stringtranslate.com

Biología matemática y teórica

Cabeza de manzanilla amarilla que muestra los números de Fibonacci en espirales que consisten en 21 (azul) y 13 (aguamarina). Estas disposiciones se han observado desde la Edad Media y se pueden utilizar para hacer modelos matemáticos de una amplia variedad de plantas.

La biología matemática y teórica , o biomatemática , es una rama de la biología que emplea análisis teóricos, modelos matemáticos y abstracciones de organismos vivos para investigar los principios que gobiernan la estructura, el desarrollo y el comportamiento de los sistemas, a diferencia de la biología experimental que se ocupa de la realización de experimentos para probar teorías científicas. [1] El campo a veces se llama biología matemática o biomatemática para enfatizar el lado matemático, o biología teórica para enfatizar el lado biológico. [2] La biología teórica se centra más en el desarrollo de principios teóricos para la biología, mientras que la biología matemática se centra en el uso de herramientas matemáticas para estudiar sistemas biológicos, aunque los dos términos a veces se intercambian. [3] [4]

La biología matemática tiene como objetivo la representación y modelización matemática de los procesos biológicos , utilizando técnicas y herramientas de las matemáticas aplicadas . Puede ser útil tanto en la investigación teórica como en la práctica . Describir los sistemas de manera cuantitativa significa que su comportamiento se puede simular mejor y, por lo tanto, se pueden predecir propiedades que podrían no ser evidentes para el experimentador. Esto requiere modelos matemáticos precisos .

Debido a la complejidad de los sistemas vivos , la biología teórica emplea varios campos de las matemáticas, [5] y ha contribuido al desarrollo de nuevas técnicas.

Historia

Historia temprana

Las matemáticas se han utilizado en biología desde el siglo XIII, cuando Fibonacci utilizó la famosa serie de Fibonacci para describir una población creciente de conejos. En el siglo XVIII, Daniel Bernoulli aplicó las matemáticas para describir el efecto de la viruela en la población humana. El ensayo de Thomas Malthus de 1789 sobre el crecimiento de la población humana se basó en el concepto de crecimiento exponencial. Pierre François Verhulst formuló el modelo de crecimiento logístico en 1836. [ cita requerida ]

Fritz Müller describió los beneficios evolutivos de lo que ahora se llama mimetismo mülleriano en 1879, en un relato notable por ser el primer uso de un argumento matemático en ecología evolutiva para mostrar cuán poderoso sería el efecto de la selección natural, a menos que uno incluya la discusión de Malthus sobre los efectos del crecimiento de la población que influyó en Charles Darwin : Malthus argumentó que el crecimiento sería exponencial (usa la palabra "geométrico") mientras que los recursos (la capacidad de carga del medio ambiente ) solo podrían crecer aritméticamente. [6]

El término "biología teórica" ​​fue utilizado por primera vez como título de una monografía por Johannes Reinke en 1901, y poco después por Jakob von Uexküll  en 1920. Se considera que un texto fundador es On Growth and Form (1917) de D'Arcy Thompson , [7] y otros pioneros incluyen a Ronald Fisher , Hans Leo Przibram , Vito Volterra , Nicolas Rashevsky y Conrad Hal Waddington . [8]

Crecimiento reciente

El interés en este campo ha crecido rápidamente a partir de la década de 1960. Algunas de las razones son:

Áreas de investigación

En las siguientes subsecciones se presentan de forma concisa varias áreas de investigación especializada en biología matemática y teórica [10] [11] [12] [13] [14], así como enlaces externos a proyectos relacionados en varias universidades, incluyendo también una gran cantidad de referencias de validación apropiadas de una lista de varios miles de autores publicados que contribuyen a este campo. Muchos de los ejemplos incluidos se caracterizan por mecanismos altamente complejos, no lineales y supercomplejos, ya que se reconoce cada vez más que el resultado de tales interacciones solo puede entenderse mediante una combinación de modelos matemáticos, lógicos, físico-químicos, moleculares y computacionales.

Biología relacional abstracta

La biología relacional abstracta (ARB) se ocupa del estudio de modelos relacionales generales de sistemas biológicos complejos, generalmente abstrayendo estructuras morfológicas o anatómicas específicas. Algunos de los modelos más simples de la ARB son los sistemas de replicación metabólica o (M,R), introducidos por Robert Rosen en 1957-1958 como modelos relacionales abstractos de la organización celular y de los organismos.

Otros enfoques incluyen la noción de autopoiesis desarrollada por Maturana y Varela , los ciclos de restricciones de trabajo de Kauffman y, más recientemente, la noción de cierre de restricciones. [15]

Biología algebraica

La biología algebraica (también conocida como biología de sistemas simbólicos) aplica los métodos algebraicos de computación simbólica al estudio de problemas biológicos, especialmente en genómica , proteómica , análisis de estructuras moleculares y estudio de genes . [16] [17] [18]

Biología de sistemas complejos

Desde 1970 se ha desarrollado una elaboración de la biología de sistemas para comprender los procesos vitales más complejos, en conexión con la teoría de conjuntos moleculares, la biología relacional y la biología algebraica.

Modelos informáticos y teoría de autómatas

Una monografía sobre este tema resume una gran cantidad de investigaciones publicadas en esta área hasta 1986, [19] [20] [21] incluyendo subsecciones en las siguientes áreas: modelado informático en biología y medicina, modelos del sistema arterial, modelos neuronales , redes bioquímicas y de oscilación , autómatas cuánticos, ordenadores cuánticos en biología molecular y genética , [22] modelado del cáncer, [23] redes neuronales , redes genéticas , categorías abstractas en biología relacional, [24] sistemas de replicación metabólica, teoría de categorías [25] aplicaciones en biología y medicina, [26] teoría de autómatas , autómatas celulares , [27] modelos de teselación [28] [29] y autorreproducción completa, sistemas caóticos en organismos , biología relacional y teorías organismales. [16] [30]

Modelado de la biología celular y molecular

Esta área ha recibido un impulso debido a la creciente importancia de la biología molecular . [13]

Modelado de sistemas fisiológicos

Neurociencia computacional

La neurociencia computacional (también conocida como neurociencia teórica o neurociencia matemática) es el estudio teórico del sistema nervioso. [43] [44]

Biología evolutiva

La ecología y la biología evolutiva han sido tradicionalmente los campos dominantes de la biología matemática.

La biología evolutiva ha sido objeto de una extensa teorización matemática. El enfoque tradicional en esta área, que incluye complicaciones de la genética, es la genética de poblaciones . La mayoría de los genetistas de poblaciones consideran la aparición de nuevos alelos por mutación , la aparición de nuevos genotipos por recombinación y los cambios en las frecuencias de los alelos y genotipos existentes en un pequeño número de loci genéticos . Cuando se consideran los efectos infinitesimales en un gran número de loci genéticos, junto con el supuesto de equilibrio de ligamiento o equilibrio de ligamiento cuasi , se deriva la genética cuantitativa . Ronald Fisher hizo avances fundamentales en estadística, como el análisis de varianza , a través de su trabajo sobre genética cuantitativa. Otra rama importante de la genética de poblaciones que condujo al amplio desarrollo de la teoría coalescente es la filogenética . La filogenética es un área que se ocupa de la reconstrucción y el análisis de árboles y redes filogenéticos (evolutivos) basados ​​en características heredadas [45] Los modelos genéticos de poblaciones tradicionales tratan con alelos y genotipos, y con frecuencia son estocásticos .

Muchos modelos de genética de poblaciones suponen que los tamaños de las poblaciones son constantes. Los tamaños de población variables, a menudo en ausencia de variación genética, se tratan en el campo de la dinámica de poblaciones . El trabajo en esta área se remonta al siglo XIX, e incluso a 1798, cuando Thomas Malthus formuló el primer principio de la dinámica de poblaciones, que más tarde se conocería como el modelo de crecimiento maltusiano . Las ecuaciones depredador-presa de Lotka-Volterra son otro ejemplo famoso. La dinámica de poblaciones se superpone con otra área activa de investigación en biología matemática: la epidemiología matemática , el estudio de las enfermedades infecciosas que afectan a las poblaciones. Se han propuesto y analizado varios modelos de propagación de infecciones , y proporcionan resultados importantes que pueden aplicarse a las decisiones de política sanitaria.

En la teoría de juegos evolutiva , desarrollada por primera vez por John Maynard Smith y George R. Price , la selección actúa directamente sobre los fenotipos heredados, sin complicaciones genéticas. Este enfoque se ha refinado matemáticamente para producir el campo de la dinámica adaptativa .

Biofísica matemática

Las primeras etapas de la biología matemática estuvieron dominadas por la biofísica matemática , descrita como la aplicación de las matemáticas en la biofísica, que a menudo involucra modelos físicos/matemáticos específicos de biosistemas y sus componentes o compartimentos.

La siguiente es una lista de descripciones matemáticas y sus suposiciones.

Procesos deterministas (sistemas dinámicos)

Una correspondencia fija entre un estado inicial y un estado final. Partiendo de una condición inicial y avanzando en el tiempo, un proceso determinista siempre genera la misma trayectoria y no hay dos trayectorias que se crucen en el espacio de estados.

Procesos estocásticos (sistemas dinámicos aleatorios)

Un mapeo aleatorio entre un estado inicial y un estado final, haciendo del estado del sistema una variable aleatoria con una distribución de probabilidad correspondiente .

Modelado espacial

Un trabajo clásico en este área es el artículo de Alan Turing sobre la morfogénesis titulado The Chemical Basis of Morphogenesis , publicado en 1952 en Philosophical Transactions of the Royal Society .

Métodos matemáticos

Un modelo de un sistema biológico se convierte en un sistema de ecuaciones, aunque la palabra "modelo" se utiliza a menudo como sinónimo del sistema de ecuaciones correspondiente. La solución de las ecuaciones, ya sea por medios analíticos o numéricos, describe cómo se comporta el sistema biológico a lo largo del tiempo o en equilibrio . Hay muchos tipos diferentes de ecuaciones y el tipo de comportamiento que puede ocurrir depende tanto del modelo como de las ecuaciones utilizadas. El modelo a menudo hace suposiciones sobre el sistema. Las ecuaciones también pueden hacer suposiciones sobre la naturaleza de lo que puede ocurrir.

Teoría de conjuntos moleculares

La teoría de conjuntos moleculares (MST) es una formulación matemática de la cinética química de sentido amplio de las reacciones biomoleculares en términos de conjuntos de moléculas y sus transformaciones químicas representadas por mapeos teóricos de conjuntos entre conjuntos moleculares. Fue introducida por Anthony Bartholomay , y sus aplicaciones se desarrollaron en biología matemática y especialmente en medicina matemática. [52] En un sentido más general, MST es la teoría de categorías moleculares definidas como categorías de conjuntos moleculares y sus transformaciones químicas representadas como mapeos teóricos de conjuntos moleculares. La teoría también ha contribuido a la bioestadística y la formulación de problemas de bioquímica clínica en formulaciones matemáticas de cambios patológicos y bioquímicos de interés para la fisiología, la bioquímica clínica y la medicina. [52]

Biología organizacional

Los enfoques teóricos de la organización biológica tienen como objetivo comprender la interdependencia entre las partes de los organismos y destacan las circularidades a las que conducen estas interdependencias. Los biólogos teóricos desarrollaron varios conceptos para formalizar esta idea.

Por ejemplo, la biología relacional abstracta (ARB) [53] se ocupa del estudio de modelos relacionales generales de sistemas biológicos complejos, generalmente abstrayendo estructuras morfológicas o anatómicas específicas. Algunos de los modelos más simples en ARB son los sistemas de replicación metabólica o (M,R), introducidos por Robert Rosen en 1957-1958 como modelos relacionales abstractos de la organización celular y de los organismos. [54]

Ejemplo modelo: el ciclo celular

El ciclo celular eucariota es muy complejo y ha sido objeto de intensos estudios, ya que su desregulación conduce a cánceres . Posiblemente sea un buen ejemplo de un modelo matemático ya que trata con cálculos simples pero da resultados válidos. Dos grupos de investigación [55] [56] han producido varios modelos del ciclo celular simulando varios organismos. Recientemente han producido un modelo genérico del ciclo celular eucariota que puede representar un eucariota particular dependiendo de los valores de los parámetros, demostrando que las idiosincrasias de los ciclos celulares individuales se deben a diferentes concentraciones y afinidades de proteínas, mientras que los mecanismos subyacentes se conservan (Csikasz-Nagy et al., 2006).

Mediante un sistema de ecuaciones diferenciales ordinarias estos modelos muestran el cambio en el tiempo ( sistema dinámico ) de la proteína dentro de una sola célula típica; este tipo de modelo se llama proceso determinista (mientras que un modelo que describe una distribución estadística de concentraciones de proteína en una población de células se llama proceso estocástico ).

Para obtener estas ecuaciones se debe realizar una serie iterativa de pasos: primero se combinan los diversos modelos y observaciones para formar un diagrama de consenso y se eligen las leyes cinéticas apropiadas para escribir las ecuaciones diferenciales, como la cinética de velocidad para reacciones estequiométricas, la cinética de Michaelis-Menten para reacciones de sustrato enzimático y la cinética de Goldbeter-Koshland para factores de transcripción ultrasensibles; después, los parámetros de las ecuaciones (constantes de velocidad, coeficientes de eficiencia enzimática y constantes de Michaelis) deben ajustarse para que coincidan con las observaciones; cuando no se pueden ajustar, se revisa la ecuación cinética y, cuando eso no es posible, se modifica el diagrama de cableado. Los parámetros se ajustan y validan utilizando observaciones tanto del tipo salvaje como de los mutantes, como la vida media de la proteína y el tamaño celular.

Para ajustar los parámetros, es necesario estudiar las ecuaciones diferenciales. Esto se puede hacer mediante simulación o análisis. En una simulación, dado un vector de partida (lista de valores de las variables), se calcula la progresión del sistema resolviendo las ecuaciones en cada intervalo de tiempo en pequeños incrementos.

En el análisis, las propiedades de las ecuaciones se utilizan para investigar el comportamiento del sistema en función de los valores de los parámetros y las variables. Un sistema de ecuaciones diferenciales se puede representar como un campo vectorial , donde cada vector describe el cambio (en la concentración de dos o más proteínas) determinando hacia dónde y a qué velocidad se dirige la trayectoria (simulación). Los campos vectoriales pueden tener varios puntos especiales: un punto estable , llamado sumidero, que atrae en todas direcciones (obligando a las concentraciones a estar en un cierto valor), un punto inestable , ya sea una fuente o un punto de silla , que repele (obligando a las concentraciones a cambiar alejándose de un cierto valor), y un ciclo límite, una trayectoria cerrada hacia la que se dirigen en espiral varias trayectorias (haciendo que las concentraciones oscilen).

Una mejor representación, que maneja la gran cantidad de variables y parámetros, es un diagrama de bifurcación que utiliza la teoría de la bifurcación . La presencia de estos puntos especiales de estado estable en ciertos valores de un parámetro (por ejemplo, la masa) se representa mediante un punto y una vez que el parámetro pasa un cierto valor, se produce un cambio cualitativo, llamado bifurcación, en el que cambia la naturaleza del espacio, con profundas consecuencias para las concentraciones de proteínas: el ciclo celular tiene fases (parcialmente correspondientes a G1 y G2) en las que la masa, a través de un punto estable, controla los niveles de ciclina, y fases (fases S y M) en las que las concentraciones cambian de forma independiente, pero una vez que la fase ha cambiado en un evento de bifurcación ( punto de control del ciclo celular ), el sistema no puede volver a los niveles anteriores ya que en la masa actual el campo vectorial es profundamente diferente y la masa no se puede revertir a través del evento de bifurcación, lo que hace que un punto de control sea irreversible. En particular, los puntos de control S y M se regulan mediante bifurcaciones especiales llamadas bifurcación de Hopf y bifurcación de período infinito . [ cita requerida ]

Véase también

Notas

  1. ^ "¿Qué es la biología matemática? | Centro de Biología Matemática | Universidad de Bath". www.bath.ac.uk. Archivado desde el original el 23 de septiembre de 2018. Consultado el 7 de junio de 2018 .
  2. ^ "Existe una diferencia sutil entre los biólogos matemáticos y los biólogos teóricos. Los biólogos matemáticos tienden a trabajar en departamentos de matemáticas y a estar un poco más interesados ​​en las matemáticas inspiradas por la biología que en los problemas biológicos en sí, y viceversa". Carreras en biología teórica Archivado el 14 de septiembre de 2019 en Wayback Machine.
  3. ^ Longo G, Soto AM (octubre de 2016). "¿Por qué necesitamos teorías?" (PDF) . Avances en biofísica y biología molecular . Del siglo del genoma al siglo del organismo: nuevos enfoques teóricos. 122 (1): 4–10. doi :10.1016/j.pbiomolbio.2016.06.005. PMC 5501401. PMID  27390105 . 
  4. ^ Montévil M, Speroni L, Sonnenschein C, Soto AM (octubre de 2016). "Modelado de la organogénesis mamaria a partir de los primeros principios biológicos: células y sus limitaciones físicas". Progreso en biofísica y biología molecular . Del siglo del genoma al siglo del organismo: nuevos enfoques teóricos. 122 (1): 58–69. arXiv : 1702.03337 . doi :10.1016/j.pbiomolbio.2016.08.004. PMC 5563449. PMID  27544910 . 
  5. ^ Robeva R, Davies R, Hodge T, Enyedi A (otoño de 2010). "Módulos de biología matemática basados ​​en la biología molecular moderna y las matemáticas discretas modernas". CBE: Life Sciences Education . 9 (3). The American Society for Cell Biology: 227–40. doi :10.1187/cbe.10-03-0019. PMC 2931670 . PMID  20810955. 
  6. ^ Mallet J (julio de 2001). "Mimetismo: una interfaz entre la psicología y la evolución". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 98 (16): 8928–30. Bibcode :2001PNAS...98.8928M. doi : 10.1073/pnas.171326298 . PMC 55348 . PMID  11481461. 
  7. ^ Ian Stewart (1998), El otro secreto de la vida: Las nuevas matemáticas del mundo viviente, Nueva York: John Wiley, ISBN 978-0471158455 
  8. ^ Keller EF (2002). Dar sentido a la vida: explicar el desarrollo biológico con modelos, metáforas y máquinas. Harvard University Press. ISBN 978-0674012509.
  9. ^ Reed M (noviembre de 2015). "La biología matemática es buena para las matemáticas". Avisos de la AMS . 62 (10): 1172–1176. doi : 10.1090/noti1288 .
  10. ^ Baianu IC, Brown R, Georgescu G, Glazebrook JF (2006). "Biodinámica no lineal compleja en categorías, álgebra de dimensiones superiores y topos de Łukasiewicz–Moisil: transformaciones de redes neuronales, genéticas y neoplásicas". Axiomathes . 16 (1–2): 65–122. doi :10.1007/s10516-005-3973-8. S2CID  9907900.
  11. ^ Baianu IC (2004). "Modelos Łukasiewicz-Topos de redes neuronales, genoma celular y modelos dinámicos no lineales interactómicos" (PDF) . Archivado desde el original el 13 de julio de 2007. Consultado el 7 de agosto de 2011 .
  12. ^ Baianu I, Prisecaru V (abril de 2012). "Análisis de sistemas complejos de la diferenciación de células neuronales detenida durante el desarrollo y modelos análogos de ciclo celular en la carcinogénesis". Nature Precedings . doi : 10.1038/npre.2012.7101.1 .
  13. ^ ab "Investigación en biología matemática". Maths.gla.ac.uk . Consultado el 10 de septiembre de 2008 .
  14. ^ Jungck JR (mayo de 1997). «Diez ecuaciones que cambiaron la biología: matemáticas en los programas de biología para la resolución de problemas» (PDF) . Bioscene . 23 (1): 11–36. Archivado desde el original (PDF) el 26 de marzo de 2009.
  15. ^ Montévil M, Mossio M (mayo de 2015). "La organización biológica como cierre de restricciones" (PDF) . Journal of Theoretical Biology . 372 : 179–91. Bibcode :2015JThBi.372..179M. doi :10.1016/j.jtbi.2015.02.029. PMID  25752259. S2CID  4654439.
  16. ^ ab Baianu IC (1987). "Modelos informáticos y teoría de autómatas en biología y medicina". En Witten M (ed.). Modelos matemáticos en medicina . Vol. 7. Nueva York: Pergamon Press. págs. 1513–1577.
  17. ^ Barnett MP (2006). "Cálculo simbólico en las ciencias de la vida: tendencias y perspectivas" (PDF) . En Anai H, Horimoto K (eds.). Biología algebraica 2005. Álgebra computacional en biología. Tokio: Universal Academy Press. Archivado desde el original (PDF) el 16 de junio de 2006.
  18. ^ Preziosi L (2003). Modelado y simulación del cáncer (PDF) . Chapman Hall/CRC Press. ISBN 1-58488-361-8. Archivado desde el original (PDF) el 10 de marzo de 2012.
  19. ^ Witten M, ed. (1986). "Modelos informáticos y teoría de autómatas en biología y medicina" (PDF) . Modelado matemático: modelos matemáticos en medicina . Vol. 7. Nueva York: Pergamon Press. págs. 1513–1577.
  20. ^ Lin HC (2004). "Simulaciones por computadora y la cuestión de la computabilidad de los sistemas biológicos" (PDF) .
  21. ^ Modelos informáticos y teoría de autómatas en biología y medicina . 1986.
  22. ^ "Modelos de transformaciones naturales en biología molecular". SIAM y Sociedad de Biología Matemática, Reunión Nacional . N/A . Bethesda, MD: 230–232. 1983.
  23. ^ Baianu IC (2004). "Interactómica cuántica y mecanismos del cáncer" (PDF) . Informe de investigación comunicado al Instituto de Biología Genómica de la Universidad de Illinois en Urbana .
  24. ^ Kainen PC (2005). "Teoría de categorías y sistemas vivos" (PDF) . En Ehresmann A (ed.). Actas de la conferencia del centenario de Charles Ehresmann . Universidad de Amiens, Francia, 7-9 de octubre de 2005. pp. 1-5.{{cite book}}: CS1 maint: location (link) CS1 maint: location missing publisher (link)
  25. ^ "Bibliografía para aplicaciones de teoría de categorías/topología algebraica en física". PlanetPhysics. Archivado desde el original el 7 de enero de 2016. Consultado el 17 de marzo de 2010 .
  26. ^ "Bibliografía para la biofísica matemática y la medicina matemática". PlanetPhysics. 24 de enero de 2009. Archivado desde el original el 7 de enero de 2016. Consultado el 17 de marzo de 2010 .
  27. ^ "Autómatas celulares". Los Alamos Science . Otoño de 1983.
  28. ^ Preston K, Duff MJ (28 de febrero de 1985). Autómatas celulares modernos. Springer. ISBN 9780306417375.
  29. ^ "Teselación dual: de Wolfram MathWorld". Mathworld.wolfram.com. 2010-03-03 . Consultado el 2010-03-17 .
  30. ^ "Modelos informáticos y teoría de autómatas en biología y medicina | KLI Theory Lab". Theorylab.org. 26 de mayo de 2009. Archivado desde el original el 28 de julio de 2011. Consultado el 17 de marzo de 2010 .
  31. ^ Ogden R (2 de julio de 2004). «rwo_research_details». Maths.gla.ac.uk. Archivado desde el original el 2 de febrero de 2009. Consultado el 17 de marzo de 2010 .
  32. ^ Wang Y, Brodin E, Nishii K, Frieboes HB, Mumenthaler SM, Sparks JL, Macklin P (enero de 2021). "Impacto de la biomecánica tumor-parénquima en la progresión metastásica hepática: un enfoque multimodelo". Scientific Reports . 11 (1): 1710. Bibcode :2021NatSR..11.1710W. doi :10.1038/s41598-020-78780-7. PMC 7813881 . PMID  33462259. 
  33. ^ Oprisan SA, Oprisan A (2006). "Un modelo computacional de oncogénesis utilizando el enfoque sistémico". Axiomathes . 16 (1–2): 155–163. doi :10.1007/s10516-005-4943-x. S2CID  119637285.
  34. ^ "MCRTN – Acerca del proyecto de modelado tumoral". Calvino.polito.it . Consultado el 17 de marzo de 2010 .
  35. ^ "Intereses de investigación de Jonathan Sherratt". Ma.hw.ac.uk . Consultado el 17 de marzo de 2010 .
  36. ^ "Investigación de Jonathan Sherratt: Formación de cicatrices". Ma.hw.ac.uk . Consultado el 17 de marzo de 2010 .
  37. ^ Kuznetsov AV, Avramenko AA (abril de 2009). "Un modelo macroscópico de atascos de tráfico en axones". Ciencias biológicas matemáticas . 218 (2): 142–52. doi :10.1016/j.mbs.2009.01.005. PMID  19563741.
  38. ^ Wolkenhauer O, Ullah M, Kolch W, Cho KH (septiembre de 2004). "Modelado y simulación de la dinámica intracelular: elección de un marco adecuado". IEEE Transactions on NanoBioscience . 3 (3): 200–7. doi :10.1109/TNB.2004.833694. PMID  15473072. S2CID  1829220.
  39. ^ "Tyson Lab". Archivado desde el original el 28 de julio de 2007.
  40. ^ Fussenegger M, Bailey JE, Varner J (julio de 2000). "Un modelo matemático de la función de la caspasa en la apoptosis". Nature Biotechnology . 18 (2): 768–74. doi :10.1038/77589. PMID  10888847. S2CID  52802267.
  41. ^ Noè U, Chen WW, Filippone M, Hill N, Husmeier D (2017). "Inferencia en un modelo de ecuaciones diferenciales parciales de la circulación sanguínea arterial y venosa pulmonar mediante emulación estadística" (PDF) . 13.ª Conferencia internacional sobre métodos de inteligencia computacional para bioinformática y bioestadística, Stirling, Reino Unido, 1-3 de septiembre de 2016. Lecture Notes in Computer Science. Vol. 10477. págs. 184-198. doi :10.1007/978-3-319-67834-4_15. ISBN 9783319678337.
  42. ^ "Biología integrativa: modelado del corazón". Integrativebiology.ox.ac.uk. Archivado desde el original el 13 de enero de 2009. Consultado el 17 de marzo de 2010 .
  43. ^ Trappenberg TP (2002). Fundamentos de la neurociencia computacional . Estados Unidos: Oxford University Press Inc. pp. 1. ISBN 978-0-19-851582-1.
  44. ^ Churchland PS, Koch C, Sejnowski TJ (marzo de 1994). "¿Qué es la neurociencia computacional?". En Gutfreund H, Toulouse G (eds.). Biología y computación: la elección de un físico . Vol. 3. World Scientific. págs. 25–34. ISBN 9789814504140.
  45. ^ Semple C (2003). Filogenética de SAC. Oxford University Press. ISBN 978-0-19-850942-4.
  46. ^ "Ondas viajeras en una herida". Maths.ox.ac.uk. Archivado desde el original el 2008-06-06 . Consultado el 2010-03-17 .
  47. ^ "Leah Edelstein-Keshet: intereses de investigación f". Archivado desde el original el 12 de junio de 2007. Consultado el 26 de febrero de 2005 .
  48. ^ "La teoría mecanoquímica de la morfogénesis". Maths.ox.ac.uk. Archivado desde el original el 6 de junio de 2008. Consultado el 17 de marzo de 2010 .
  49. ^ "Formación de patrones biológicos". Maths.ox.ac.uk. Archivado desde el original el 12 de noviembre de 2004. Consultado el 17 de marzo de 2010 .
  50. ^ Hurlbert SH (1990). "Distribución espacial del unicornio montañoso". Oikos . 58 (3): 257–271. doi :10.2307/3545216. JSTOR  3545216.
  51. ^ Wooley TE, Baker RE , Maini PK (2017). "Capítulo 34: La teoría de la morfogénesis de Turing". En Copeland BJ , Bowen JP , Wilson R , Sprevak M (eds.). La guía de Turing . Oxford University Press . ISBN 978-0198747826.
  52. ^ ab "categoría de conjunto molecular". PlanetPhysics. Archivado desde el original el 7 de enero de 2016. Consultado el 17 de marzo de 2010 .
  53. ^ "Biología relacional abstracta (ARB)". Archivado desde el original el 7 de enero de 2016.
  54. ^ Rosen R (13 de julio de 2005). La vida misma: una investigación exhaustiva sobre la naturaleza, el origen y la fabricación de la vida . Columbia University Press. ISBN 9780231075657.
  55. ^ "El laboratorio de JJ Tyson". Virginia Tech . Archivado desde el original el 28 de julio de 2007. Consultado el 10 de septiembre de 2008 .
  56. ^ "El grupo de investigación de dinámica de redes moleculares". Universidad de Tecnología y Economía de Budapest . Archivado desde el original el 10 de febrero de 2012.

Referencias

Biología teórica

Lectura adicional

Enlaces externos