ^ Andrea Thompson, "Un volcán en el año 1600 causó una disrupción global", NBC News, 5 de mayo de 2008, consultado el 13 de noviembre de 2010
  144. ^ "La erupción del Huaynaputina en Perú en 1600 causó una perturbación global" Archivado el 28 de abril de 2010 en Wayback Machine , Science Centric
  145. ^ McCormick, M. Patrick; Thomason, Larry W.; Trepte, Charles R. (febrero de 1995). "Efectos atmosféricos de la erupción del monte Pinatubo". Nature . 373 (6513): 399–404. Bibcode :1995Natur.373..399M. doi :10.1038/373399a0. S2CID  46437912.
  146. ^ Stowe LL, Carey RM, Pellegrino PP (1992). "Monitoreo de la capa de aerosoles del Monte Pinatubo con datos del NOAA/11 AVHRR". Geophysical Research Letters (manuscrito enviado). 19 (2): 159–162. Código Bibliográfico :1992GeoRL..19..159S. doi :10.1029/91GL02958.
  147. ^ Perkins, Sid (4 de marzo de 2013). "La Tierra no es tan caliente gracias a los volcanes". Science . doi :10.1126/article.26322 (inactivo el 2 de septiembre de 2024).{{cite journal}}: CS1 maint: DOI inactive as of September 2024 (link)
  148. ^ Neely III RR, Toon OB, Solomon S, Vernier JP, Alvarez C, English JM, Rosenlof KH, Mills MJ, Bardeen CG, Daniel JS, Thayer JP (2013). "Los recientes aumentos antropogénicos de SO2 en Asia tienen un impacto mínimo en los aerosoles estratosféricos". Geophysical Research Letters . 40 (5): 999–1004. Bibcode :2013GeoRL..40..999N. doi :10.1002/grl.50263. hdl : 1721.1/85851 . S2CID  54922537. Las erupciones volcánicas moderadas, más que las influencias antropogénicas, son la fuente principal de los aumentos observados en los aerosoles estratosféricos.
  149. ^ ab Chung CE, Ramanathan V (2006). "Debilitamiento de los gradientes de temperatura superficial del mar en el norte de la India y las precipitaciones monzónicas en la India y el Sahel". Journal of Climate . 19 (10): 2036–2045. Bibcode :2006JCli...19.2036C. doi :10.1175/JCLI3820.1. S2CID  10435613.
  150. ^ "Contaminantes y su efecto sobre los balances hídrico y radiactivo". Archivado desde el original el 16 de diciembre de 2008.
  151. ^ "Lluvias australianas y aerosoles asiáticos" (PDF) . Archivado desde el original (PDF) el 16 de junio de 2012.
  152. ^ Región 4: Operaciones de laboratorio y de campo – PM 2.5 (2008). Objetivos e historia de PM 2.5. Agencia de Protección Ambiental de los Estados Unidos.
  153. ^ Balmes, John R.; Fine, Jonathan M.; Sheppard, Dean (noviembre de 1987). "Broncoconstricción sintomática después de la inhalación a corto plazo de dióxido de azufre". American Review of Respiratory Disease . 136 (5): 1117–1121. doi :10.1164/ajrccm/136.5.1117. PMID  3674573.
  154. ^ Nieuwenhuijsen, MJ (2003). Evaluación de la exposición en epidemiología ocupacional y ambiental. Londres: Oxford University Press. [ página necesaria ]
  155. ^ "Las partículas contaminantes aumentan el riesgo de infarto". Bloomberg LP, 17 de enero de 2008. Archivado desde el original el 29 de junio de 2011. Los contaminantes, abundantes en las zonas urbanas, tienen un tamaño inferior a 0,18 micrómetros y provocan cuatro veces más acumulación de material en las arterias que las partículas cuatro veces más grandes, dijo Jesús Araujo, director de cardiología ambiental de la Universidad de California en Los Ángeles.
  156. ^ Araujo, Jesus A.; et al. (17 de enero de 2008). "Los contaminantes particulados ambientales en el rango ultrafino promueven la aterosclerosis temprana y el estrés oxidativo sistémico". Circulation Research . 102 (5): 589–596. doi :10.1161/CIRCRESAHA.107.164970. PMC 3014059 . PMID  18202315. 
  157. ^ Hennig, Frauke; Quass, Ulrich; Hellack, Bryan; Küpper, Miriam; Kuhlbusch, Thomas AJ; Stafoggia, Massimo; Hoffmann, Barbara (febrero de 2018). "Concentraciones de partículas ultrafinas y finas en número y área de superficie y mortalidad diaria por causa específica en la región del Ruhr, Alemania, 2009-2014". Environmental Health Perspectives . 126 (2): 027008. doi :10.1289/EHP2054. ISSN  0091-6765. PMC 6066351 . PMID  29467106. 
  158. ^ De Jesus, Alma Lorelei; et al. (2019). "Partículas ultrafinas y PM2.5 en el aire de ciudades de todo el mundo: ¿son representativas entre sí?". Environment International . 129 : 118–135. doi :10.1016/j.envint.2019.05.021. PMID  31125731. S2CID  164216753.
  159. ^ Lippmann, M., Cohen, BS, Schlesinger, RS (2003). Environmental Health Science. Nueva York: Oxford University Press. [ página necesaria ]
  160. ^ "Matriz de dispersión para polvo de cemento de origen antropogénico urbano típico y discriminación de partículas atmosféricas representativas".
  161. ^ "Los peligros de un incendio en un depósito de chatarra en su comunidad". 10 de octubre de 2022.
  162. ^ "Apagan el incendio de un barco de carga en el puerto Victoria de Hong Kong después de arder durante 15 horas y esparcir humo por toda la ciudad". 3 de junio de 2021.
  163. ^ "El hedor de un barco cargado de desechos metálicos en llamas se extiende por Hong Kong".
  164. ^ "Escoria de horno de arco eléctrico (EAF)". 3 de junio de 2021.
  165. ^ Nair, Abhilash T.; Mathew, Aneesh; ar, Archana; Akbar, M Abdul (2022). "Uso de polvo peligroso de hornos de arco eléctrico en la industria de la construcción: un enfoque de producción más limpia". Journal of Cleaner Production . 377 : 134282. Bibcode :2022JCPro.37734282N. doi :10.1016/j.jclepro.2022.134282. S2CID  252553231.
  166. ^ "Sostenibilidad".
  167. ^ "Informe de sostenibilidad de la Autoridad de Vivienda de Hong Kong 2012/13" (PDF) . Archivado desde el original (PDF) el 28 de junio de 2023.
  168. ^ "Autoridad de Vivienda de Hong Kong - Informe medioambiental 2020/21". Archivado desde el original el 28 de junio de 2023.
  169. ^ "Noticias de la industria del cemento de Global Cement". Archivado desde el original el 3 de diciembre de 2022.
  170. ^ "黑水泥厂"围城" 打假队一年揪出13家" [Ciudad "asediada" con fábricas de cemento deshonestas, los equipos antifalsificación encontraron 13 de ellas en un año] (en chino).
  171. ^ "Creciente importancia del cemento de escoria en la industria cementera mundial". 6 de julio de 2022.
  172. ^ "房市新制大調查 爐渣屋掰 2021年起禁用爐渣" [Una mirada a las nuevas regulaciones del mercado inmobiliario. No más escoria. La escoria estará prohibida a partir de 2021] (en chino). 10 de diciembre de 2020.
  173. ^ "新版預售屋契約禁用「煉鋼爐碴」 建商違規將挨罰" [La nueva versión del contrato de preventa de la casa prohíbe la "escoria de hornos siderúrgicos" y los constructores serán multados por infracciones] (en chino) . 8 de mayo de 2019.
  174. ^ "Soldadura: humos y gases, respuestas de seguridad y salud en el trabajo". 10 de febrero de 2023.
  175. ^ Li Y, Chen J, Bu S, Wang S, Geng X, Guan G, Zhao Q, Ao L, Qu W, Zheng Y, Jin Y, Tang J (mayo de 2021). "Niveles de plomo en sangre y sus factores de riesgo asociados en adultos chinos de 1980 a 2018". Ecotoxicol Environ Saf . 218 : 112294. Bibcode :2021EcoES.21812294L. doi :10.1016/j.ecoenv.2021.112294. PMID  33984660.
  176. ^ Han Z, Guo X, Zhang B, Liao J, Nie L (junio de 2018). "Niveles de plomo en sangre de niños en áreas urbanas y suburbanas de China (1997-2015): variaciones temporales y espaciales y factores influyentes". Sci Total Environ . 625 : 1659–1666. Bibcode :2018ScTEn.625.1659H. doi :10.1016/j.scitotenv.2017.12.315. PMID  29996461. S2CID  51617692.
  177. ^ Ren, J.; Tang, M.; Novoselac, A. (2022). "Estudio experimental para cuantificar la deposición y resuspensión de partículas en el aire sobre la ropa utilizando un método de seguimiento fluorescente". Building and Environment . 209 : 108580. Bibcode :2022BuEnv.20908580R. doi :10.1016/j.buildenv.2021.108580. PMC 8620412 . PMID  34848915. 
  178. ^ "地盤工滿身泥衣鞋入茶餐廳 網民批成身水泥累慘清潔工:做死阿姐".香港01 (en chino). 20 de julio de 2023 . Consultado el 14 de agosto de 2023 .
  179. ^ Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Pérez, N.; Sunyer, J. (2011). "Los efectos de las fuentes de material particulado en la mortalidad diaria: un estudio de casos cruzados de Barcelona, ​​España". Environmental Health Perspectives . 119 (12): 1781–1787. doi :10.1289/ehp.1103618. PMC 3261985 . PMID  21846610. 
  180. ^ "Plan de Desarrollo Hospitalario de 10 años".
  181. ^ "Departamento de Servicios de Arquitectura - Proyectos de Capital en Construcción".
  182. ^ Renard, JB; Surcin, J.; Annesi-Maesano, I.; Delaunay, G.; Poincelet, E.; Dixsaut, G. (2022). "Relación entre la contaminación por PM2.5 y la mortalidad por Covid-19 en Europa occidental durante el período 2020-2022". La ciencia del medio ambiente total . 848 : 157579. Bibcode :2022ScTEn.84857579R. doi :10.1016/j.scitotenv.2022.157579. PMC 9310379 . PMID  35901896. 
  183. ^ Perone, Gaetano (2022). "Evaluación del impacto de la exposición prolongada a nueve contaminantes del aire exterior en la propagación espacial de COVID-19 y la mortalidad relacionada en 107 provincias italianas". Scientific Reports . 12 (1): 13317. Bibcode :2022NatSR..1213317P. doi :10.1038/s41598-022-17215-x. PMC 9349267 . PMID  35922645. 
  184. ^ Kiser, Daniel; Elhanan, Gai; Metcalf, William J.; Schnieder, Brendan; Grzymski, Joseph J. (2021). "Tasa de positividad de la prueba del SARS-CoV-2 en Reno, Nevada: asociación con PM2.5 durante los eventos de humo de incendios forestales de 2020 en el oeste de los Estados Unidos". Revista de ciencia de la exposición y epidemiología ambiental . 31 (5): 797–803. Bibcode :2021JESEE..31..797K. doi : 10.1038/s41370-021-00366-w . PMC 8276229 . PMID  34257389. 
  185. ^ Solimini, Ángel; Filipponi, F.; Fegatelli, D. Alunni; Caputo, B.; De Marco, CM; Spagnoli, A.; Vestri, AR (2021). "Una asociación global entre casos de Covid-19 y partículas en el aire a nivel regional". Informes científicos . 11 (1): 6256. doi : 10.1038/s41598-021-85751-z . PMC 7973572 . PMID  33737616. 
  186. ^ "Con los metales y tal vez incluso el coronavirus, el humo de los incendios forestales es más peligroso de lo que se cree". Los Angeles Times . 22 de julio de 2021.
  187. ^ "Silicosis, Hojas informativas sobre seguridad y salud en el trabajo". 13 de junio de 2023.
  188. ^ Prevención de la silicosis y las muertes por limpieza con chorro de arena (informe). Centros para el Control y la Prevención de Enfermedades . 1992. doi :10.26616/NIOSHPUB92102.
  189. ^ ab Flores-Pajot, Marie-Claire; Ofner, Marianna; Do, Minh T.; Lavigne, Eric; Villeneuve, Paul J. (noviembre de 2016). "Trastornos del espectro autista infantil y exposición al dióxido de nitrógeno y a la contaminación del aire por partículas: una revisión y un metanálisis". Environmental Research . 151 : 763–776. Bibcode :2016ER....151..763F. doi :10.1016/j.envres.2016.07.030. PMID  27609410.
  190. ^ ab Chun, HeeKyoung; Leung, Cheryl; Wen, Shi Wu; McDonald, Judy; Shin, Hwashin H. (enero de 2020). "Exposición materna a la contaminación del aire y riesgo de autismo en niños: una revisión sistemática y un metanálisis". Contaminación ambiental . 256 : 113307. Bibcode :2020EPoll.25613307C. doi : 10.1016/j.envpol.2019.113307 . PMID  31733973.
  191. ^ ab Lam, Juleen; Sutton, Patrice; Kalkbrenner, Amy; Windham, Gayle; Halladay, Alycia; Koustas, Erica; Lawler, Cindy; Davidson, Lisette; Daniels, Natalyn; Newschaffer, Craig; Woodruff, Tracey (21 de septiembre de 2016). "Una revisión sistemática y metaanálisis de múltiples contaminantes del aire y el trastorno del espectro autista". PLOS ONE . ​​11 (9): e0161851. Bibcode :2016PLoSO..1161851L. doi : 10.1371/journal.pone.0161851 . PMC 5031428 . PMID  27653281. 
  192. ^ ab Weisskopf, Marc G.; Kioumourtzoglou, Marianthi-Anna; Roberts, Andrea L. (diciembre de 2015). "Contaminación del aire y trastornos del espectro autista: ¿causales o confusos?". Current Environmental Health Reports . 2 (4): 430–439. Bibcode :2015CEHR....2..430W. doi :10.1007/s40572-015-0073-9. PMC 4737505 . PMID  26399256. 
  193. ^ ab Fu, Pengfei; Yung, Ken Kin Lam (15 de septiembre de 2020). "Contaminación del aire y enfermedad de Alzheimer: una revisión sistemática y un metaanálisis". Revista de la enfermedad de Alzheimer . 77 (2): 701–714. doi :10.3233/JAD-200483. PMID  32741830. S2CID  220942039.
  194. ^ ab Tsai, Tsung-Lin; Lin, Yu-Ting; Hwang, Bing-Fang; Nakayama, Shoji F.; Tsai, Chon-Haw; Sun, Xian-Liang; Ma, Chaochen; Jung, Chau-Ren (octubre de 2019). "Las partículas finas son un determinante potencial de la enfermedad de Alzheimer: una revisión sistemática y un metanálisis". Investigación medioambiental . 177 : 108638. Bibcode :2019ER....17708638T. doi :10.1016/j.envres.2019.108638. PMID  31421449. S2CID  201057595.
  195. ^ abc Braithwaite, Isobel; Zhang, Shuo; Kirkbride, James B.; Osborn, David PJ; Hayes, Joseph F. (diciembre de 2019). "Exposición a la contaminación del aire (material particulado) y asociaciones con la depresión, la ansiedad, el trastorno bipolar, la psicosis y el riesgo de suicidio: una revisión sistemática y un metanálisis". Environmental Health Perspectives . 127 (12): 126002. doi :10.1289/EHP4595. PMC 6957283 . PMID  31850801. 
  196. ^ abc Lu, Jackson G (abril de 2020). "Contaminación del aire: una revisión sistemática de sus efectos psicológicos, económicos y sociales". Current Opinion in Psychology . 32 : 52–65. doi :10.1016/j.copsyc.2019.06.024. PMID  31557706. S2CID  199147061.
  197. ^ a b c Liu, Qisijing; Wang, Wanzhou; Gu, Xuelin; Deng, Furong; Wang, Xueqin; Lin, Hualiang; Guo, Xinbiao; Wu, Shaowei (February 2021). "Association between particulate matter air pollution and risk of depression and suicide: a systematic review and meta-analysis". Environmental Science and Pollution Research. 28 (8): 9029–9049. Bibcode:2021ESPR...28.9029L. doi:10.1007/s11356-021-12357-3. PMID 33481201. S2CID 231677095.
  198. ^ Schraufnagel, Dean E.; Balmes, John R.; Cowl, Clayton T.; De Matteis, Sara; Jung, Soon-Hee; Mortimer, Kevin; Perez-Padilla, Rogelio; Rice, Mary B.; Riojas-Rodriguez, Horacio; Sood, Akshay; Thurston, George D.; To, Teresa; Vanker, Anessa; Wuebbles, Donald J. (February 2019). "Air Pollution and Noncommunicable Diseases". Chest. 155 (2): 409–416. doi:10.1016/j.chest.2018.10.042. PMC 6904855. PMID 30419235.
  199. ^ Carrington, Damian; McMullan, Lydia; Blight, Garry; Roberts, Simon; Hulley-Jones, Frank (17 May 2019). "Revealed: air pollution may be damaging 'every organ in the body'". The Guardian.
  200. ^ a b Raaschou-Nielsen, Ole; Andersen, Zorana J; Beelen, Rob; Samoli, Evangelia; Stafoggia, Massimo; Weinmayr, Gudrun; et al. (August 2013). "Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)". The Lancet Oncology. 14 (9): 813–822. doi:10.1016/S1470-2045(13)70279-1. PMID 23849838.
  201. ^ Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzanowski M, Künzli N, et al. (2005). "The global burden of disease due to outdoor air pollution". Journal of Toxicology and Environmental Health. Part A. 68 (13–14): 1301–7. Bibcode:2005JTEHA..68.1301C. doi:10.1080/15287390590936166. PMID 16024504. S2CID 23814778.
  202. ^ "Air Pollution & Cardiovascular Disease". National Institute of Environmental Health Sciences. Archived from the original on 14 May 2011.
  203. ^ Lave, Lester B.; Seskin, Eugene P. (June 1973). "An Analysis of the Association between U.S. Mortality and Air Pollution". Journal of the American Statistical Association. 68 (342): 284–290. doi:10.1080/01621459.1973.10482421. eISSN 1537-274X. ISSN 0162-1459.
  204. ^ Mokdad AH, Marks JS, Stroup DF, Gerberding JL (March 2004). "Actual causes of death in the United States, 2000". JAMA. 291 (10): 1238–45. doi:10.1001/jama.291.10.1238. PMID 15010446. S2CID 14589790.
  205. ^ a b European Environment Agency (2009). Spatial assessment of PM10 and ozone concentrations in Europe (2005). Publications Office. doi:10.2800/165. ISBN 978-92-9167-988-1.[page needed]
  206. ^ Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. (December 2012). "A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2224–60. doi:10.1016/s0140-6736(12)61766-8. PMC 4156511. PMID 23245609.
  207. ^ "Air pollution in Europe: These are the worst-hit cities to live in". euronews. 24 December 2021. Retrieved 1 April 2022.
  208. ^ Laden, F; Neas, L M; Dockery, D W; Schwartz, J (October 2000). "Association of fine particulate matter from different sources with daily mortality in six U.S. cities". Environmental Health Perspectives. 108 (10): 941–947. doi:10.1289/ehp.00108941. PMC 1240126. PMID 11049813.
  209. ^ Ozkaynak, Haluk; Thurston, George D. (December 1987). "Associations Between 1980 U.S. Mortality Rates and Alternative Measures of Airborne Particle Concentration". Risk Analysis. 7 (4): 449–461. Bibcode:1987RiskA...7..449O. doi:10.1111/j.1539-6924.1987.tb00482.x. PMID 3444932.
  210. ^ Mailloux, Nicholas A.; Abel, David W.; Holloway, Tracey; Patz, Jonathan A. (16 May 2022). "Nationwide and Regional PM2.5-Related Air Quality Health Benefits From the Removal of Energy-Related Emissions in the United States". GeoHealth. 6 (5): e2022GH000603. Bibcode:2022GHeal...6..603M. doi:10.1029/2022GH000603. PMC 9109601. PMID 35599962.
  211. ^ Carrington, Damian (17 February 2021). "Air pollution significantly raises risk of infertility, study finds". The Guardian.
  212. ^ Zhang M, Mueller NT, Wang H, Hong X, Appel LJ, Wang X (July 2018). "Maternal Exposure to Ambient Particulate Matter ≤2.5 μm During Pregnancy and the Risk for High Blood Pressure in Childhood". Hypertension. 72 (1): 194–201. doi:10.1161/HYPERTENSIONAHA.117.10944. PMC 6002908. PMID 29760154.
  213. ^ Sapkota A, Chelikowsky AP, Nachman KE, Cohen AJ, Ritz B (1 December 2012). "Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis". Air Quality, Atmosphere & Health. 5 (4): 369–381. Bibcode:2012AQAH....5..369S. doi:10.1007/s11869-010-0106-3. S2CID 95781433.
  214. ^ a b c Sacks J. "2009 Final Report: Integrated Science Assessment for Particulate Matter". US EPA National Center for Environmental Assessment, Research Triangle Park Nc, Environmental Media Assessment Group. Retrieved 31 March 2017.
  215. ^ Erickson AC, Arbour L (26 November 2014). "The shared pathoetiological effects of particulate air pollution and the social environment on fetal-placental development". Journal of Environmental and Public Health. 2014: 901017. doi:10.1155/2014/901017. PMC 4276595. PMID 25574176.
  216. ^ Lee PC, Talbott EO, Roberts JM, Catov JM, Bilonick RA, Stone RA, et al. (August 2012). "Ambient air pollution exposure and blood pressure changes during pregnancy". Environmental Research. 117: 46–53. Bibcode:2012ER....117...46L. doi:10.1016/j.envres.2012.05.011. PMC 3656658. PMID 22835955.
  217. ^ Woodruff TJ, Parker JD, Darrow LA, Slama R, Bell ML, Choi H, et al. (April 2009). "Methodological issues in studies of air pollution and reproductive health". Environmental Research. 109 (3): 311–320. Bibcode:2009ER....109..311W. doi:10.1016/j.envres.2008.12.012. PMC 6615486. PMID 19215915.
  218. ^ Byrne CD, Phillips DI (November 2000). "Fetal origins of adult disease: epidemiology and mechanisms". Journal of Clinical Pathology. 53 (11): 822–8. doi:10.1136/jcp.53.11.822. PMC 1731115. PMID 11127263.
  219. ^ Barker DJ (November 1990). "The fetal and infant origins of adult disease". BMJ. 301 (6761): 1111. doi:10.1136/bmj.301.6761.1111. PMC 1664286. PMID 2252919.
  220. ^ Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (March 2002). "Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution". JAMA. 287 (9): 1132–41. doi:10.1001/jama.287.9.1132. PMC 4037163. PMID 11879110.
  221. ^ EU's PM2.5 Limit Festering: New Study Linked PM with Heart Attack Cesaroni G, Forastiere F, Stafoggia M, Andersen ZJ, Badaloni C, Beelen R, et al. (January 2014). "Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project". BMJ. 348: f7412. doi:10.1136/bmj.f7412. PMC 3898420. PMID 24452269.
  222. ^ Hussey SJ, Purves J, Allcock N, Fernandes VE, Monks PS, Ketley JM, et al. (May 2017). "Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation" (PDF). Environmental Microbiology. 19 (5): 1868–1880. Bibcode:2017EnvMi..19.1868H. doi:10.1111/1462-2920.13686. PMC 6849702. PMID 28195384.
  223. ^ "National Study Examines Health Risks of Coarse Particle Pollution". www.newswise.com.
  224. ^ "Mongolia: Ulaanbaatar Air Pollution Linked to Public Health Crisis".
  225. ^ Matthews, Dylan (27 December 2021). "How humans could live two years longer". Vox.
  226. ^ Symons, Angela (15 December 2022). "Suicide rates rise as air quality worsens, study finds". euronews. Retrieved 19 December 2022.
  227. ^ Fan, Shu-Jun; Heinrich, Joachim; Bloom, Michael S.; Zhao, Tian-Yu; Shi, Tong-Xing; Feng, Wen-Ru; Sun, Yi; Shen, Ji-Chuan; Yang, Zhi-Cong; Yang, Bo-Yi; Dong, Guang-Hui (January 2020). "Ambient air pollution and depression: A systematic review with meta-analysis up to 2019". Science of the Total Environment. 701: 134721. Bibcode:2020ScTEn.70134721F. doi:10.1016/j.scitotenv.2019.134721. PMID 31715478. S2CID 207944384. Archived from the original on 31 March 2022. Retrieved 26 January 2022.
  228. ^ Maher, Barbara A.; Ahmed, Imad A. M.; Karloukovski, Vassil; MacLaren, Donald A.; Foulds, Penelope G.; Allsop, David; Mann, David M. A.; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian (27 September 2016). "Magnetite pollution nanoparticles in the human brain". Proceedings of the National Academy of Sciences. 113 (39): 10797–10801. Bibcode:2016PNAS..11310797M. doi:10.1073/pnas.1605941113. PMC 5047173. PMID 27601646.
  229. ^ "Parkinson's Disease".
  230. ^ Kanninen, K. M.; Lampinen, R.; Rantanen, L. M.; Odendaal, L.; Jalava, P.; Chew, S.; White, A. R. (1 June 2020). "Olfactory cell cultures to investigate health effects of air pollution exposure: Implications for neurodegeneration". Neurochemistry International. 136: 104729. doi:10.1016/j.neuint.2020.104729. PMID 32201281. S2CID 214585295 – via ScienceDirect.
  231. ^ Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzanowski M, Künzli N, et al. (2005). "The global burden of disease due to outdoor air pollution". Journal of Toxicology and Environmental Health. Part A. 68 (13–14): 1301–7. Bibcode:2005JTEHA..68.1301C. doi:10.1080/15287390590936166. PMID 16024504. S2CID 23814778.
  232. ^ Nawrot TS, Perez L, Künzli N, Munters E, Nemery B (February 2011). "Public health importance of triggers of myocardial infarction: a comparative risk assessment". Lancet. 377 (9767): 732–40. doi:10.1016/S0140-6736(10)62296-9. PMID 21353301. S2CID 20168936. "Taking into account the OR and the prevalences of exposure, the highest PAF was estimated for traffic exposure (7.4%)... ":"... [O]dds ratios and frequencies of each trigger were used to compute population-attributable fractions (PAFs), which estimate the proportion of cases that could be avoided if a risk factor were removed. PAFs depend not only on the risk factor strength at the individual level but also on its frequency in the community. ... [T]he exposure prevalence for triggers in the relevant control time window ranged from 0.04% for cocaine use to 100% for air pollution. ... Taking into account the OR and the prevalences of exposure, the highest PAF was estimated for traffic exposure (7.4%) ...
  233. ^ "Resources and Information" (PDF). ww16.baq2008.org. Archived from the original (PDF) on 17 December 2008.
  234. ^ a b Smiley, Kevin T. (2019). "Racial and Environmental Inequalities in Spatial Patterns in Asthma Prevalence in the US South". Southeastern Geographer. 59 (4): 389–402. doi:10.1353/sgo.2019.0031. S2CID 210244838. Project MUSE 736789.
  235. ^ "Erratum: Eur. Phys. J. C.22, 695–705 (2002) – DOI 10.1007/s100520100827 Published online: 7 December 2001". The European Physical Journal C. 24 (4): 665–666. August 2002. Bibcode:2002EPJC...24..665.. doi:10.1007/s10052-002-0987-x. S2CID 195313204.
  236. ^ a b Mikati, Ihab; Benson, Adam F.; Luben, Thomas J.; Sacks, Jason D.; Richmond-Bryant, Jennifer (1 April 2018). "Disparities in Distribution of Particulate Matter Emission Sources by Race and Poverty Status". American Journal of Public Health. 108 (4): 480–485. doi:10.2105/AJPH.2017.304297. PMC 5844406. PMID 29470121.
  237. ^ "Urban Air Pollution and Health Inequities: A Workshop Report". Environmental Health Perspectives. 109 (s3): 357–374. 1 June 2001. doi:10.1289/ehp.01109s3357.
  238. ^ a b c Jervis, Rick; Gomez, Alan (12 October 2020). "Racism turned their neighborhood into 'Cancer Alley.' Now they're dying from COVID-19". USA Today.
  239. ^ US EPA, OAR (12 November 2018). "How Smoke from Fires Can Affect Your Health". US EPA. Retrieved 26 November 2020.
  240. ^ Wegesser TC, Pinkerton KE, Last JA (June 2009). "California wildfires of 2008: coarse and fine particulate matter toxicity". Environmental Health Perspectives. 117 (6): 893–7. doi:10.1289/ehp.0800166. PMC 2702402. PMID 19590679.
  241. ^ Haikerwal A, Akram M, Del Monaco A, Smith K, Sim MR, Meyer M, et al. (July 2015). "Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes". Journal of the American Heart Association. 4 (7): e001653. doi:10.1161/JAHA.114.001653. PMC 4608063. PMID 26178402.
  242. ^ Reid CE, Considine EM, Watson GL, Telesca D, Pfister GG, Jerrett M (August 2019). "Associations between respiratory health and ozone and fine particulate matter during a wildfire event". Environment International. 129: 291–298. Bibcode:2019EnInt.129..291R. doi:10.1016/j.envint.2019.04.033. PMID 31146163.
  243. ^ Haikerwal A, Akram M, Sim MR, Meyer M, Abramson MJ, Dennekamp M (January 2016). "Fine particulate matter (PM2.5 ) exposure during a prolonged wildfire period and emergency department visits for asthma". Respirology. 21 (1): 88–94. doi:10.1111/resp.12613. PMID 26346113. S2CID 22910313.
  244. ^ DeFlorio-Barker S, Crooks J, Reyes J, Rappold AG (March 2019). "Cardiopulmonary Effects of Fine Particulate Matter Exposure among Older Adults, during Wildfire and Non-Wildfire Periods, in the United States 2008-2010". Environmental Health Perspectives. 127 (3): 37006. doi:10.1289/EHP3860. PMC 6768318. PMID 30875246.
  245. ^ Jiang, Kevin (27 June 2023). "What is 'smoke brain'? How air pollution can harm our cognition and mental health". Toronto Star.
  246. ^ Ritchie, Hannah; Roser, Max (2021). "What are the safest and cleanest sources of energy?". Our World in Data. Archived from the original on 15 January 2024. Data sources: Markandya & Wilkinson (2007); UNSCEAR (2008; 2018); Sovacool et al. (2016); IPCC AR5 (2014); Pehl et al. (2017); Ember Energy (2021).
  247. ^ a b The Guardian, 18 March 2021 "Oil Firms Knew Decades Ago Fossil Fuels Posed Grave Health Risks, Riles Reveal; Exclusive: Documents Seen by Guardian Show Companies Fought Clean-Air Rules Despite Being Aware of Harm Caused by Air Pollution"
  248. ^ The Guardian "75 Ways Trump Made America Dirtier and the Planet Warmer: In the Past Four Years, Trump has Shredded Environmental Protections for American Lands, Animals and People"
  249. ^ Union of Concerned Scientists, 27 April 2020 "Oil Industry Ghostwrites Trump's Deadly Anti-Environmental Policies"
  250. ^ Hogan CM (2010). Emily Monosson and C. Cleveland (ed.). "Abiotic factor". Encyclopedia of Earth. National Council for Science and the Environment.
  251. ^ US EPA, OAR (26 April 2016). "Health and Environmental Effects of Particulate Matter (PM)". US EPA. Retrieved 5 October 2019.
  252. ^ Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, et al. (September 2014). "Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis". Environmental Health Perspectives. 122 (9): 906–11. doi:10.1289/ehp.1408092. PMC 4154221. PMID 24911630.
  253. ^ Department of the Environment (25 February 2016). "National Environment Protection (Ambient Air Quality) Measure". Federal Register of Legislation. Retrieved 16 November 2018.
  254. ^ "Ambient air quality standards" (PDF). Archived (PDF) from the original on 30 April 2013. Retrieved 30 April 2013.
  255. ^ a b "Air Quality Standards – Environment – European Commission". Ec.europa.eu. Retrieved 1 February 2015.
  256. ^ "Air Quality Objectives". Environmental Protection Department, Hong Kong. 19 December 2012. Retrieved 27 July 2013.
  257. ^ "微小粒子状物質(PM2.5)対策|東京都環境局 大気・騒音・振動・悪臭対策". Kankyo.metro.tokyo.jp. Archived from the original on 28 February 2015. Retrieved 1 February 2015.
  258. ^ "Air Quality Standards" (PDF).
  259. ^ "Home". airkorea.or.kr.
  260. ^ "미세먼지 환경기준 선진국 수준 강화...'나쁨' 4배 늘 듯".
  261. ^ "細懸浮微粒管制". Environmental Protection Administration, ROC. Retrieved 16 November 2015.
  262. ^ "FEATURE: Air pollution reason for concern: groups - Taipei Times". www.taipeitimes.com. 5 February 2014.
  263. ^ a b "Pm Naaqs | Us Epa". Epa.gov. Retrieved 1 February 2015.
  264. ^ "Environmental Protection Agency – Particulate Matter (PM-10)". Epa.gov. 28 June 2006. Retrieved 1 February 2015.
  265. ^ "WHO global air quality guidelines" (PDF). WHO.
  266. ^ "Canadian Ambient Air Quality Standards (CAAQS) for Fine Particulate Matter (PM2.5) and Ozone" (PDF). Archived from the original (PDF) on 20 December 2016. Retrieved 11 December 2016.
  267. ^ "Burn better: Making changes for cleaner air".
  268. ^ "Guidance for wood burning in London".
  269. ^ "Log burners: What are the new rules and are they going to be banned?". Independent.co.uk. 6 February 2023.
  270. ^ Air Quality Trends - How to Interpret the Graphs
  271. ^ "Nanotechnology web page". Department of Toxic Substances Control. 2008. Archived from the original on 1 January 2010.
  272. ^ a b "Chemical Information Call-In web page". Department of Toxic Substances Control. 2008. Archived from the original on 18 March 2010. Retrieved 28 December 2009.
  273. ^ Wong J (22 January 2009), Call in letter (PDF), archived from the original (PDF) on 27 January 2017, retrieved 28 December 2009
  274. ^ "Contact List for CNT January 22 & 26 2009 Document" (PDF). Archived from the original (PDF) on 31 January 2017. Retrieved 28 December 2009.
  275. ^ "Archived DTSC Nanotechnology Symposia". Department of Toxic Substances Control. Archived from the original on 1 January 2010.
  276. ^ Chemical Information Call-in: Nanomaterials dtsc.ca.gov Archived 1 January 2010 at the Wayback Machine
  277. ^ a b c "The Cities Where Air Pollution Has Increased and Decreased the Most since 2019". 20 February 2023.
  278. ^ "Mapped: New Survey Shows Air Pollution Changes In Cities Around The World". Forbes.
  279. ^ Oliver Milman (1 April 2015). "Call for action on pollution as emissions linked to respiratory illnesses double". The Guardian. Retrieved 3 April 2015. emissions of a key pollutant linked to respiratory illness have doubled over the past five years
  280. ^ Li, Jie; Du, Huiyun; Wang, Zifa; Sun, Yele; Yang, Wenyi; Li, Jianjun; Tang, Xiao; Fu, Pingqing (1 April 2017). "Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain". Environmental Pollution. 223: 605–615. Bibcode:2017EPoll.223..605L. doi:10.1016/j.envpol.2017.01.063. ISSN 0269-7491. PMID 28159396.
  281. ^ Zhong, Junting; Zhang, Xiaoye; Gui, Ke; Liao, Jie; Fei, Ye; Jiang, Lipeng; Guo, Lifeng; Liu, Liangke; Che, Huizheng; Wang, Yaqiang; Wang, Deying; Zhou, Zijiang (12 July 2022). "Reconstructing 6-hourly PM2.5 datasets from 1960 to 2020 in China". Earth System Science Data. 14 (7): 3197–3211. Bibcode:2022ESSD...14.3197Z. doi:10.5194/essd-14-3197-2022. ISSN 1866-3508. S2CID 250512127.
  282. ^ "China: annual PM2.5 levels Beijing 2022". Statista. Retrieved 1 April 2023.
  283. ^ Consulate General of the United States of America Guangzhou, China (n.d.). "U.S. Consulate Air Quality Monitor and StateAir". U.S. Department of State. Archived from the original on 1 July 2011. Retrieved 24 December 2014.
  284. ^ "Armed With NASA Data, South Korea Confronts Its Choking Smog". NPR.
  285. ^ "NASA and NIER study finds that 48% of particulate matter comes from outside S. Korea".
  286. ^ "China, South Korea build environment cooperation". 26 June 2018.
  287. ^ "Air pollution chokes Thailand as campaigners call for stricter laws". 27 March 2023.
  288. ^ "Air pollution hospitalises 200,000 in one week as fumes, emissions and smoke descend on Thailand". 13 March 2023.
  289. ^ "Ambient (outdoor) air pollution". www.who.int.
  290. ^ "Aviation Pollution".
  291. ^ "Chapter 1 - Fly Ash - An Engineering Material - Fly Ash Facts for Highway Engineers - Recycling - Sustainability - Pavements - Federal Highway Administration". Federal Highway Administration (FHWA).
  292. ^ "City Rankings, State of the Air, American Lung Association".
  293. ^ "The Dirtiest And Cleanest Cities In America (The Worst Will Surprise You)". Forbes.
  294. ^ "An N95 Mask Is Your Best Defense Against Wildfire Smoke | Time". 7 June 2023.

Further reading

Control

Health

More

External links

Control

Others