stringtranslate.com

Asíntota

La gráfica de una función con una asíntota horizontal ( y  = 0), vertical ( x  = 0) y oblicua (línea morada, dada por y  = 2 x ).
Una curva que corta a una asíntota infinitas veces.

En geometría analítica , una asíntota ( / ˈ æ s ɪ m p t t / ) de una curva es una línea tal que la distancia entre la curva y la línea tiende a cero cuando una o ambas coordenadas x o y tienden al infinito. . En geometría proyectiva y contextos relacionados, una asíntota de una curva es una línea que es tangente a la curva en un punto en el infinito . [1] [2]

La palabra asíntota se deriva del griego ἀσύμπτωτος ( asumptōtos ) que significa "no caer juntos", de ἀ priv. + σύν "juntos" + πτωτ-ός "caído". [3] El término fue introducido por Apolonio de Perga en su trabajo sobre secciones cónicas , pero en contraste con su significado moderno, lo usó para referirse a cualquier línea que no interseque la curva dada. [4]

Hay tres tipos de asíntotas: horizontales , verticales y oblicuas . Para las curvas dadas por la gráfica de una función y = ƒ ( x ) , las asíntotas horizontales son líneas horizontales a las que se aproxima la gráfica de la función cuando x tiende a +∞ o −∞. Las asíntotas verticales son líneas verticales cerca de las cuales la función crece sin límite. Una asíntota oblicua tiene una pendiente distinta de cero pero finita, de modo que la gráfica de la función se aproxima a ella cuando x tiende a +∞ o −∞.

De manera más general, una curva es una asíntota curvilínea de otra (a diferencia de una asíntota lineal ) si la distancia entre las dos curvas tiende a cero cuando tienden al infinito, aunque el término asíntota en sí mismo suele reservarse para asíntotas lineales.

Las asíntotas transmiten información sobre el comportamiento de las curvas en grande , y determinar las asíntotas de una función es un paso importante para dibujar su gráfica. [5] El estudio de las asíntotas de funciones, interpretadas en un sentido amplio, forma parte del tema del análisis asintótico .

Introducción

graficado en coordenadas cartesianas . Los ejes x e y son las asíntotas.

La idea de que una curva puede acercarse arbitrariamente a una línea sin volverse realmente la misma puede parecer contraria a la experiencia cotidiana. Las representaciones de una línea y una curva como marcas en una hoja de papel o como píxeles en una pantalla de ordenador tienen un ancho positivo. Entonces, si se extendieran lo suficiente, parecerían fusionarse, al menos hasta donde el ojo pudiera discernir. Pero éstas son representaciones físicas de las entidades matemáticas correspondientes; la recta y la curva son conceptos idealizados cuyo ancho es 0 (ver Línea ). Por tanto, la comprensión de la idea de asíntota requiere un esfuerzo de razón más que de experiencia.

Considere la gráfica de la función que se muestra en esta sección. Las coordenadas de los puntos de la curva tienen la forma donde x es un número distinto de 0. Por ejemplo, la gráfica contiene los puntos (1, 1), (2, 0,5), (5, 0,2), (10, 0,1),... A medida que los valores de crecen cada vez más, digamos 100, 1.000, 10.000..., colocándolos muy a la derecha de la ilustración, los valores correspondientes de , .01, .001, .0001, . .., se vuelve infinitesimal en relación con la escala mostrada. Pero no importa cuán grande sea, su recíproco nunca es 0, por lo que la curva nunca toca el eje x . De manera similar, a medida que los valores de se vuelven cada vez más pequeños, digamos 0,01, 0,001, 0,0001,..., haciéndolos infinitesimales en relación con la escala mostrada, los valores correspondientes de , 100, 1000, 10 000..., se hacen más grandes. y más grande. Entonces, la curva se extiende cada vez más hacia arriba a medida que se acerca más y más al eje y . Por tanto, tanto el eje x como el y son asíntotas de la curva. Estas ideas son parte de la base del concepto de límite en matemáticas, y esta conexión se explica con más detalle a continuación. [6]

Asíntotas de funciones

Las asíntotas que se encuentran más comúnmente en el estudio del cálculo son las de curvas de la forma y = ƒ ( x ) . Estos se pueden calcular utilizando límites y clasificar en asíntotas horizontales , verticales y oblicuas según su orientación. Las asíntotas horizontales son líneas horizontales a las que se aproxima la gráfica de la función cuando x tiende a +∞ o −∞. Como su nombre indica, son paralelos al eje x . Las asíntotas verticales son líneas verticales (perpendiculares al eje x ) cerca de las cuales la función crece sin límite. Las asíntotas oblicuas son líneas diagonales tales que la diferencia entre la curva y la línea se aproxima a 0 cuando x tiende a +∞ o −∞.

Asíntotas verticales

La recta x = a es una asíntota vertical de la gráfica de la función y = ƒ ( x ) si al menos una de las siguientes afirmaciones es verdadera:

donde es el límite cuando x se acerca al valor a por la izquierda (a partir de valores menores), y es el límite cuando x se acerca a a por la derecha.

Por ejemplo, si ƒ( x ) = x /( x –1), el numerador tiende a 1 y el denominador tiende a 0 cuando x tiende a 1. Entonces

y la curva tiene una asíntota vertical x = 1.

La función ƒ ( x ) puede definirse o no en a , y su valor preciso en el punto x = a no afecta la asíntota. Por ejemplo, para la función

tiene un límite de +∞ cuando x → 0 + , ƒ ( x ) tiene la asíntota vertical x = 0 , aunque ƒ (0) = 5. La gráfica de esta función intersecta la asíntota vertical una vez, en (0, 5 ). Es imposible que la gráfica de una función corte una asíntota vertical (o una recta vertical en general ) en más de un punto. Además, si una función es continua en cada punto donde está definida, es imposible que su gráfica corte cualquier asíntota vertical.

Un ejemplo común de asíntota vertical es el caso de una función racional en un punto x tal que el denominador es cero y el numerador no es cero.

Si una función tiene una asíntota vertical, entonces no es necesariamente cierto que la derivada de la función tenga una asíntota vertical en el mismo lugar. Un ejemplo es

en .

Esta función tiene una asíntota vertical en porque

y

.

La derivada de es la función.

.

Para la secuencia de puntos

para

que se acerca tanto por la izquierda como por la derecha, los valores son constantemente . Por lo tanto, ambos límites unilaterales de at no pueden ser ni ni . Por lo tanto, no tiene una asíntota vertical en .

Asíntotas horizontales

La función arcotangente tiene dos asíntotas diferentes.

Las asíntotas horizontales son líneas horizontales a las que se aproxima la gráfica de la función cuando x → ±∞ . La recta horizontal y  =  c es una asíntota horizontal de la función y  =  ƒ ( x ) si

o .

En el primer caso, ƒ ( x ) tiene y  =  c como asíntota cuando x tiende a −∞ , y en el segundo ƒ ( x ) tiene y  =  c como asíntota cuando x tiende a +∞ .

Por ejemplo, la función arcotangente satisface

y

Entonces, la recta y = – π /2 es una asíntota horizontal para el arcotangente cuando x tiende a –∞ , y y = π /2 es una asíntota horizontal para el arcotangente cuando x tiende a +∞ .

Las funciones pueden carecer de asíntotas horizontales en uno o ambos lados, o pueden tener una asíntota horizontal que sea igual en ambas direcciones. Por ejemplo, la función ƒ( x ) = 1/( x 2 +1) tiene una asíntota horizontal en y  = 0 cuando x tiende tanto a −∞ como a +∞ porque, respectivamente,

Otras funciones comunes que tienen una o dos asíntotas horizontales incluyen x ↦ 1/ x (que tiene una hipérbola en su gráfica), la función gaussiana , la función de error y la función logística .

Asíntotas oblicuas

En la gráfica de , el eje y ( x = 0) y la recta y = x son asíntotas.

Cuando una asíntota lineal no es paralela al eje x o y , se llama asíntota oblicua o asíntota inclinada . Una función ƒ ( x ) es asintótica a la recta y = mx + n ( m  ≠ 0) si

En el primer caso la recta y = mx + n es una asíntota oblicua de ƒ ( x ) cuando x tiende a +∞, y en el segundo caso la recta y = mx + n es una asíntota oblicua de ƒ ( x ) cuando x tiende a −∞.

Un ejemplo es ƒ ( x ) =  x + 1/ x , que tiene la asíntota oblicua y  =  x (es decir m  = 1, n  = 0) como se ve en los límites

Métodos elementales para identificar asíntotas.

Las asíntotas de muchas funciones elementales se pueden encontrar sin el uso explícito de límites (aunque las derivaciones de tales métodos suelen utilizar límites).

Cálculo general de asíntotas oblicuas para funciones.

La asíntota oblicua, para la función f ( x ), vendrá dada por la ecuación y = mx + n . El valor de m se calcula primero y viene dado por

donde a es o dependiendo del caso que se estudie. Es una buena práctica tratar los dos casos por separado. Si este límite no existe entonces no hay asíntota oblicua en esa dirección.

Teniendo m entonces el valor de n se puede calcular mediante

donde a debería ser el mismo valor utilizado antes. Si este límite no existe, entonces no hay asíntota oblicua en esa dirección, incluso si existiera el límite que define m . De lo contrario y = mx + n es la asíntota oblicua de ƒ ( x ) cuando x tiende a a .

Por ejemplo, la función ƒ ( x ) = (2 x 2 + 3 x + 1)/ x tiene

y luego

de modo que y = 2 x + 3 es la asíntota de ƒ ( x ) cuando x tiende a +∞.

La función ƒ ( x ) = ln  x tiene

y luego
, que no existe.

Entonces y = ln  x no tiene asíntota cuando x tiende a +∞.

Asíntotas de funciones racionales

Una función racional tiene como máximo una asíntota horizontal o una asíntota oblicua (inclinada), y posiblemente muchas asíntotas verticales.

El grado del numerador y el grado del denominador determinan si hay o no asíntotas horizontales u oblicuas. Los casos se tabulan a continuación, donde grados (numerador) es el grado del numerador y grados (denominador) es el grado del denominador.

Las asíntotas verticales ocurren solo cuando el denominador es cero (si tanto el numerador como el denominador son cero, se comparan las multiplicidades del cero). Por ejemplo, la siguiente función tiene asíntotas verticales en x = 0 y x = 1, pero no en x = 2.

Asíntotas oblicuas de funciones racionales.

Negro: la gráfica de . Rojo: la asíntota . Verde: diferencia entre la gráfica y su asíntota para

Cuando el numerador de una función racional tiene un grado exactamente uno mayor que el denominador, la función tiene una asíntota oblicua (inclinada). La asíntota es el término polinómico después de dividir el numerador y el denominador. Este fenómeno se da porque al dividir la fracción quedará un término lineal y un resto. Por ejemplo, considere la función

se muestra a la derecha. A medida que aumenta el valor de x , f se acerca a la asíntota y = x . Esto se debe a que el otro término, 1/( x +1), tiende a 0.

Si el grado del numerador es más de 1 mayor que el grado del denominador y el denominador no divide al numerador, habrá un resto distinto de cero que llegará a cero a medida que x aumenta, pero el cociente no será lineal y la función no tiene asíntota oblicua.

Transformaciones de funciones conocidas.

Si una función conocida tiene una asíntota (como y =0 para f (x)= e x ), entonces sus traslaciones también tienen una asíntota.

Si una función conocida tiene una asíntota, entonces la escala de la función también tiene una asíntota.

Por ejemplo, f ( x )= e x -1 +2 tiene asíntota horizontal y =0+2=2, y no tiene asíntotas verticales u oblicuas.

Definición general

(sec(t), cosec(t)), o x 2 + y 2 = (xy) 2 , con 2 asíntotas horizontales y 2 verticales.

Sea A  : ( a , b ) → R 2 una curva plana paramétrica , en coordenadas A ( t ) = ( x ( t ), y ( t )). Supongamos que la curva tiende al infinito, es decir:

Una recta ℓ es una asíntota de A si la distancia desde el punto A ( t ) a ℓ tiende a cero cuando t  →  b . [7] Según la definición, sólo las curvas abiertas que tienen alguna rama infinita pueden tener una asíntota. Ninguna curva cerrada puede tener asíntota.

Por ejemplo, la rama superior derecha de la curva y  = 1/ x se puede definir paramétricamente como x  =  t , y  = 1/ t (donde t > 0). Primero, x  → ∞ cuando t  → ∞ y la distancia desde la curva al eje x es 1/ t que se aproxima a 0 cuando t  → ∞. Por tanto, el eje x es una asíntota de la curva. Además, y  → ∞ cuando t  → 0 desde la derecha, y la distancia entre la curva y el eje y es t , que se acerca a 0 cuando t  → 0. Entonces, el eje y también es una asíntota. Un argumento similar muestra que la rama inferior izquierda de la curva también tiene las mismas dos líneas como asíntotas.

Aunque la definición aquí utiliza una parametrización de la curva, la noción de asíntota no depende de la parametrización. De hecho, si la ecuación de la recta es entonces la distancia desde el punto A ( t ) = ( x ( t ), y ( t )) a la recta viene dada por

si γ( t ) es un cambio de parametrización, entonces la distancia se vuelve

que tiende a cero simultáneamente como la expresión anterior.

Un caso importante es cuando la curva es la gráfica de una función real (una función de una variable real y que devuelve valores reales). La gráfica de la función y  =  ƒ ( x ) es el conjunto de puntos del plano con coordenadas ( x , ƒ ( x )). Para ello se realiza una parametrización

Esta parametrización debe considerarse en los intervalos abiertos ( a , b ), donde a puede ser −∞ y b puede ser +∞.

Una asíntota puede ser vertical o no vertical (oblicua u horizontal). En el primer caso su ecuación es x  =  c , para algún número real c . El caso no vertical tiene ecuación y = mx + n , donde m y son números reales. Los tres tipos de asíntotas pueden estar presentes al mismo tiempo en ejemplos específicos. A diferencia de las asíntotas de curvas que son gráficas de funciones, una curva general puede tener más de dos asíntotas no verticales y puede cruzar sus asíntotas verticales más de una vez.

Asíntotas curvilíneas

x 2 +2 x +3 es una asíntota parabólica de ( x 3 +2 x 2 +3 x +4)/ x

Sea A  : ( a , b ) → R 2 una curva plana paramétrica, en coordenadas A ( t ) = ( x ( t ), y ( t )), y B sea otra curva (no parametrizada). Supongamos, como antes, que la curva A tiende al infinito. La curva B es una asíntota curvilínea de A si la distancia más corta desde el punto A ( t ) a un punto de B tiende a cero cuando t  →  b . A veces se hace referencia a B simplemente como asíntota de A , cuando no hay riesgo de confusión con asíntotas lineales. [8]

Por ejemplo, la función

tiene una asíntota curvilínea y = x 2 + 2 x + 3 , que se conoce como asíntota parabólica porque es una parábola en lugar de una línea recta. [9]

Asíntotas y trazado de curvas.

Las asíntotas se utilizan en procedimientos de trazado de curvas . Una asíntota sirve como línea guía para mostrar el comportamiento de la curva hacia el infinito. [10] Para obtener mejores aproximaciones de la curva, también se han utilizado asíntotas curvilíneas [11] aunque parece preferirse el término curva asintótica . [12]

Curvas algebraicas

Una curva cúbica , el folio de Descartes (sólida) con una única asíntota real (discontinua).

Las asíntotas de una curva algebraica en el plano afín son las rectas que son tangentes a la curva proyectiva que pasa por un punto en el infinito . [13] Por ejemplo, se pueden identificar las asíntotas de la hipérbola unitaria de esta manera. Las asíntotas a menudo se consideran sólo para curvas reales, [14] aunque también tienen sentido cuando se definen de esta manera para curvas sobre un campo arbitrario . [15]

Una curva plana de grado n cruza su asíntota como máximo en n −2 otros puntos, según el teorema de Bézout , ya que la intersección en el infinito es de multiplicidad de al menos dos. Para una cónica , hay un par de rectas que no cortan a la cónica en ningún punto complejo: estas son las dos asíntotas de la cónica.

Una curva algebraica plana está definida por una ecuación de la forma P ( x , y ) = 0 donde P es un polinomio de grado n

donde P k es homogéneo de grado k . La desaparición de los factores lineales del término de mayor grado P n define las asíntotas de la curva: estableciendo Q = P n , si P n ( x , y ) = ( axby ) Q n −1 ( x , y ) , entonces la línea

es una asíntota si y no son ambos cero. Si y , no hay asíntota, pero la curva tiene una rama que parece una rama de parábola. Tal rama se llamarama parabólica , incluso cuando no tiene ninguna parábola que sea asíntota curvilínea. Sila curva tiene un punto singular en el infinito el cual puede tener varias asíntotas o ramas parabólicas.

En los números complejos, P n se divide en factores lineales, cada uno de los cuales define una asíntota (o varias para múltiples factores). Sobre los reales, P n se divide en factores que son factores lineales o cuadráticos. Sólo los factores lineales corresponden a infinitas ramas (reales) de la curva, pero si un factor lineal tiene multiplicidad mayor que uno, la curva puede tener varias asíntotas o ramas parabólicas. También puede ocurrir que tal factor lineal múltiple corresponda a dos ramas conjugadas complejas, y no corresponda a ninguna rama infinita de la curva real. Por ejemplo, la curva x 4 + y 2 - 1 = 0 no tiene puntos reales fuera del cuadrado , pero su término de orden más alto da el factor lineal x con multiplicidad 4, lo que lleva a la asíntota única x =0.

Cono asintótico

Hipérbolas, obtenidas cortando el mismo cono circular recto con un plano y sus asíntotas.

La hipérbola

tiene las dos asíntotas

La ecuación para la unión de estas dos rectas es

De manera similar, el hiperboloide

se dice que tiene el cono asintótico [16] [17]

La distancia entre el hiperboloide y el cono se acerca a 0 a medida que la distancia desde el origen se acerca al infinito.

De manera más general, considere una superficie que tiene una ecuación implícita donde son polinomios homogéneos de grado y . Entonces la ecuación define un cono que está centrado en el origen. Se llama cono asintótico , porque la distancia al cono de un punto de la superficie tiende a cero cuando el punto de la superficie tiende al infinito.

Ver también

Referencias

Referencias generales
Referencias específicas
  1. ^ Williamson, Benjamin (1899), "Asíntotas", Un tratado elemental sobre el cálculo diferencial.
  2. ^ Nunemacher, Jeffrey (1999), "Asíntotas, curvas cúbicas y plano proyectivo", Revista de matemáticas , 72 (3): 183–192, CiteSeerX 10.1.1.502.72 , doi :10.2307/2690881, JSTOR  2690881 
  3. ^ Diccionario de ingles Oxford , segunda edición, 1989.
  4. ^ DE Smith, Historia de las Matemáticas, vol 2 Dover (1958) p. 318
  5. ^ Apostol, Tom M. (1967), Cálculo, vol. 1: Cálculo de una variable con una introducción al álgebra lineal (2ª ed.), Nueva York: John Wiley & Sons , ISBN 978-0-471-00005-1, §4.18.
  6. ^ Referencia de la sección: "Asíntota" The Penny Cyclopædia vol. 2, Sociedad para la Difusión del Conocimiento Útil (1841) Charles Knight and Co., Londres p. 541
  7. ^ Pogorelov, AV (1959), Geometría diferencial , Traducido de la primera edición rusa. por LF Boron, Groningen: P. Noordhoff NV, MR  0114163, §8.
  8. ^ Fowler, RH (1920), La geometría diferencial elemental de curvas planas, Cambridge, University Press, hdl :2027/uc1.b4073882, ISBN 0-486-44277-2, pag. 89 y sigs.
  9. ^ William Nicholson, La enciclopedia británica o diccionario de artes y ciencias; que comprende una visión precisa y popular del actual estado mejorado del conocimiento humano , vol. 5, 1809
  10. ^ Frost, P. Un tratado elemental sobre el trazado de curvas (1918) en línea
  11. ^ Fowler, RH La geometría diferencial elemental de curvas planas Cambridge, University Press, 1920, págs. 89 y siguientes (en línea en archive.org)
  12. ^ Frost, P. Un tratado elemental sobre el trazado de curvas , 1918, página 5
  13. ^ CG Gibson (1998) Geometría elemental de curvas algebraicas , § 12.6 Asíntotas, Cambridge University Press ISBN 0-521-64140-3
  14. ^ Coolidge, Julian Lowell (1959), Tratado sobre curvas planas algebraicas , Nueva York: Dover Publications , ISBN 0-486-49576-0, SEÑOR  0120551, págs. 40–44.
  15. ^ Kunz, Ernst (2005), Introducción a las curvas algebraicas planas , Boston, MA: Birkhäuser Boston, ISBN 978-0-8176-4381-2, SEÑOR  2156630, pag. 121.
  16. ^ LP Siceloff, G. Wentworth, DE Smith Geometría analítica (1922) p. 271
  17. ^ P. Frost Geometría sólida (1875) Tiene un tratamiento más general de las superficies asintóticas.

enlaces externos