stringtranslate.com

bruno rossi

Bruno Benedetto Rossi ( / r ɒ s i / ; italiano : [ˈrossi] ; 13 de abril de 1905 - 21 de noviembre de 1993) fue un físico experimental italiano . Hizo importantes contribuciones a la física de partículas y al estudio de los rayos cósmicos . Graduado en 1927 por la Universidad de Bolonia , se interesó por los rayos cósmicos. Para estudiarlos, inventó un circuito electrónico de coincidencia mejorado y viajó a Eritrea para realizar experimentos que demostraron que la intensidad de los rayos cósmicos del Oeste era significativamente mayor que la del Este.

Obligado a emigrar en octubre de 1938 debido a las leyes raciales italianas , Rossi se mudó a Dinamarca, donde trabajó con Niels Bohr . Luego se mudó a Gran Bretaña, donde trabajó con Patrick Blackett en la Universidad de Manchester . Finalmente se fue a Estados Unidos, donde trabajó con Enrico Fermi en la Universidad de Chicago , y posteriormente en la Universidad de Cornell . Rossi permaneció en los Estados Unidos y se convirtió en ciudadano estadounidense.

Durante la Segunda Guerra Mundial , Rossi trabajó en radar en el Laboratorio de Radiación del MIT y desempeñó un papel fundamental en el Proyecto Manhattan , al frente del grupo en el Laboratorio de Los Álamos que llevó a cabo los Experimentos RaLa . Después de la guerra, Jerrold Zacharias lo reclutó en el MIT, donde Rossi continuó su investigación sobre los rayos cósmicos antes de la guerra.

En la década de 1960, fue pionero en la astronomía de rayos X y la física del plasma espacial . Su instrumentación en el Explorer 10 detectó la magnetopausa e inició los experimentos con cohetes que descubrieron Scorpius X-1 , la primera fuente extrasolar de rayos X.

Italia

Rossi nació en una familia judía en Venecia , Italia . Era el mayor de tres hijos de Rino Rossi y Lina Minerbi. Su padre era ingeniero eléctrico y participó en la electrificación de Venecia. Rossi recibió tutoría en casa hasta los catorce años, después de lo cual asistió al Ginnasio y al Liceo de Venecia. [1] Después de comenzar sus estudios universitarios en la Universidad de Padua , emprendió trabajos avanzados en la Universidad de Bolonia , donde recibió la Laurea en Física en 1927. [2] Su director de tesis fue Quirino Majorana , [3] quien fue un Conocido experimentalista y tío del físico Ettore Majorana . [4]

Florencia

En 1928, Rossi inició su carrera en la Universidad de Florencia , como asistente de Antonio Garbasso , que había fundado el Instituto Universitario de Física en 1920. [5] Estaba situado en Arcetri , sobre una colina que domina la ciudad. Cuando llegó Rossi, Garbasso era podestà de Florencia, designado por el gobierno fascista de Italia de Benito Mussolini . [6] Sin embargo, trajo al Instituto a un grupo de físicos brillantes que incluían a Enrico Fermi y Franco Rasetti antes de mudarse a Roma , así como a Gilberto Bernardini, Enrico Persico y Giulio Racah . [5] En 1929, el primer estudiante graduado de Rossi, Giuseppe Occhialini , obtuvo el título de doctor. [1]

En busca de investigaciones pioneras, Rossi centró su atención en los rayos cósmicos , que habían sido descubiertos por Victor Hess en vuelos en globo tripulado en 1911 y 1912. En 1929, Rossi leyó el artículo de Walther Bothe y Werner Kolhörster , que describía su descubrimiento de rayos cósmicos cargados. Partículas de rayos cósmicos que penetraron 4,1 centímetros (1,6 pulgadas) de oro. [7] Esto fue sorprendente, ya que las partículas cargadas más penetrantes conocidas en ese momento eran electrones provenientes de la desintegración radiactiva , que podían penetrar menos de un milímetro de oro. En palabras de Rossi,

Llegó como un destello de luz revelando la existencia de un mundo insospechado, lleno de misterios, que aún nadie había comenzado a explorar. Pronto se convirtió en mi abrumadora ambición participar en la exploración. [8]

Circuito de coincidencias de Rossi

En 1954, Bothe recibió el Premio Nobel de Física "por el método de la coincidencia y sus descubrimientos realizados con él" por un método para evaluar eventos coincidentes que implementó antes de 1924. Sin embargo, su implementación de este método fue muy engorrosa, ya que involucraba visualización. correlación de pulsos fotografiados. A las pocas semanas de leer su artículo con Kolhörster, Rossi inventó un circuito electrónico de coincidencia mejorado , que utilizaba tubos de vacío triodos . [9] El circuito de coincidencia de Rossi tiene dos ventajas principales: ofrece una resolución temporal muy precisa y puede detectar coincidencias entre cualquier número de fuentes de pulso. Estas características permiten identificar eventos interesantes que producen pulsos coincidentes en varios contadores. Estos raros eventos se destacan incluso en presencia de altas tasas de pulsos de fondo no relacionados en los contadores individuales. El circuito no solo proporcionó la base para la instrumentación electrónica en física nuclear y de partículas, sino que también implementó el primer circuito electrónico AND , que es un elemento fundamental de la lógica digital omnipresente en la electrónica moderna . [1] [10]

En ese momento, su alumno Walther Müller acababa de desarrollar una versión tubular mejorada del contador Geiger original , inventado por Hans Geiger en 1908 . Estos tubos Geiger-Müller (tubos o contadores GM) hicieron posibles las investigaciones de Bothe. Con la ayuda de Occhialini en la construcción de tubos GM, y con la ayuda de un práctico circuito de coincidencia, Rossi confirmó y amplió los resultados de Bothe, quien lo invitó a visitar Berlín en el verano de 1930. Aquí, con el apoyo financiero dispuesto por Garbasso, Rossi colaboró ​​en nuevas investigaciones sobre la penetración de los rayos cósmicos. También estudió la descripción matemática de Carl Størmer de las trayectorias de las partículas cargadas en el campo magnético de la Tierra . [11] Sobre la base de estos estudios, se dio cuenta de que la intensidad de los rayos cósmicos provenientes del este podría ser diferente de la de los del oeste. Desde Berlín presentó el primer artículo en el que sugería que las observaciones de este efecto este-oeste no sólo podrían confirmar que los rayos cósmicos son partículas cargadas, sino también determinar el signo de su carga. [12]

conferencia de roma

En la conferencia de Roma sobre física nuclear de 1931, Rossi conoció a Robert Millikan y Arthur Compton .

En el otoño de 1931, Fermi y Orso Mario Corbino organizaron en Roma una conferencia internacional sobre física nuclear , que fue patrocinada por la Real Academia de Italia . Fermi invitó a Rossi a dar una charla introductoria sobre los rayos cósmicos. Entre el público estaban Robert Millikan y Arthur Compton , ambos ganadores del Premio Nobel de Física en 1923 y 1927, respectivamente. [1] Durante la década de 1920, Millikan, famoso por su experimento de la gota de aceite , realizó extensas mediciones de la misteriosa radiación descubierta por Hess. Acuñó el nombre de "rayos cósmicos" y propuso que eran fotones creados por la fusión del hidrógeno en el espacio interestelar. No le agradó la presentación de evidencia de que la mayoría de los rayos cósmicos observados son partículas cargadas de energía. Más tarde, Rossi escribió:

A Millikan claramente le molestó que un simple joven destrozara su amada teoría, hasta el punto de que a partir de ese momento se negó a reconocer mi existencia. (En retrospectiva, debo admitir que podría haber tenido más tacto en mi presentación). [13]

Compton, famoso por el efecto Compton , tuvo una reacción más positiva, ya que más tarde le dijo a Rossi que la charla lo había motivado a comenzar su propia investigación sobre los rayos cósmicos. [13]

curva de Rossi

Inmediatamente después de la conferencia de Roma, Rossi llevó a cabo dos experimentos que condujeron a un avance significativo en la comprensión de los rayos cósmicos. Ambos implicaban coincidencias triples de pulsos de tres contadores Geiger; pero en el primero, los contadores estaban alineados y separados por bloques de plomo, mientras que en el segundo, estaban colocados en una configuración triangular de modo que los tres no pudieran ser atravesados ​​por una sola partícula que viajara en línea recta. Los resultados de la primera configuración demostraron la existencia de partículas de rayos cósmicos capaces de penetrar 1 metro (3 pies 3 pulgadas) de plomo. [14]

Con la segunda configuración encerrada en una caja de plomo, los resultados mostraron que algunos rayos cósmicos interactúan en el plomo para producir múltiples partículas secundarias. En una extensión del segundo experimento, midió la tasa de coincidencias triples en función de la cantidad de plomo sobre los contadores. Un gráfico de esta tasa frente al espesor, que llegó a conocerse como curva de Rossi, mostró un rápido aumento a medida que aumentaba la capa de plomo, seguido de un lento descenso. [15] Estos experimentos demostraron que los rayos cósmicos a nivel del suelo constan de dos componentes: un componente "blando" que es capaz de generar prolíficamente múltiples eventos de partículas, y un componente "duro" que es capaz de atravesar grandes espesores de plomo. En ese momento, la naturaleza física de ambos era un misterio, porque aún no encajaban en el creciente cuerpo de conocimientos sobre la física nuclear y de partículas. [1] [16]

A finales de 1931, Rossi consiguió que Occhialini trabajara en el Laboratorio Cavendish de la Universidad de Cambridge con Patrick Blackett , a quien había conocido en Berlín. [17] Con la ayuda de la nueva técnica de coincidencia electrónica, Occhialini ayudó a Blackett a desarrollar la primera cámara de niebla contracontrolada , con la que confirmaron el descubrimiento del positrón por Carl Anderson [18] y dedujeron que los electrones positivos se producen en asociación con negativos por producción de pares . [19] En algunos eventos se observaron hasta 23 electrones positivos y negativos, que estaban claramente relacionados con las lluvias del componente blando de Rossi. [20]

padua

El telescopio de rayos cósmicos de Rossi

En 1932, Rossi ganó un concurso para un puesto académico en una universidad italiana y fue nombrado profesor de física experimental en la Universidad de Padua. Poco después de la llegada de Rossi, el rector le pidió que supervisara el diseño y la construcción del nuevo Instituto de Física de Padua. Aunque esta tarea desvió su atención de la investigación y la enseñanza, cumplió de buena gana y el instituto abrió sus puertas en 1937. [21]

Efecto Este-Oeste

A pesar de esta distracción, Rossi pudo completar, en 1933, un experimento sobre el efecto este-oeste que había iniciado antes de abandonar Arcetri. Debido a que este efecto es más prominente cerca del ecuador, organizó una expedición a Asmara en Eritrea , que entonces era una colonia italiana en el Mar Rojo en una latitud de 15° N. [22] Con Sergio De Benedetti, [23] estableció creó un "telescopio de rayos cósmicos", que constaba de dos contadores GM separados y coincidentes, cuyo eje de máxima sensibilidad podía apuntar en cualquier dirección. Pronto se hizo evidente que la intensidad de los rayos cósmicos procedentes del Oeste era significativamente mayor que la del Este. Esto significó que hubo una mayor afluencia de partículas primarias positivas que de negativas. En ese momento, este resultado fue sorprendente, porque la mayoría de los investigadores tenían la noción preconcebida de que los primarios serían electrones negativos. [1]

Justo cuando Rossi abandonaba Eritrea, recibió noticias de dos observaciones de un efecto similar de este a oeste. Estos fueron publicados en Physical Review . Uno fue de Thomas H. Johnson, [24] y el otro fue de Compton y su alumno, Luis Álvarez , quienes informaron observaciones en la Ciudad de México , donde la latitud es 19° N. [25] Porque otros habían llevado a cabo el primer experimento. Al aprovechar su importante idea de 1930, Rossi quedó decepcionado, pero publicó sus resultados inmediatamente después de regresar a Padua. [26] Posteriormente, con Frederick C. Chromey, Álvarez y Rossi patentaron un "Dispositivo de Determinación Vertical", que hacía uso de telescopios de rayos cósmicos. [27]

En Eritrea, Rossi descubrió otro fenómeno que se convertiría en el tema principal de su investigación sobre rayos cósmicos en la posguerra: extensas lluvias de aire de rayos cósmicos . El descubrimiento se produjo durante las pruebas para determinar la tasa de coincidencias accidentales entre los contadores Geiger de su detector. Para asegurarse de que ninguna partícula pudiera activar los contadores, los extendió en un plano horizontal. En esta configuración, la frecuencia de coincidencias era mayor que la calculada en base a las tasas individuales y al tiempo de resolución del circuito de coincidencias. Rossi concluyó que:

... de vez en cuando el aparato de control se ve afectado por lluvias muy extensas de partículas, que provocan coincidencias entre contadores, incluso situados a grandes distancias entre sí. [1]

En 1937, Rossi conoció a Nora Lombroso, hija de Ugo Lombroso, profesor de fisiología de la Universidad de Palermo , y Silvia Forti. Su abuelo fue el renombrado médico y criminólogo Cesare Lombroso , y sus tías, Gina Lombroso y Paola Lombroso Carrara, fueron reconocidas escritoras y educadoras italianas. En abril de 1938, Bruno y Nora se casaron y fundaron una familia en Padua. [1] [28]

Aunque Rossi evitaba la política, algunos de sus asociados eran opositores activos del estado fascista . Por ejemplo, fue mentor de Eugenio Curiel , quien se convirtió en miembro del partido comunista , mientras completaba sus estudios en Padua. Posteriormente, en 1943, Curiel se unió a la resistencia en Milán, y en 1945, fue asesinado por soldados de la República de Salò, un estado títere alemán . De manera similar, Ettore Pancini, que recibió su laurea bajo la dirección de Rossi en 1938, pasó los años de la guerra alternando entre la investigación de los rayos cósmicos y la participación activa en los movimientos de resistencia italianos de Padua y Venecia. [29]

Debido a estas asociaciones, y debido a que ambos Rossi eran judíos , se volvieron aprensivos a medida que el antisemitismo en Italia crecía bajo la influencia de la Alemania nazi . Finalmente, como resultado de las leyes antijudías resultantes del Manifiesto de la Raza , Rossi fue despedido de su cátedra. [30] En sus palabras:

Finalmente, en septiembre de 1938, supe que ya no era ciudadano de mi país y que, en Italia, mi actividad como profesor y científico había llegado a su fin. [31]

Exilio

Con este revés, [32] Rossi inició una etapa importante de su carrera. Resumió este período en unas memorias: "The Decay of 'Mesotrons' (1939-1943): Experimental Particle Physics in the Age of Innocence", que presentó en un simposio en el Fermilab en 1980. [33] El 12 de octubre de 1938, Los Rossi partieron hacia Copenhague , donde el físico danés Niels Bohr lo había invitado a estudiar. La pareja no tenía intención de regresar a Italia y Bohr facilitó la búsqueda de Rossi de una posición más segura patrocinando una conferencia a la que asistieron destacados físicos. Esperaba que uno de ellos le encontrara un trabajo a Rossi, y pronto, Rossi recibió una invitación para venir a la Universidad de Manchester , donde Blackett estaba desarrollando un importante centro de investigación de rayos cósmicos. Después de dos agradables meses en Dinamarca, Rossi y Nora llegaron a Manchester . [34]

Manchester

La estancia de Rossi en Manchester fue breve, pero productiva. En ese momento, se disponía de una comprensión clara del componente blando. En 1934, Hans Bethe y Walter Heitler publicaron una descripción cuantitativa [35] no sólo de la producción de pares electrón-positrón por fotones energéticos, sino también de la producción de fotones por electrones energéticos y positrones . [36] En Manchester, Rossi colaboró ​​con Ludwig Jánossy en un experimento que demostró la exactitud de la teoría de Bethe-Heitler del segundo proceso, que aún no había sido completamente confirmada. [37] Este experimento también introdujo la técnica de anti-coincidencia , que se ha convertido en una característica omnipresente de los instrumentos para detectar y analizar partículas energéticas. [1]

Para entonces, las observaciones de la cámara de niebla habían aclarado la naturaleza del componente duro. En 1936, Anderson y su alumno, Seth Neddermeyer , descubrieron partículas de rayos cósmicos con masa intermedia entre la del electrón y la del protón, [38] a las que Anderson llamó "mesotrones". Posteriormente, el mesotrón se conoció como "mesón μ", [39] que se redujo a " muón ". [1] Justo antes de la conferencia de Copenhague, Blackett sugirió que las variaciones observadas en la intensidad de los rayos cósmicos con la temperatura atmosférica podrían ser una indicación de que los mesotrones son inestables, [40] y mantuvo intensas discusiones con Rossi sobre este tema. Como resultado, Rossi abandonó Manchester decidido a confirmar su decadencia y medir su vida. [33]

chicago

Mientras la guerra se cernía sobre Europa, Blackett y otros aconsejaron a Rossi que abandonara Gran Bretaña. En consecuencia, le escribió a Compton, quien lo invitó a asistir a un simposio de verano en Chicago y le insinuó que podría haber un trabajo disponible. En junio de 1939, los Rossi zarparon hacia Nueva York , donde fueron recibidos por Fermi y su esposa Laura , quienes también habían abandonado Italia a causa de las leyes raciales. Después de una breve reunión con los Fermis, Bethe les ofreció a los Rossi llevarlos a Chicago. Aceptaron agradecidos y llegaron a la Universidad de Chicago a mediados de junio de 1939. [41]

desintegración del mesotrón

Diagrama del aparato utilizado en 1939 por Rossi, Hillberry y Hoag para demostrar que los mesotrones son inestables. Tenga en cuenta que el absorbente de carbón es removible y que las áreas sombreadas representan absorbentes de plomo.

Inmediatamente después de que una sesión de un simposio sobre la inestabilidad del mesotrón llegara a un consenso de que se necesitaban observaciones más definitivas, Rossi y Compton comenzaron a planificar un experimento. Debido a que la intensidad de la componente dura aumenta con la altitud, mientras que la densidad del aire disminuye, Compton sugirió que las investigaciones debían realizarse en Mount Blue Sky en Colorado , donde había trabajado a principios de los años 1930, y donde se accedía a un sitio de investigación. a 4.310 metros (14.140 pies) de altura lo proporciona Mount Blue Sky Scenic Byway , la carretera pavimentada más alta de América del Norte. Instó a Rossi a comenzar una serie de experimentos ese verano, antes de que la nieve bloqueara la carretera, y para ayudar, reclutó a dos de sus amigos, Norman Hillberry y J. Barton Hoag, [42] [43] y a un estudiante, Winston Bostick . Rossi y sus ayudantes ensamblaron apresuradamente el equipo y lo cargaron en un autobús destartalado que Compton tomó prestado del departamento de zoología. [33]

En ese momento, se sabía que el principal proceso por el cual los mesotrones pierden energía es la pérdida de energía por ionización, que se describe mediante la fórmula de Bethe y es proporcional a la masa por unidad de área de la capa de material atravesada. Si este fuera el único proceso, la intensidad del componente duro que pasa a través de una capa de material sólido disminuiría en la misma cantidad que en una capa equivalente de aire. Rossi y sus colaboradores descubrieron que la disminución era significativamente mayor en la atmósfera que en la capa correspondiente de carbono sólido. Debido a que la distancia recorrida en el aire era mucho mayor que la del carbono, interpretaron este resultado como evidencia de la desintegración del mesotrón y, teniendo en cuenta el efecto de la dilatación relativista del tiempo , estimaron su vida media en reposo en aproximadamente 2 microsegundos. [44]

El verano siguiente, Rossi regresó al Monte Evans, donde realizó experimentos cerca del lago Echo a una altura de 3230 metros (10,600 pies). Con el uso de técnicas anti-coincidencia, el aparato permitió medir el camino libre medio antes de la desintegración de dos grupos de mesotrones con diferente impulso medio. Los resultados, publicados con David B. Hall, no sólo confirmaron la proporcionalidad entre el momento de las partículas y el camino libre medio de los mesotrones antes de la desintegración que se espera sobre la base de la teoría de la relatividad , sino que también presentaron una estimación mejorada de la vida en reposo: ( 2,4±0,3) microsegundos. [45] Estos resultados y los del año anterior no sólo fueron los primeros en demostrar definitivamente que los mesotrones son inestables, sino también la primera confirmación experimental de la dilatación del tiempo de los relojes en movimiento predicha por la teoría de la relatividad. [1]

Cornell

En Chicago, el puesto de Rossi como investigador asociado no era permanente y Compton no pudo conseguirle uno mejor. En consecuencia, inició una búsqueda de empleo, durante la cual impartió un seminario en la Universidad de Cornell , donde casualmente la muerte había creado una vacante en el departamento de física. Después de que Bethe sugirió que se debería invitar a Rossi a ocupar este puesto, fue nombrado profesor asociado en Cornell. En el otoño de 1940, después de regresar a Chicago desde Colorado, los Rossi partieron hacia Ithaca . [46]

En Cornell, Rossi conoció a su primer estudiante de posgrado estadounidense, Kenneth Greisen , con quien escribió un artículo, "Cosmic-Ray Theory", que se publicó en Reviews of Modern Physics [47] y se hizo conocido entre los investigadores de rayos cósmicos como " La biblia". [48] ​​Durante el verano de 1941, Greisen y físicos de Denver y Boulder acompañaron a Rossi al Monte Evans, donde refinaron el conocimiento de la proporcionalidad entre el impulso del mesotrón y la vida antes de la desintegración. [49] Greisen y Rossi también llevaron a cabo experimentos que demostraron, en términos de procesos documentados en la "Biblia", que no todas las partículas del componente blando podían ser producidas por mesotrones del componente duro. Interpretaron esto como evidencia de electrones o fotones primarios, [50] pero más tarde se hizo evidente que el exceso blando surge de la desintegración de los piones neutros . [1]

Después de la expedición a Colorado en 1941, Rossi decidió que la cuestión de si los mesotrones se desintegraban ya estaba respondida. Sin embargo, no estaba satisfecho con la precisión con la que se había determinado la vida útil, ya que las estimaciones existentes dependían de la masa del mesotrón, que no se conocía con precisión. Para realizar una medición más directa, diseñó un aparato para medir el intervalo de tiempo entre la llegada de un mesotrón a un absorbente, donde se detuvo, y la emisión de un electrón cuando el mesotrón se desintegró. Para ayudar, obtuvo la ayuda del estudiante graduado Norris Nereson. En el centro de su experimento había un "cronómetro", que era un circuito electrónico que producía un pulso cuya altura era exactamente proporcional al intervalo de tiempo y que podía registrarse fotografiando la traza de un osciloscopio . [51]

Este fue el primer convertidor de tiempo a amplitud , otra de las aportaciones de Rossi a las técnicas electrónicas de la física experimental. En el caso de absorbentes de plomo y latón, se graficó el número de desintegraciones en función del tiempo. Estas curvas de desintegración tenían la misma forma exponencial que las de las sustancias radiactivas ordinarias y daban una vida útil media de 2,3 ± 0,2 microsegundos, [52] que luego se refinó a 2,15 ± 0,07 microsegundos. [53] Después de la guerra, Rossi descubrió que sus colegas italianos, Marcello Conversi y Oreste Piccioni , habían realizado experimentos muy similares a los suyos y habían medido una vida útil consistente con su resultado. [54] [55]

Mirando retrospectivamente lo que llamó la "Era de la Inocencia", Rossi escribió:

¿Cómo es posible que se puedan lograr resultados relacionados con problemas fundamentales de la física de partículas elementales mediante experimentos de una simplicidad casi infantil, que cuestan sólo unos pocos miles de dólares y requieren sólo la ayuda de uno o dos estudiantes de posgrado? [33]

Los Álamos

Dibujos de una cámara cilíndrica de iones rápidos de la patente estadounidense de Allen y Rossi: 2485469

Al finalizar su trabajo sobre mesotrones, Rossi centró su atención en el esfuerzo bélico. En 1942, mientras viajaba de Ithaca a Cambridge, Massachusetts , se convirtió en consultor en desarrollo de radares en el Laboratorio de Radiación del Instituto Tecnológico de Massachusetts . Aquí, junto con Greisen, inventó un "circuito de seguimiento de alcance", que fue patentado después de la guerra. [56]

A principios de julio de 1943, Bethe invitó a Rossi a unirse al Proyecto Manhattan . Al cabo de un mes, se presentó a trabajar en el Laboratorio de Los Álamos . Unas semanas más tarde, Nora y su hija de tres años, Florence, se unieron a Rossi en Los Alamos, Nuevo México . El director del laboratorio, Robert Oppenheimer , pidió a Rossi que formara un grupo para desarrollar los instrumentos de diagnóstico necesarios para crear la bomba atómica. [57] Pronto se dio cuenta de que ya existía un grupo con una misión similar encabezado por el físico suizo Hans H. Staub. Los dos decidieron fusionar sus esfuerzos en un solo "Grupo Detector". Fueron asistidos por aproximadamente veinte jóvenes investigadores, [58] entre ellos Matthew Sands, un "mago de la electrónica", que más tarde obtuvo un doctorado con Rossi, y David B. Nicodemus , a quien Staub trajo de la Universidad de Stanford , que era un experto en detectores de partículas. [59]

Cámara de ionización rápida

El desarrollo de bombas requirió grandes detectores de radiación ionizante, cuya respuesta es proporcional a la energía liberada en el detector y sigue cambios rápidos en la intensidad de la radiación. Desde las primeras investigaciones sobre radiactividad , la radiación se midió en términos de ionización , pero las cámaras de ionización existentes tardaban en responder a los cambios. Para abordar este problema, Rossi y Staub llevaron a cabo un análisis cuidadoso de los pulsos que resultan cuando partículas cargadas individuales crean iones dentro de una cámara de ionización. [60] Se dieron cuenta de que la alta movilidad de los electrones libres extraídos de los átomos ionizados significa que los pulsos producidos por partículas individuales pueden ser muy breves. Con James S. Allen, Rossi encontró mezclas de gases con alta movilidad electrónica y baja unión electrónica . [61] Sobre la base de estas investigaciones, Allen y Rossi inventaron la "cámara de ionización rápida", que patentaron después de la guerra. [62] Fue un factor crucial en el éxito del Proyecto Manhattan y se utilizó ampliamente en la investigación de posguerra sobre física de partículas. [58]

Experimentos de RaLa

Configuración experimental para el disparo 78 de RaLa el 13 de mayo de 1947, en Bayo Canyon . Cada caja rectangular contiene ocho cámaras de ionización cilíndricas, similares a las de los dibujos de patente.

En abril de 1944, el proyecto Manhattan experimentó una crisis, cuando el grupo de Emilio Segrè descubrió que el plutonio producido en reactores no funcionaría en un arma de plutonio tipo pistola como el " Thin Man ". En respuesta, Oppenheimer reorganizó completamente el laboratorio para centrarse en el desarrollo de un arma de tipo implosión . [63]

Rossi fue reclutado para implementar un método para probar varios diseños de armas para llegar a uno que produjera una implosión esférica simétrica con precisión. [64] Las pruebas midieron los cambios en la absorción de rayos gamma en una esfera metálica mientras experimentaba una compresión implosiva. [65] Los rayos gamma fueron emitidos por una pastilla del radioisótopo de vida corta Lantano-140 colocado en el centro de la esfera. El término experimento RaLa es una contracción de La ntano radioactivo . A medida que avanzaba la compresión, se detectó el rápido aumento de la absorción como una disminución de la intensidad de los rayos gamma registrada fuera del conjunto. [66]

Los experimentos de RaLa revelaron muchos obstáculos en el camino hacia una implosión exitosa. [65] Para comprender los chorros problemáticos que plagaron los primeros diseños de implosión, fueron necesarios otros métodos de prueba, pero los experimentos de RaLa desempeñaron un papel principal en el diseño de lentes explosivas . En su historia del proyecto de Los Álamos, David Hawkins escribió: "RaLa se convirtió en el experimento más importante que afectó al diseño final de la bomba". [67]

Diagnóstico trinitario

Insignias de Los Álamos de Bruno y Nora Rossi

El 16 de julio de 1945, se detonó un dispositivo de plutonio de tipo implosión en el sitio Trinity cerca de Alamogordo, Nuevo México . El nombre en clave de este dispositivo era " El gadget ", y su diseño era muy similar al arma Fat Man que fue lanzada sobre Nagasaki veinticuatro días después. [68]

En preparación para Trinity, Rossi diseñó instrumentos para registrar la radiación gamma durante la reacción en cadena, cuya duración se esperaba que fuera de aproximadamente 10 nanosegundos. Las observaciones en esta escala de tiempo estaban casi más allá del estado de la técnica en 1945, pero Rossi diseñó y construyó una gran cámara de ionización cilíndrica cuya velocidad de respuesta era adecuada porque sus electrodos coaxiales estaban separados por un estrecho espacio de sólo 1 centímetro (0,39 pulgadas). . [68]

Para registrar la señal, instaló un osciloscopio muy rápido, proporcionado como prototipo por los Laboratorios DuMont , en un búnker subterráneo a varios cientos de pies del Gadget, donde fue fotografiado. Para llevar la señal al osciloscopio ideó una línea de transmisión coaxial de gran tamaño , cuyo conductor interior se iba haciendo más pequeño a medida que pasaba de la cámara al osciloscopio. Debido a que esta configuración mejoró la señal que llega al osciloscopio, no hubo necesidad de amplificación. Para confirmar este sorprendente comportamiento, Rossi consultó con el profesor de Harvard Edward Purcell . [68] [69]

Unos días después de la prueba, Rossi entró en el cuarto oscuro con Fermi y, antes de que se secara la película recién revelada, pudieron calcular la tasa de crecimiento inicial de la actividad nuclear, que era información crucial para el futuro desarrollo de armas. De los tres intentos de medir este ritmo en Trinity, el de Rossi fue el único que tuvo pleno éxito. [70]

MIT

Con el éxito del Proyecto Manhattan y el Laboratorio de Radiación, el MIT entró en una nueva era de " gran ciencia " financiada por el gobierno de Estados Unidos. [71] La expansión del MIT en física nuclear fue encabezada por Jerrold R. Zacharias , quien fue a Los Álamos al final de la guerra y reclutó a Viki Weisskopf y Rossi como profesores del MIT. [72] Rossi salió de Los Álamos hacia Cambridge el 6 de febrero de 1946. [73]

Dentro del nuevo Laboratorio de Ciencias Nucleares , encabezado por Zacharias, a Rossi se le encomendó la creación de un grupo de investigación de rayos cósmicos en el MIT. Para ayudar, reclutó a cuatro jóvenes científicos que habían estado en Los Álamos como candidatos a doctorado: Herbert Bridge, Matthew Sands, Robert Thompson y Robert Williams. También vinieron a trabajar con él dos que habían estado en el Laboratorio de Radiación: John Tinlot y Robert Hulsizer. Los seis eran más maduros que los estudiantes de posgrado típicos, ya que tenían varios años de experiencia en investigación en tiempos de guerra. En consecuencia, recibieron un estipendio similar al de un investigador postdoctoral , que fue financiado por la Oficina de Investigación Naval y les permitió mantener a sus familias durante sus estudios de posgrado. [74]

Para esta nueva fase de sus actividades, Rossi hizo un cambio fundamental de enfoque. En sus palabras:

En mi nuevo cargo, mi actividad sería muy diferente a la de años anteriores. Luego, trabajando solo o, como mucho, con la ayuda de algunos estudiantes construía los instrumentos, los llevaba al lugar donde debían usarse, hacía las mediciones y analizaba los resultados. Ahora tenía la responsabilidad de todo un grupo y lo que importaba no era mi propio trabajo, sino el trabajo del grupo. Mi tarea era identificar los programas de investigación más prometedores entre los que estaban a nuestro alcance, ayudar donde fuera necesario en la planificación de la instrumentación o en la evaluación de los resultados experimentales, todo ello sin desanimar la iniciativa individual de los investigadores. [75]

Partículas elementales

Con el descubrimiento del pión en 1947, la búsqueda de nuevas partículas elementales se convirtió en un tema de investigación popular. [76] Al operar cámaras de ionización rápida dentro de una cámara de niebla, Herbert demostró que las ráfagas de ionización que registraron fueron producidas principalmente por rayos cósmicos de energía relativamente baja, cuyas interacciones nucleares generalmente implican la expulsión de varios fragmentos nucleares fuertemente ionizantes . Basándose en este efecto, él y Rossi demostraron que el comportamiento de estas interacciones es similar al de las lluvias penetrantes. [77] [78]

El grupo de Rossi se centró en el uso de cámaras de niebla para estudiar sus propiedades e interacciones. En 1948, con la ayuda de una cámara de niebla de múltiples placas en la que se alternaban placas de plomo con placas de aluminio, Gregory, Rossi y Tinlot demostraron que la fuente del componente electromagnético de las interacciones de los rayos cósmicos eran predominantemente fotones energéticos, más que electrones. [79] Este resultado confirmó la sugerencia de Oppenheimer de 1947 de que los piones neutros se producen en interacciones, junto con los cargados, y que este componente surge de su rápida desintegración en fotones. [80]

Para estudiar las nuevas partículas elementales, Bridge y Martin Annis operaron una gran cámara de niebla rectangular de múltiples placas en Echo Lake. [81] Esta investigación sirvió de base para una tesis doctoral de 1951 de Annis, supervisada por Rossi. Al año siguiente, estos autores, junto con otro alumno de Rossi, Stanislaw Olbert, [82] demostraron cómo derivar información sobre las energías de las partículas a partir de mediciones de su dispersión múltiple . Esto añadió otra forma de utilizar cámaras de niebla para medir las propiedades de las partículas elementales. [83] A principios de 1953, con Bridge, Richard Safford y Charles Peyrou, Rossi publicó los resultados de un estudio exhaustivo en cámara de niebla de las partículas elementales que llegaron a ser conocidas como kaones . [84] Peyrou era un visitante de la École Polytechnique , donde había obtenido un valor preciso de la masa del muón en 1947, [85] y Safford era alumno de Rossi. [84]

Conferencia de Bagnères-de-Bigorre

En 1952, se había descubierto un desconcertante "zoológico" de partículas elementales, con diversas masas, esquemas de desintegración, nomenclatura y fiabilidad de identificación. Para hacer frente a esta situación, Blackett y Leprince-Ringuet organizaron una Conferencia Internacional sobre Rayos Cósmicos en Bagnères-de-Bigorre en 1953. [86] Según James Cronin , "esta conferencia puede situarse en importancia en la misma categoría que otras dos famosas conferencias, el congreso de Solvay de 1927 y la Conferencia de Shelter Island de 1948." [87]

Leprince-Ringuet pidió a Rossi que resumiera las nuevas informaciones presentadas en la conferencia y propusiera una nomenclatura para las nuevas partículas. Antes de la conferencia, en respuesta a esta última tarea, Rossi hizo circular una sugerencia de que las partículas con masa menor que la de un neutrón se designaran con letras griegas minúsculas y aquellas con masa mayor se designaran con letras griegas mayúsculas. En su charla del 11 de julio de 1953, informó que los resultados de la conferencia, que había recopilado con la ayuda de Powell y Fretter, [88] eran consistentes con este esquema, que se utilizó comúnmente después. [87]

Lo más destacado fue la declaración de Leprince-Ringuet en su discurso de clausura: "...en el futuro tendremos que utilizar aceleradores de partículas". Con el Cosmotron de 3 GeV ya en funcionamiento en el Laboratorio Nacional de Brookhaven , esta declaración reflejó un consenso entre los participantes. [87] Como resultado, el grupo de Rossi comenzó a reducir sus experimentos en la cámara de niebla. Sin embargo, en 1954, Bridge, Hans Courant, Herbert DeStaebler, Jr. y Rossi informaron sobre un evento inusual en el que una partícula que se detenía con una sola carga se descomponía en tres fotones cuyas energías sumaban más que la energía en reposo del protón. Esta es la firma de una aniquilación de antiprotones . [89] [90] Al año siguiente, un grupo dirigido por Owen Chamberlain y Emilio Segrè detectó antiprotones, [91] por lo que recibieron el Premio Nobel de Física en 1960. [92]

Amplias duchas de aire

En el momento de la conferencia de Bagnères-de-Bigorre, Rossi ya había centrado su atención en las implicaciones astrofísicas de los fenómenos de rayos cósmicos, en particular las lluvias de aire extensas. Después del reconocimiento de Rossi, en Eritrea, de que estos acontecimientos existen, fueron estudiados extensamente por Pierre Auger , [93] y por Williams. [94] En ese momento, la respuesta extremadamente rápida de los contadores de centelleo recientemente desarrollados ofrecía una nueva forma de estudiar la estructura de las lluvias de aire. Para ello, Rossi reclutó a su alumno, George W. Clark , que completó su doctorado en 1952, y a Piero Bassi, que era un visitante de la Universidad de Padua. Como no había material de centelleo sólido disponible, decidieron utilizar terfenilo disuelto en bencina , que es un centelleador líquido eficaz . Con la ayuda de tres contadores desplegados en el tejado del edificio de Física del MIT durante el invierno de 1952/53, descubrieron que las partículas de lluvia llegaban a sólo uno o dos metros de un disco, que viaja casi a la velocidad de la luz en la dirección del eje de la ducha. [95]

Este resultado demostró que los contadores de centelleo no sólo pueden determinar los tiempos de llegada de los discos de lluvia a muchos detectores repartidos en un área grande, sino también estimar el número de partículas que chocan con cada detector. Estas capacidades combinan el método de "temporización rápida" para determinar las direcciones de llegada de las lluvias con el método de muestreo de densidad para determinar su tamaño y la ubicación de sus ejes. [96]

experimento agassiz

Con este progreso, el grupo de Rossi inició un importante experimento que podría medir tanto las energías primarias como las direcciones de llegada de extensas lluvias de aire. En este esfuerzo participaron: George Clark, William Kraushaar, [97] John Linsley , James Earl y Frank Scherb. Kraushaar llegó al MIT procedente de Cornell en 1949, después de obtener su doctorado con Kenneth Greisen. Con el apoyo del profesor Donald Menzel , director del Observatorio de la Universidad de Harvard , el grupo de Rossi desplegó quince centelleadores líquidos, de un área de 1 metro cuadrado (11 pies cuadrados) en los terrenos boscosos de la estación Agassiz del observatorio . Las señales se llevaron por cables a una cabaña Quonset , donde se mostraron en quince oscilógrafos y se registraron fotográficamente. [96]

Poco después de que el experimento comenzara a registrar datos de lluvia, un rayo encendió el líquido inflamable de uno de los mostradores. Los bomberos locales extinguieron rápidamente el incendio resultante antes de que se extendiera a los árboles cercanos, que quedaron empapados con agua de lluvia. Debido a que los árboles desempeñaban un papel esencial en la supresión de la convección atmosférica que degradaría las observaciones telescópicas, Harvard y el MIT llevaron a cabo tensas negociaciones, hasta que se instaló un elaborado sistema de protección contra incendios y se permitió que se reanudara el experimento. [96] Para eliminar la amenaza de incendio, Clark, Frank Scherb y William B. Smith crearon una "fábrica" ​​que fabricaba discos centelleadores de plástico no inflamables, cuyo espesor era de 10 centímetros (3,9 pulgadas) y cuyo diámetro era de aproximadamente 1 metro (3 pies). 3 en). [98]

Después de cambiar al plástico a finales de la primavera de 1956, el experimento se desarrolló de forma continua. Sus hallazgos se publicaron en Nature [99] y Physical Review . [100] Rossi resumió los resultados más importantes como:

  1. Una medición precisa de la densidad de las partículas de la ducha en función de la distancia al centro de la ducha.
  2. Una medición del espectro de energía de las partículas primarias responsables de las lluvias de 10,15 electronvoltios  a 10,18 electronvoltios  .
  3. La prueba de que estas partículas llegan en cantidades prácticamente iguales desde todas direcciones.
  4. La observación de una partícula con una energía cercana a los 10 19  electronvoltios. [101]

Cuando el experimento de Agassiz llegó a su fin, el grupo se dio cuenta de que se necesitaban observaciones cerca del ecuador y en el hemisferio sur para ampliar su conclusión de que las direcciones de llegada de las lluvias de aire son casi isotrópicas. En consecuencia, Clark, en colaboración con Vikram Sarabhai , llevó a cabo su experimento más pequeño en Kodaikanal , India, a una latitud de 10° N, y confirmó la ausencia de anisotropías. [102] Posteriormente, por sugerencia de Ismael Escobar, [103] el equipo Agassiz fue trasladado a El Alto a 4200 metros en la meseta boliviana a 16° S. Aquí, Clark, Escobar y Juan Hersil no encontraron anisotropías, pero sí mostraron que la estructura de las duchas de aire en su máximo desarrollo es diferente a la del nivel del mar. [104]

Experimento del rancho volcánico

La energía máxima de una partícula registrada por el experimento de Agassiz, 10 19  electronvoltios, está cerca de energías más allá de las cuales las partículas cargadas no pueden ser confinadas al disco galáctico mediante campos magnéticos interestelares típicos de 10 −5  gauss . Se necesita un conjunto de detectores de dimensiones muy grandes para detectar lluvias de estas energías. John Linsley aceptó asumir la responsabilidad de construir dicho conjunto. [96] Llegó al MIT en 1954 procedente de la Universidad de Minnesota , donde completó un doctorado con Edward P. Ney . Pronto se le unió Livio Scarsi, a quien Rossi había reclutado del grupo de Occhialini en la Universidad de Milán . [105]

Debido a que no había una extensión de tierra abierta lo suficientemente grande cerca de Boston, el conjunto se construyó en una propiedad semidesértica conocida como Volcano Ranch , a unas 16 millas (26 km) al oeste de Albuquerque, Nuevo México , a una altitud de 1.770 metros (5.810 pie). Durante 1957 y 1958, Linsley y Scarsi desplegaron 19 contadores de centelleo, que utilizaban discos de plástico fluorescentes similares a los de los detectores Agassiz, excepto que cada contador incorporaba cuatro discos visualizados por cuatro fotomultiplicadores. Inicialmente, el área del conjunto era de 2,5*10 6  m 2 , que se puede comparar con los 10 5  m 2 de Agassiz , pero en 1960, después de que Scarsi regresó a Milán , Linsley distribuyó los detectores sobre un área de 10 7  m 2 . [96]

Los resultados del experimento Volcano Ranch mostraron que la intensidad de los rayos cósmicos disminuye suavemente con energía de 10 17  - 10 18  electronvoltios. [106] y que los primarios en este rango llegan de forma isotrópica. [107] De particular importancia fue la detección de una sola partícula cuya energía de 10 20  electronvoltios es mayor que el máximo que podrían contener los campos magnéticos galácticos en el disco galáctico. [108] Las partículas de estas energías sólo pueden originarse en el halo galáctico o desde más allá de la galaxia , y su existencia no es consistente con el límite de Greisen-Zatsepin-Kuzmin . [109]

Investigación del plasma espacial

El 4 de octubre de 1957, la Unión Soviética lanzó el primer satélite artificial de la Tierra , el Sputnik 1 . Este acontecimiento inició la crisis del Sputnik , una "ola de casi histeria" [110] entre un público estadounidense sorprendido. [110] En respuesta, el gobierno de los EE. UU. aumentó la financiación para la Fundación Nacional de Ciencias y, en 1958, creó la Administración Nacional de Aeronáutica y del Espacio (NASA) y la Agencia de Proyectos de Investigación Avanzada , que pasó a llamarse Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA). ) en 1972. [111] El 4 de junio de 1958, dos días después de que se introdujera la legislación que creaba la NASA, Detlev W. Bronk , presidente de la Academia Nacional de Ciencias , se reunió con los jefes de estas tres agencias para crear un nuevo organismo asesor, el Junta de Ciencias Espaciales, para brindar asesoramiento para la expansión de la investigación espacial y garantizar que se haga especial hincapié en la financiación de la ciencia fundamental. [112]

Satélite Explorer 10. La tapa circular blanca cubre la abertura de la copa MIT Faraday.

La Junta se reunió por primera vez el 27 de junio de 1958. Sólo cuatro miembros ya estaban comprometidos en la investigación espacial: Rossi, Leo Goldberg , John Simpson y James Van Allen . [112] Rossi formó un subcomité que incluía a Thomas Gold , Philip Morrison y el biólogo Salvador Luria , quienes estuvieron de acuerdo en que las investigaciones de plasma en el espacio interplanetario serían deseables. En consecuencia, Rossi decidió orientar los esfuerzos de su grupo hacia su estudio. [113] Con Herbert Bridge, Rossi diseñó y probó una sonda de plasma basada en la clásica copa de Faraday . Sin embargo, para mejorar la respuesta del instrumento a los protones cargados positivamente y suprimir su respuesta a los fotoelectrones producidos por la luz solar, se desplegaron cuatro rejillas dentro de la copa. Una innovación clave fue un voltaje modulador aplicado a una de las rejillas, que convertía la señal en una corriente alterna , proporcional al flujo de protones y no contaminada por ninguna contribución de fotoelectrones. [114]

Después de una intensa presión sobre Homer Newell , subdirector de programas de vuelos espaciales de la NASA, Rossi consiguió una oportunidad de vuelo en el Explorer 10 , " el primer satélite local de Goddard ". [115] El objetivo no anunciado era alcanzar la Luna, pero después del lanzamiento el 25 de marzo de 1961, el satélite entró en una órbita muy alargada alrededor de la Tierra, cuyo apogeo , al 70% de la distancia a la Luna, estuvo muy por debajo de este objetivo. . [116]

Sin embargo, durante 52 horas de datos registrados por la sonda del MIT antes de que se agotara la batería, el grupo de Rossi encontró una transición entre dos regiones distintas alrededor de la Tierra. Cerca de la Tierra había campos magnéticos bastante fuertes y bien organizados, pero no había indicios de protones interplanetarios. A 22 radios de la Tierra, la nave espacial entró en una región donde los campos magnéticos eran más débiles e irregulares, y donde se observó un flujo sustancial de protones provenientes de la dirección general del Sol. En varias ocasiones durante el resto del vuelo, este flujo desapareció y luego reapareció nuevamente, lo que indicó que la nave volaba cerca del límite entre las dos regiones y que este límite se movía de manera irregular. [116] Con el tiempo, este límite se conoció como magnetopausa . [117] [118]

Bajo Bridge y Rossi, el grupo de plasma espacial del MIT incluía a Frank Scherb, Edwin Lyon, Alan Lazarus, Alberto Bonnetti, Alberto Egidi, John Belcher y Constance Dilworth, que era la esposa de Occhialini. [113] Sus copas de Faraday han recopilado datos sobre plasma en todo el Sistema Solar: cerca de la Tierra en OGO-1, OGO 3 e IMP 8, [119] en el espacio interplanetario en WIND , y en la Heliosfera y Heliosheath en la Voyager 1 y la Voyager 2. . [120]

astronomía de rayos X

Marjorie Townsend analiza el rendimiento del satélite Explorador de rayos X con Bruno Rossi durante las pruebas previas al vuelo en el Centro de vuelos espaciales Goddard de la NASA

Como consultor de American Science and Engineering, Inc. , Rossi inició los experimentos con cohetes que descubrieron la primera fuente extrasolar de rayos X , Scorpius X-1 . [121] Rossi fue nombrado profesor de instituto en el MIT en 1966. [122]

Jubilación

Rossi se retiró del MIT en 1970. De 1974 a 1980 enseñó en la Universidad de Palermo. Cuando se jubiló, escribió varias monografías y una autobiografía de 1990, Momentos en la vida de un científico , que fue publicada por Cambridge University Press . Murió de un paro cardíaco en su casa de Cambridge el 21 de noviembre de 1993. Le sobrevivieron su esposa, Nora, sus hijas Florence y Linda y su hijo Frank. [122] Fue incinerado y sus cenizas se encuentran en el cementerio de la iglesia de San Miniato al Monte , que domina Florencia y la colina de Arcetri. [123]

Honores y premios

Premios

Honores

Legado

Libros

Referencias

  1. ^ abcdefghijkl Clark, George W. (1998). «Bruno Benedetto Rossi» (PDF) . Memorias biográficas . vol. 75. Washington: Prensa de las Academias Nacionales. págs. 310–341. ISBN 978-0-309-06295-4. Consultado el 13 de noviembre de 2012 .
  2. ^ "Bruno Benedetto Rossi: Ph.D., Bolonia, 1927" (PDF) . ¿Química?Biblioteca de Física . Universidad de Notre Dame#Bibliotecas . 23 de marzo de 2009. Archivado desde el original (PDF) el 17 de febrero de 2013 . Consultado el 9 de noviembre de 2012 .
  3. «Bruno Benedetto Rossi» (PDF) . Universidad de Notre Dame . Consultado el 8 de julio de 2013 .
  4. «Ettore Majorana como guía en los experimentos de Quirino Majorana. Cartas y documentos originales sobre una colaboración experimental y teórica» (PDF) . Actas de la ciencia . Consultado el 8 de julio de 2013 .
  5. ^ ab Reeves, Barbara J. (2008). "Garbasso, Antonio Giorgio". Diccionario completo de biografía científica 2008 . Nueva York: Hijos de Charles Scribner. 0684315599 . Consultado el 13 de noviembre de 2012 .
  6. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 4–5. ISBN 978-0-521-36439-3.
  7. ^ Ambos, Walther; Walter Kolhorster (1929). "Das Wesen der Höhenstrahlung". Zeitschrift für Physik . 56 (1–12): 751–777. Código bibliográfico : 1929ZPhy...56..751B. doi :10.1007/BF01340137. S2CID  123901197.
  8. ^ Rossi, Bruno Benedetto (1964). Rayos cósmicos. McGraw-Hill. pag. 43.ISBN 978-0-07-053890-0. Consultado el 14 de noviembre de 2012 .
  9. ^ Rossi, Bruno (26 de abril de 1930). "Método de registro de múltiples impulsos simultáneos de varios contadores Geiger". Naturaleza . 125 (3156): 636. Bibcode :1930Natur.125..636R. doi : 10.1038/125636a0 . S2CID  4084314.
  10. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 9-13. ISBN 978-0-521-36439-3.
  11. ^ Chapman, Sídney (1958). "Fredrik Carl Mulertz Stormer. 1874-1957". Memorias biográficas de miembros de la Royal Society . 4 : 257–279. doi :10.1098/rsbm.1958.0021. S2CID  74137537.
  12. ^ Rossi, Bruno (3 de julio de 1930). "Sobre la desviación magnética de los rayos cósmicos". Revisión física . 36 (3): 606. Código bibliográfico : 1930PhRv...36..606R. doi : 10.1103/PhysRev.36.606 . Consultado el 9 de diciembre de 2012 .
  13. ^ ab Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. pag. 18.ISBN 978-0-521-36439-3.
  14. ^ Rossi, Bruno (1932). "Absorciónmessungen der durchdringenden korpuskularstrahlung in einem meter blei". Naturwissenschaften . 20 (4): 65. Código bibliográfico : 1932NW.....20...65R. doi :10.1007/BF01503771. S2CID  6873296.
  15. ^ Rossi, Bruno (1 de marzo de 1933). "Uber die eigengschaften der durchdringenden korpuskularstrahlung en Meeresniveau". Zeitschrift für Physik . 82 (3–4): 151–178. Código Bib : 1933ZPhy...82..151R. doi :10.1007/BF01341486. S2CID  121427439.
  16. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 19-21. ISBN 978-0-521-36439-3.
  17. ^ Heilbron, John L. "Transcripción de historia oral - Dr. PMS Blackett. Consulte el párrafo IV.C.3". Centro de Historia de la Física; Biblioteca y archivos de Niels Bohr . Instituto Americano de Física. Archivado desde el original el 20 de febrero de 2015 . Consultado el 15 de noviembre de 2012 .
  18. ^ Anderson, Carl D. (28 de febrero de 1933). "El electrón positivo". Revisión física . 43 (6): 491–494. Código bibliográfico : 1933PhRv...43..491A. doi : 10.1103/PhysRev.43.491 . Consultado el 22 de diciembre de 2012 .
  19. ^ Blackett, Patrick MS (13 de diciembre de 1948). "Investigaciones en cámara de niebla en física nuclear y radiación cósmica" (PDF) . Conferencia Nobel . Premio Nobel.org . Consultado el 15 de noviembre de 2012 .
  20. ^ "El Premio Nobel de Física 1948". La Fundación Nobel . Consultado el 9 de julio de 2013 .
  21. ^ "Historia del Instituto de Física". Departamento de Física “Galileo Galilei” . Universidad de Padua . Consultado el 17 de diciembre de 2012 .
  22. ^ Rossi, Bruno (abril de 2005). "Observaciones de rayos cósmicos en Eritrea". Apuntes de investigación de Bruno Rossi, 1933 . Archivos y colecciones especiales del Instituto MIT. Archivado desde el original el 9 de octubre de 2013 . Consultado el 17 de diciembre de 2012 .
  23. ^ McGervey, John D. (1994). "Sergio De Benedetti, 1912-1994". Foro de Ciencia de Materiales . 175–178. Científico.Net: 5–6. doi : 10.4028/www.scientific.net/MSF.175-178.5. S2CID  137640079.
  24. ^ Johnson, Thomas H. (11 de abril de 1933). "La asimetría azimutal de la radiación cósmica". Revisión física . 43 (10): 834–835. Código bibliográfico : 1933PhRv...43..834J. doi : 10.1103/physrev.43.834 . Consultado el 18 de diciembre de 2012 .
  25. ^ Álvarez, Luis; Arthur H. Compton (22 de abril de 1933). "Un componente cargado positivamente de los rayos cósmicos". Revisión física . 343 (10): 835–836. Código bibliográfico : 1933PhRv...43..835A. doi : 10.1103/physrev.43.835 . Consultado el 18 de diciembre de 2012 .
  26. ^ Rossi, Bruno (25 de noviembre de 1933). "Medición direccional de los rayos cósmicos cerca del ecuador geomagnético". Revisión física . 45 (3): 212–214. Código bibliográfico : 1934PhRv...45..212R. doi : 10.1103/PhysRev.45.212.
  27. ^ Álvarez, LW; Rossi, Bruno; Chromey, Frederick C. (15 de mayo de 1946). "Dispositivo de determinación vertical". Número de patente: 2706793 . Oficina de Patentes y Marcas de EE. UU . Consultado el 8 de febrero de 2013 .
  28. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 38–39. ISBN 978-0-521-36439-3.
  29. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 31–33. ISBN 978-0-521-36439-3.
  30. ^ Bonolis, Luisa (marzo de 2011). "Bruno Rossi y las leyes raciales de la Italia fascista" (PDF) . Física en perspectiva . 13 (1): 58–90. Código Bib : 2011PhP....13...58B. doi :10.1007/s00016-010-0035-4. S2CID  122425651 . Consultado el 22 de enero de 2013 .[ enlace muerto permanente ]
  31. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 39–40. ISBN 978-0-521-36439-3.
  32. ^ Patrizia Guarnieri y Alessandro De Angelis , Intelectuales desplazados de la Italia fascista, Firenze University Press 2019
  33. ^ abcd Rossi, Bruno (1980), "La decadencia de los" mesotrones "(1939-1943): física de partículas experimental en la era de la inocencia" (PDF) , en Brown, Laurie M. (ed.), Simposio internacional sobre la Historia de la física de partículas, Fermilab, 1980 , Cambridge: Cambridge University Press, págs. 183-205, En El nacimiento de la física de partículas . ISBN 0-521-24005-0 
  34. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 40–41. ISBN 978-0-521-36439-3.
  35. ^ Bethe, H.; W. Heitler (27 de febrero de 1934). "Sobre la detención de partículas rápidas y la creación de electrones positivos". Actas de la Royal Society A. 146 (856): 83-112. Código bibliográfico : 1934RSPSA.146...83B. doi : 10.1098/rspa.1934.0140 .
  36. ^ Bhaba, HJ; W. Heitler (11 de diciembre de 1936). "El paso de los electrones rápidos y la teoría de las lluvias cósmicas". Actas de la Royal Society A. 159 (898): 432–458. Código bibliográfico : 1937RSPSA.159..432B. doi : 10.1098/rspa.1937.0082 .
  37. ^ Jánossy, L.; B. Rossi (17 de noviembre de 1939). "Sobre el componente fotónico de la radiación cósmica y su coeficiente de absorción". Actas de la Royal Society A. 175 (960): 88-100. Código bibliográfico : 1940RSPSA.175...88J. doi : 10.1098/rspa.1940.0045 .
  38. ^ Neddermeyer, Seth H.; Carl D. Anderson (30 de marzo de 1937). "Nota sobre la naturaleza de las partículas de rayos cósmicos". Revisión física . 51 (10): 884–886. Código bibliográfico : 1937PhRv...51..884N. doi : 10.1103/PhysRev.51.884 . Consultado el 27 de diciembre de 2012 .
  39. ^ Lattes, CMG; Occhialini, GPS; Powell, CF (11 de octubre de 1947). "Observaciones sobre las huellas de mesones lentos en emulsiones fotográficas". Naturaleza . 160 (4067): 486–492. Código Bib :1947Natur.160..486L. doi :10.1038/160486a0. PMID  20267548. S2CID  4085772.
  40. ^ Blackett, PMS Blackett (10 de octubre de 1938). "Sobre la inestabilidad del baritrón y el efecto de la temperatura de los rayos cósmicos". Revisión física . 54 (11): 973–974. Código bibliográfico : 1938PhRv...54..973B. doi : 10.1103/PhysRev.54.973 . Consultado el 28 de diciembre de 2012 .
  41. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 45–46. ISBN 978-0-521-36439-3.
  42. ^ "Guía de los documentos de Norman Hilberry 1961". Centro de Investigación de Colecciones Especiales . Biblioteca de la Universidad de Chicago. 2007 . Consultado el 6 de enero de 2013 .
  43. ^ Redding, arcilla; K. Hayes (24 de enero de 2001). "Búsqueda de ayuda para los documentos de J. Barton Hoag, 1914-1963". Centro de Historia de la Física . Instituto Americano de Física. Archivado desde el original el 9 de abril de 2014 . Consultado el 6 de enero de 2013 .
  44. ^ Rossi, Bruno; Hilberry, normando; Hoag, J. Barton (10 de enero de 1940). "La variación del componente duro de los rayos cósmicos con la altura y la desintegración de los mesotrones". Revisión física . 57 (6): 461–469. Código bibliográfico : 1940PhRv...57..461R. doi : 10.1103/PhysRev.57.461 . Consultado el 4 de enero de 2013 .
  45. ^ Rossi, Bruno; David B. Hall (13 de diciembre de 1940). "Variación de la tasa de desintegración de los mesotrones con el impulso". Revisión física . 59 (3): 223–228. Código bibliográfico : 1941PhRv...59..223R. doi : 10.1103/PhysRev.59.223.
  46. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 57–59. ISBN 978-0-521-36439-3.
  47. ^ Rossi, Bruno; Kenneth Greisen (octubre de 1941). "Teoría de los rayos cósmicos". Reseñas de Física Moderna . 13 (4): 240–309. Código bibliográfico : 1941RvMP...13..240R. doi :10.1103/RevModPhys.13.240.
  48. ^ Bonolis, Luisa (noviembre de 2011). "Walther Bothe y Bruno Rossi: el nacimiento y desarrollo de métodos de coincidencia en la física de rayos cósmicos". Revista Estadounidense de Física . 79 (11): 1133-1182. arXiv : 1106.1365 . Código bibliográfico : 2011AmJPh..79.1133B. doi :10.1119/1.3619808. S2CID  15586282.
  49. ^ Rossi, Bruno; Kenneth Greisen; Joyce C. Stearns; Darol K. Froman; Phillipp G. Koontz (23 de marzo de 1942). "Más mediciones de la vida útil del mesotrón". Cartas de revisión física . 61 (11–12): 675–679. Código bibliográfico : 1942PhRv...61..675R. doi : 10.1103/PhysRev.61.675.
  50. ^ Rossi, Bruno; Kenneth Greisen (1 de diciembre de 1941). "Origen del componente blando de los rayos cósmicos". Cartas de revisión física . 61 (3–4): 121–128. Código bibliográfico : 1942PhRv...61..121R. doi : 10.1103/PhysRev.61.121.
  51. ^ Rossi, Bruno; Norris Nereson (8 de enero de 1943). "Disposición experimental para la medición de pequeños intervalos de tiempo entre las descargas de contadores Geiger-Müller". Revisión de Instrumentos Científicos . 17 (2): 65–72. Código bibliográfico : 1946RScI...17...65R. doi :10.1063/1.1770435. PMID  21016874. Archivado desde el original el 23 de febrero de 2013 . Consultado el 16 de enero de 2013 .
  52. ^ Rossi, Bruno; Norris Nereson (17 de septiembre de 1942). "Determinación experimental de la curva de desintegración de mesotrones" (PDF) . Cartas de revisión física . 62 (9–10): 417–422. Código bibliográfico : 1942PhRv...62..417R. doi : 10.1103/PhysRev.62.417 . Consultado el 13 de enero de 2013 .
  53. ^ Nereson, Norris; Bruno Rossi (26 de julio de 1943). "Más medidas sobre la curva de desintegración de los mesotrones" (PDF) . Cartas de revisión física . 64 (7–8): 199–201. Código bibliográfico : 1943PhRv...64..199N. doi : 10.1103/PhysRev.64.199. Archivado desde el original (PDF) el 27 de septiembre de 2013 . Consultado el 17 de enero de 2013 .
  54. ^ Conversi, M.; O. Piccioni (1 de abril de 1944). "Misura diretta della vita media dei mesoni frenati". El nuevo cemento . 2 (1): 40–70. Código Bib : 1944NCim....2...40C. doi :10.1007/BF02903045. S2CID  122870107.
  55. ^ Monaldi, Daniela (2008). "La observación indirecta de la descomposición de los mesotrones: experimentos italianos sobre radiación cósmica, 1937-1943" (PDF) . Historia y Fundamentos de la Mecánica Cuántica; Preimpresión 328 . Max-Planck-Institut für Wissenschaftsgeschichte . Consultado el 16 de enero de 2013 .
  56. ^ Rossi, Bruno; Kenneth I. Greisen (1 de febrero de 1946). "Circuito de seguimiento de alcance". Número de patente: 2903691 . Oficina de Patentes y Marcas de EE. UU . Consultado el 17 de enero de 2013 .
  57. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 67–68. ISBN 978-0-521-36439-3.
  58. ^ ab Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 76–78. ISBN 978-0-521-36439-3.
  59. ^ "Documentos de David B. Nicodemus, 1945-1989". Centro de Investigación de Archivos y Colecciones Especiales . Bibliotecas de la Universidad Estatal de Oregón . Consultado el 18 de enero de 2013 .
  60. ^ Rossi, Bruno; Hans Staub (28 de octubre de 1946). «Cámaras y Contadores de Ionización» (PDF) . Serie Técnica del Proyecto Manhattan LA-1003 . Laboratorio Nacional de Los Álamos . Consultado el 18 de enero de 2013 .
  61. ^ Allen, James S.; Bruno Rossi (23 de julio de 1944). «Tiempo de recogida de electrones en cámaras de ionización» (PDF) . LA-115 . Laboratorio Nacional de Los Álamos . Consultado el 18 de enero de 2013 .
  62. ^ Allen, James S.; Bruno B. Rossi (6 de noviembre de 1946). "Método y medios para detectar la ionización". Número de patente: 2485469 . Oficina de Patentes y Marcas de EE. UU . Consultado el 19 de enero de 2013 .
  63. ^ Hoddeson, Lillian ; Henriksen, Paul W.; Meade, Roger A.; Páramos de Poniente, Catherine L. (1993). Asamblea crítica: una historia técnica de Los Álamos durante los años de Oppenheimer, 1943-1945. Nueva York: Cambridge University Press. págs. 130-137. ISBN 0-521-44132-3. OCLC  26764320.
  64. ^ Dummer, JE; Taschner, JC; Courtright, CC (abril de 1996). "Programa Bayo Canyon / Lantano Rasioactivo (RaLa)" (PDF) . LA-13044-H . Laboratorio Nacional de Los Álamos . Consultado el 18 de enero de 2013 .
  65. ^ ab Taschner, John C. "El programa de implosión de RaLa/Bayo Canyon" (PDF) . Capítulo Sierra Nevada . Sociedad de Física de la Salud . Consultado el 20 de enero de 2013 .
  66. ^ Hoddeson y col. (1993), págs. 146-154
  67. ^ Hawkins, David; Truslow, Edith C.; Smith, Ralph Carlisle (1961). Historia del distrito de Manhattan, Proyecto Y, la historia de Los Álamos. Los Ángeles: Tomash Publishers. pag. 203.ISBN 978-0-938228-08-0. Consultado el 20 de enero de 2013 . Publicado originalmente como Informe Los Alamos LAMS-2532
  68. ^ a b C Hoddeson y col. (1993), págs. 353–356
  69. ^ "El Premio Nobel de Física 1952". La Fundación Nobel . Consultado el 31 de mayo de 2013 .
  70. ^ Hoddeson y col. (1993), págs. 374–377
  71. ^ "La Historia del Departamento de Física del MIT". Gran Física en el MIT: 1946-1970 . Instituto de Tecnología de Massachusetts . Consultado el 2 de febrero de 2013 .
  72. ^ Goldstein, Jack S. (1992). Un tipo de tiempo diferente: la vida de Jerrold R. Zacharias, científico, ingeniero y educador. Cambridge, Massachusetts: MIT Press. págs. 66–70. ISBN 0-262-07138-X. OCLC  24628294.
  73. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. pag. 99.ISBN 978-0-521-36439-3.
  74. ^ Goldstein, Jack S. (1992). Un tipo de tiempo diferente: la vida de Jerrold R. Zacharias, científico, ingeniero y educador. Cambridge, Massachusetts: MIT Press. págs. 74–78. ISBN 0-262-07138-X. OCLC  24628294.
  75. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 101-102. ISBN 978-0-521-36439-3.
  76. ^ Lattes, CMG; Muirhead, H.; Occhialini, GPS; Powell, CF (24 de mayo de 1947). "Procesos que involucran mesones cargados" (PDF) . Naturaleza . 159 (4047): 694–697. Código Bib :1947Natur.159..694L. doi :10.1038/159694a0. S2CID  4152828 . Consultado el 27 de diciembre de 2012 .[ enlace muerto permanente ]
  77. ^ "El Dr. Herbert S. Bridge muere a los 76 años". Noticias del MIT . Instituto de Tecnología de Massachusetts. 1 de septiembre de 1995 . Consultado el 17 de febrero de 2013 .
  78. ^ Puente, Herbert S.; Bruno Rossi (13 de febrero de 1947). "Explosiones de rayos cósmicos en una cámara sin blindaje y bajo una pulgada de plomo a diferentes altitudes". Revisión física . 71 (6): 379–380. Código bibliográfico : 1947PhRv...71..379B. doi : 10.1103/PhysRev.71.379.2 . Consultado el 17 de febrero de 2013 .
  79. ^ Gregorio, BP; Rossi, B.; Tinlot, JH (2 de diciembre de 1948). "Producción de rayos gamma en interacciones nucleares de rayos cósmicos". Revisión física . 77 (2): 299–300. Código Bib : 1950PhRv...77..299G. doi :10.1103/PhysRev.77.299.2.
  80. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. pag. 116.ISBN 978-0-521-36439-3.
  81. ^ Puente, h. S.; M. Annis (12 de marzo de 1951). "Un estudio en cámara de nube de las nuevas partículas inestables". Revisión física . 82 (3): 445–446. Código bibliográfico : 1951PhRv...82..445B. doi : 10.1103/PhysRev.82.445.2 . Consultado el 19 de febrero de 2013 .
  82. ^ Benjamín, Stan (25 de abril de 1950). "WSSF ofrece educación a cinco doctorados europeos" (PDF) . La tecnología . MIT. pag. 2. Archivado desde el original (PDF) el 11 de mayo de 2012 . Consultado el 20 de febrero de 2013 .
  83. ^ Annis, M.; Puente HS; S. Olbert (10 de diciembre de 1952). "Aplicación de la teoría de la dispersión múltiple a las mediciones de la cámara de nubes. II". Revisión física . 89 (6): 1216-1227. Código bibliográfico : 1953PhRv...89.1216A. doi : 10.1103/PhysRev.89.1216.
  84. ^ ab Puente, HS; Peyrou, C.; Rossi, B.; Safford, R. (26 de febrero de 1953). "Observaciones en cámara de nubes de partículas inestables cargadas pesadas en rayos cósmicos". Revisión física . 90 (5): 921–933. Código bibliográfico : 1953PhRv...90..921B. doi : 10.1103/PhysRev.90.921.
  85. ^ Montanet, Lucien (1 de junio de 2003). "Charles Peyrou y su impacto en la física". Correo del CERN . CERN . Consultado el 20 de febrero de 2013 .
  86. ^ Ravel, Oliver (26 a 28 de junio de 2012), "Early Cosmic Ray Research in France", en Ormes, Jonathan F. (ed.), Cenrenary Symposium 2012: Descubrimiento de los rayos cósmicos , Denver, Colorado: Instituto Americano de Física, págs. 67–71[ enlace muerto ]
  87. ^ abc Cronin, James W. (22 de noviembre de 2011). "La Conferencia de Rayos Cósmicos de 1953 en Bagneres de Bigorre". Revista Física Europea H. 36 (2): 183–201. arXiv : 1111.5338 . Código bibliográfico : 2011EPJH...36..183C. doi :10.1140/epjh/e2011-20014-4. S2CID  119105540.
  88. ^ "William B. Fretter, físico, 74". Los New York Times . 28 de marzo de 1991 . Consultado el 25 de febrero de 2013 .
  89. ^ Puente, SA; Courant, H.; DeStaebler, H. Jr.; Rossi, B. (21 de junio de 1954). "Posible ejemplo de aniquilación de una partícula pesada". Revisión física . 95 (4): 1101-1103. Código bibliográfico : 1954PhRv...95.1101B. doi : 10.1103/PhysRev.95.1101 . Consultado el 19 de febrero de 2013 .
  90. ^ Puente, SA; HACER Caldwell; Y. Pal; B. Rossi (3 de marzo de 1956). "Análisis adicional del evento de antiprotones del Instituto de Tecnología de Massachusetts". Revisión física . 102 (3): 930–931. Código bibliográfico : 1956PhRv..102..930B. doi : 10.1103/PhysRev.102.930 . Consultado el 26 de febrero de 2013 .
  91. ^ Chambelán, Owen; Emilio Segré; Clyde Wiegand; Thomas Ypsilantis (24 de octubre de 1955). "Observación de antiprotones". Revisión física . 100 (3): 947–950. Código bibliográfico : 1955PhRv..100..947C. doi : 10.1103/PhysRev.100.947 . Consultado el 26 de febrero de 2013 .
  92. ^ "El Premio Nobel de Física 1959". La Fundación Nobel . Consultado el 31 de mayo de 2013 .
  93. ^ Barrena, P.; P. Ehrenfest; R. Laberinto; J. Daudin; Robley A. Fréon (1939). "Extensas lluvias de rayos cósmicos". Reseñas de Física Moderna . 11 (3–4): 288–291. Código bibliográfico : 1939RvMP...11..288A. doi : 10.1103/RevModPhys.11.288 . Consultado el 10 de marzo de 2013 .
  94. ^ Williams, Robert W. (24 de agosto de 1948). "La estructura del gran chorro de aire de rayos cósmicos". Revisión física . 74 (11): 1689-1706. Código bibliográfico : 1948PhRv...74.1689W. doi : 10.1103/PhysRev.74.1689.
  95. ^ Bassi, P.; G. Clark; B. Rossi (13 de julio de 1953). "Distribución de tiempos de llegada de partículas de lluvia de aire". Revisión física . 92 (2): 441–451. Código bibliográfico : 1953PhRv...92..441B. doi : 10.1103/PhysRev.92.441 . Consultado el 10 de marzo de 2013 .
  96. ^ abcde Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 121-129. ISBN 978-0-521-36439-3.
  97. ^ McCammon, Dan; George W. Clark (2010). "William Lester Kraushaar, 1920-2008" (PDF) . Memorias biográficas, Colección online . Academia Nacional de Ciencias . Consultado el 22 de marzo de 2013 .
  98. ^ Clark, GW; F. Scherb; WB Smith (31 de enero de 1957). "Preparación de centelleos de plástico grandes". Revisión de Instrumentos Científicos . 28 (6): 433. Código bibliográfico : 1957RScI...28..433C. doi : 10.1063/1.1715900 . Consultado el 22 de marzo de 2013 .
  99. ^ Clark, G.; J. conde; W. Kraushaar; J. Linsley; B. Rossi; F. Scherb (24 de agosto de 1957). "Un experimento sobre duchas de aire producidas por rayos cósmicos de alta energía". Naturaleza . 180 (4582): 353–356. Código Bib :1957Natur.180..353C. doi :10.1038/180353a0. S2CID  4173505.
  100. ^ Clark, GW; J. conde; WL Kraushaar; J. Linsley; BB Rossi; F. Scherb; DW Scott (13 de diciembre de 1960). "Duchas de aire de rayos cósmicos al nivel del mar". Revisión física . 122 (2): 637–654. Código bibliográfico : 1961PhRv..122..637C. doi : 10.1103/PhysRev.122.637.
  101. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. pag. 124.ISBN 978-0-521-36439-3.
  102. ^ Chitnis, EV; VA Sarabhai; G. Clark (21 de marzo de 1960). "Direcciones de llegada de lluvias de aire de rayos cósmicos desde el cielo ecuatorial". Revisión física . 119 (3): 1085-1091. Código bibliográfico : 1960PhRv..119.1085C. doi : 10.1103/PhysRev.119.1085 . Consultado el 22 de marzo de 2013 .
  103. ^ "Ismael Escobar Vallejo, 90, La Plata". El independiente . Periódicos del sur de Maryland/en línea. 5 de junio de 2009. Archivado desde el original el 11 de abril de 2013 . Consultado el 22 de marzo de 2013 .
  104. ^ Hersil, J.; I. Escobar; D. Scott; G. Clark; S. Olbert (28 de noviembre de 1961). "Observaciones de extensas lluvias de aire cerca del máximo de su desarrollo longitudinal". Cartas de revisión física . 6 (1): 22-23. Código bibliográfico : 1961PhRvL...6...22H. doi :10.1103/PhysRevLett.6.22. OSTI  4108297.
  105. ^ Maccarone, MC; Sacco, B. (3–11 de julio de 2007), "Livio Scarsi in memoriam (1927–2006)", en Caballero, Rogelio (ed.), 30th International Cosmic Ray Conference , Mérida, México: Universidad Nacional Autónoma de México, págs. Volumen 5, 1195-1198.
  106. ^ Linsley, Juan; Livio Scarsi (5 de julio de 1963). "Composición de rayos cósmicos a 10 17  - 10 18  eV". Cartas de revisión física . 9 (3): 123–125. Código bibliográfico : 1962PhRvL...9..123L. doi :10.1103/PhysRevLett.9.123.
  107. ^ Linsley, J.; L. Scarsi; PJ Eccles; BB Rossi (22 de febrero de 1962). "Isotropía de la radiación cósmica". Cartas de revisión física . 9 (7): 286–287. Código bibliográfico : 1962PhRvL...8..286L. doi :10.1103/PhysRevLett.8.286. OSTI  4783187.
  108. ^ Linsley, John (10 de enero de 1963). "Evidencia de una partícula de rayos cósmicos primarios con energía 1020 eV". Cartas de revisión física . 10 (4): 146-148. Código bibliográfico : 1963PhRvL..10..146L. doi : 10.1103/PhysRevLett.10.146 . Consultado el 23 de marzo de 2013 .
  109. ^ Smolin, Lee (2006). El problema de la física . Boston: Houghton Mifflin Harcourt. págs. 219-222. ISBN 978-0-618-55105-7.
  110. ^ ab Pueblos, Columbia (2008). "El Sputnik y el 'pensamiento de habilidades' revisados: el determinismo tecnológico en las respuestas estadounidenses a la amenaza de los misiles soviéticos". Historia de la Guerra Fría . 8 (1): 55–75. doi : 10.1080/14682740701791334. S2CID  154436145.
  111. ^ Agencia de Proyectos de Investigación Avanzada de Defensa: Transición Tecnológica. Washington, DC: Agencia de Proyectos de Investigación Avanzada de Defensa . 1997. pág. 9. OCLC  38197909. Archivado desde el original el 3 de marzo de 2013.
  112. ^ ab Naugle, John E. (6 de agosto de 2004). "Primero entre iguales: la Junta de Ciencias Espaciales". Programa de Información Científica y Técnica de la Oficina de Gestión de la NASA . Consultado el 24 de abril de 2013 .
  113. ^ ab Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 130-133. ISBN 978-0-521-36439-3.
  114. ^ Puente, Herbert S. (27 de marzo de 2013). "Sonda de plasma de copa de Faraday". Centro Nacional de Datos de Ciencias Espaciales . NASA . Consultado el 28 de abril de 2013 . Identificación del NSSDC: 1961-010A-02; Versión 4.0.21
  115. ^ "El primer satélite de cosecha propia de Goddard, Explorer 10". Enojado con Goddard . NASA. 25 de marzo de 2011. Archivado desde el original el 19 de febrero de 2013 . Consultado el 25 de abril de 2013 .
  116. ^ ab Bonetti, A.; Puente, HS; Lázaro, AJ; Rossi, B.; Scherb, F. (1 de julio de 1963). "Explorer 10 mediciones de plasma". Revista de investigaciones geofísicas . 68 (13): 3745–4155. Código bibliográfico : 1963JGR....68.4017B. doi :10.1029/JZ068i013p04017.
  117. ^ "La magnetopausa". NASA . Archivado desde el original el 15 de febrero de 2013 . Consultado el 11 de julio de 2013 .
  118. ^ Newell, Homer (enero de 1980). "La Magnetosfera". Más allá de la atmósfera: los primeros años de la ciencia espacial . Oficina de Historia de la NASA . Consultado el 28 de abril de 2013 .
  119. ^ "Información del NSSDC sobre IMP 8". Centro Nacional de Datos de Ciencias Espaciales de la NASA . Consultado el 3 de mayo de 2013 .
  120. ^ "Grupo de plasma espacial del MIT". MIT . Consultado el 29 de abril de 2013 .
  121. ^ Rossi, Bruno Benedetto (1990). Momentos en la vida de un científico . Prensa de la Universidad de Cambridge. págs. 151-153. ISBN 978-0-521-36439-3.
  122. ^ ab Bitterman, Jay. "BioAstronomía...Bruno Rossi". La Sociedad Astronómica del Condado de Lake . Consultado el 11 de julio de 2013 .
  123. ^ abcdefg Clark, George W. "Bruno Benedetto Rossi 13 de abril de 1905 - 21 de noviembre de 1993". Prensa de la Academia Nacional . Consultado el 7 de julio de 2013 .
  124. ^ "Bruno Benedetto Rossi". Academia Estadounidense de Artes y Ciencias . Consultado el 8 de diciembre de 2022 .
  125. ^ "Bruno B. Rossi". www.nasonline.org . Consultado el 8 de diciembre de 2022 .
  126. ^ "Historial de miembros de APS". búsqueda.amphilsoc.org . Consultado el 8 de diciembre de 2022 .
  127. ^ Reddy, Frances. "El Rossi X-Ray Timing Explorer de la NASA completa las operaciones de la misión". NASA . Consultado el 11 de julio de 2013 .
  128. ^ "Premio Rossi". División de Astrofísica de Altas Energías, Sociedad Astronómica Estadounidense . Archivado desde el original el 19 de diciembre de 2013 . Consultado el 28 de mayo de 2011 .
  129. ^ "Claude Cañizares - Profesor de Física Bruno Rossi". Instituto de Tecnología de Massachusetts . Consultado el 11 de julio de 2013 .

enlaces externos