stringtranslate.com

caspasa-9

La caspasa-9 es una enzima que en humanos está codificada por el gen CASP9 . Es una caspasa iniciadora , [5] fundamental para la vía apoptótica que se encuentra en muchos tejidos. [6] Se han identificado homólogos de caspasa-9 en todos los mamíferos para los que se sabe que existen, como Mus musculus y Pan troglodytes . [7]

La caspasa-9 pertenece a una familia de caspasas, proteasas cisteína-aspárticas implicadas en la apoptosis y la señalización de citoquinas . [8] Las señales apoptóticas provocan la liberación de citocromo c de las mitocondrias y la activación de apaf-1 ( apoptosoma ), que luego escinde la proenzima de caspasa-9 en la forma de dímero activo. [6] La regulación de esta enzima se produce mediante la fosforilación por un inhibidor alostérico , inhibiendo la dimerización e induciendo un cambio conformacional . [8]

Se requiere la función correcta de caspasa-9 para la apoptosis, lo que conduce al desarrollo normal del sistema nervioso central . [8] La caspasa-9 tiene múltiples funciones celulares adicionales que son independientes de su papel en la apoptosis. Las funciones no apoptóticas de la caspasa-9 incluyen la regulación de la necroptosis , la diferenciación celular , la respuesta inmune innata , la maduración de las neuronas sensoriales, la homeostasis mitocondrial , la organización del circuito corticoespinal y la lesión vascular isquémica . [9] Sin un funcionamiento correcto, puede producirse un desarrollo anormal del tejido que provoque un funcionamiento anormal, enfermedades y muerte prematura. [8] Las mutaciones de pérdida de función de la caspasa-9 se han asociado con inmunodeficiencia / linfoproliferación , defectos del tubo neural y síndrome similar a Li-Fraumeni . El aumento de la actividad de la caspasa-9 está implicado en la progresión de la esclerosis lateral amiotrófica , el desprendimiento de retina y el síndrome del canal lento, así como en varios otros trastornos neurológicos , autoinmunes y cardiovasculares . [9]

"Se producen diferentes isoformas proteicas de caspasa-9 debido al empalme alternativo ". [10]

Estructura

Al igual que otras caspasas, la caspasa-9 tiene tres dominios: prodominio N-terminal, subunidad grande y una subunidad pequeña. [8] El prodominio N-terminal también se denomina prodominio largo y contiene el motivo del dominio de activación de caspasa ( CARD ) . [11] El prodominio está vinculado al dominio catalítico mediante un bucle conector. [12]

El monómero caspasa-9 consta de una subunidad grande y una pequeña, y ambas comprenden el dominio catalítico . [13] A diferencia del motivo QACRG del sitio activo normalmente conservado en otras caspasas, la caspasa-9 tiene el motivo QACGG. [14] [12]

Cuando se dimeriza, la caspasa-9 tiene dos conformaciones de sitios activos diferentes dentro de cada dímero . [13] Un sitio se parece mucho al sitio catalítico de otras caspasas, mientras que el segundo no tiene un "bucle de activación", lo que altera la maquinaria catalítica en ese sitio activo en particular. [13] Los bucles superficiales alrededor del sitio activo son cortos, lo que da lugar a una amplia especificidad de sustrato a medida que la hendidura de unión al sustrato está más abierta. [15] Dentro del sitio activo de la caspasa-9, para que se produzca la actividad catalítica tiene que haber aminoácidos específicos en la posición correcta. El aminoácido Asp en la posición P1 es esencial, con preferencia por el aminoácido His en la posición P2. [dieciséis]

Localización

Dentro de la célula, la caspasa-9 en humanos se encuentra en las mitocondrias, el citosol y el núcleo. [17]

Expresión de proteínas

La caspasa-9 en humanos se expresa en tejidos fetales y adultos. [14] [12] La expresión tisular de caspasa-9 es ubicua y alcanza su máxima expresión en el cerebro y el corazón, específicamente en la etapa de desarrollo de un adulto en las células musculares del corazón. [18] El hígado, el páncreas y el músculo esquelético expresan esta enzima en un nivel moderado, y todos los demás tejidos expresan caspasa-9 en niveles bajos. [18]

Mecanismo

La caspasa-9 activa funciona como una caspasa iniciadora mediante escisión, activando así las caspasas ejecutoras posteriores, iniciando la apoptosis. [19] Una vez activada, la caspasa-9 escinde las caspasas-3, -6 y -7, iniciando la cascada de caspasas a medida que escinden varios otros objetivos celulares. [8]

Cuando la caspasa-9 está inactiva, existe en el citosol como zimógeno , en su forma monomérica. [13] [20] Luego es reclutado y activado por las CARD en apaf-1, reconociendo las CARD en caspasa-9. [21]

Procesando

Antes de que pueda ocurrir la activación, se debe procesar la caspasa-9. [22] Inicialmente, la caspasa-9 se produce como un zimógeno monocatenario inactivo. [22] El procesamiento ocurre cuando el apoptosoma se une a la pro-caspasa-9 mientras apaf-1 ayuda en el procesamiento autoproteolítico del zimógeno. [22] La caspasa-9 procesada permanece unida al complejo apoptosoma, formando una holoenzima. [23]

Activación

La activación ocurre cuando la caspasa-9 se dimeriza, y hay dos formas diferentes en que esto puede ocurrir:

  1. La caspasa-9 se autoactiva cuando se une a apaf-1 ( apoptosoma ), ya que apaf-1 oligomeriza las moléculas precursoras de pro-caspasa-9. [17]
  2. Las caspasas previamente activadas pueden escindir la caspasa-9, provocando su dimerización. [24]

Actividad catalítica

La caspasa-9 tiene una secuencia de escisión preferida de Leu-Gly-His-Asp-(cut)-X. [dieciséis]

Regulación

La regulación negativa de la caspasa-9 se produce mediante fosforilación . [8] Esto lo realiza una serina-treonina quinasa , Akt, en la serina-196, que inhibe la activación y la actividad proteasa de la caspasa-9, suprimiendo la caspasa-9 y activando aún más la apoptosis. [25] Akt actúa como un inhibidor alostérico de la caspasa-9 porque el sitio de fosforilación de la serina-196 está lejos del sitio catalítico. [25] El inhibidor afecta la dimerización de la caspasa-9 y provoca un cambio conformacional que afecta la hendidura de unión al sustrato de la caspasa-9. [25]

Akt puede actuar in vitro sobre caspasa-9 procesada y sin procesar, donde la fosforilación de la caspasa-9 procesada ocurre en la subunidad grande. [26]

Deficiencias y mutaciones.

Una deficiencia de caspasa-9 afecta en gran medida al cerebro y su desarrollo. [27] Los efectos de tener una mutación o deficiencia en esta caspasa en comparación con otras son perjudiciales. [27] El papel iniciador que desempeña la caspasa-9 en la apoptosis es la causa de los efectos graves observados en aquellos con una caspasa-9 atípica.

Los ratones con caspasa-9 insuficiente tienen un fenotipo principal de cerebro afectado o anormal. [8] Los cerebros más grandes debido a una disminución de la apoptosis, lo que resulta en un aumento de neuronas adicionales, es un ejemplo de un fenotipo observado en ratones con deficiencia de caspasa-9. [28] Aquellos homocigotos sin caspasa-9 mueren perinatalmente como resultado de un cerebro anormalmente desarrollado . [8]

En humanos, la expresión de caspasa-9 varía de un tejido a otro y los diferentes niveles tienen una función fisiológica. [28] Cantidades bajas de caspasa-9 provocan cáncer y enfermedades neurodegenerativas como la enfermedad de Alzheimer . [28] Otras alteraciones en los niveles del polimorfismo de un solo nucleótido (SNP) y en los niveles del gen completo de caspasa-9 pueden causar mutaciones de la línea germinal relacionadas con el linfoma no Hodgkin . [29] Ciertos polimorfismos en el promotor de caspasa-9 aumentan la velocidad a la que se expresa caspasa-9, y esto puede aumentar el riesgo de cáncer de pulmón de una persona . [30]

Significación clínica

Los efectos de los niveles o la función anormales de caspasa-9 impactan el mundo clínico. El impacto que tiene la caspasa-9 en el cerebro puede conducir a trabajos futuros en la inhibición mediante terapia dirigida, específicamente con enfermedades asociadas con el cerebro, ya que esta enzima puede participar en las vías de desarrollo de los trastornos neuronales. [8]

La introducción de caspasas también puede tener beneficios médicos. [19] En el contexto de la enfermedad de injerto contra huésped , la caspasa-9 se puede introducir como un interruptor inducible. [31] En presencia de una molécula pequeña, se dimerizará y desencadenará la apoptosis, eliminando los linfocitos . [31]

iCasp9

iCasp9 (caspasa-9 inducible) es un tipo de sistema de control para células T receptoras de antígenos quiméricos (células T CAR). Las células CAR T son células T modificadas genéticamente que presentan citotoxicidad para las células tumorales . La evidencia muestra que las células CAR T son efectivas en el tratamiento de neoplasias malignas de células B. Sin embargo, a medida que las células CAR T introducen toxicidad, el control del usuario sobre las células y sus objetivos es fundamental. [32] Una de las diversas formas de ejercer control sobre las células CAR T es a través de sistemas sintéticos controlados por fármacos. iCasp9 se creó modificando la caspasa-9 y fusionándola con la proteína de unión FK506 . [32] iCasp9 se puede agregar a las células CAR T como un gen suicida inducible. [33]

Si la terapia con células T CAR produce efectos secundarios graves, se puede utilizar iCasp9 para detener el tratamiento. La administración de un fármaco de molécula pequeña, como la rapamicina , hace que el fármaco se una al dominio FK506. [33] Esto, a su vez, induce la expresión de caspasa-9, que desencadena la muerte celular de las células T CAR. [33]

Transcripciones alternativas

Mediante empalme alternativo , se producen cuatro variantes diferentes de caspasa-9.

Caspasa-9α (9L)

Esta variante se utiliza como secuencia de referencia y tiene actividad cisteína proteasa completa. [11] [34]

Caspasa-9β (9S)

La isoforma 2 no incluye los exones 3, 4, 5 y 6; le faltan los aminoácidos 140-289. [11] [34] La caspasa-9S no tiene un dominio catalítico central, por lo tanto funciona como un inhibidor de la caspasa-9α uniéndose al apoptosoma, suprimiendo la cascada de la enzima caspasa y la apoptosis. [11] [35] La caspasa-9β se conoce como la isoforma endógena dominante negativa.

Caspasa-9γ

A esta variante le faltan los aminoácidos 155-416 y, para los aminoácidos 152-154, la secuencia AYI se cambia a TVL. [34]

Isoforma 4

En comparación con la secuencia de referencia, le faltan los aminoácidos 1-83. [34]

Interacciones

Se ha demostrado que caspasa-9 interactúa con:

"Descripción general de las vías de transducción de señales implicadas en la apoptosis ".

Ver también

Referencias

  1. ^ abc GRCh38: Ensembl lanzamiento 89: ENSG00000132906 - Ensembl , mayo de 2017
  2. ^ abc GRCm38: Ensembl lanzamiento 89: ENSMUSG00000028914 - Ensembl , mayo de 2017
  3. ^ "Referencia humana de PubMed:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  4. ^ "Referencia de PubMed del ratón:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  5. ^ Caspasa 9
  6. ^ abc Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (noviembre de 1997). "La formación del complejo Apaf-1 / caspasa-9 dependiente del citocromo c y dATP inicia una cascada de proteasas apoptóticas". Celúla . 91 (4): 479–89. doi : 10.1016/s0092-8674(00)80434-1 . PMID  9390557. S2CID  14321446.
  7. ^ "HomoloGene - NCBI". www.ncbi.nlm.nih.gov . Consultado el 1 de diciembre de 2017 .
  8. ^ abcdefghij Kuida K (2000). "Caspasa-9". La Revista Internacional de Bioquímica y Biología Celular . 32 (2): 121–4. doi :10.1016/s1357-2725(99)00024-2. PMID  10687948.
  9. ^ ab Avrutsky MI, Troy CM (2021). "Caspasa-9: un objetivo terapéutico multimodal con expresión celular diversa en enfermedades humanas". Fronteras en Farmacología . 12 : 701301. doi : 10.3389/fphar.2021.701301 . PMC 8299054 . PMID  34305609. 
  10. ^ "CASP9 caspasa 9 [Homo sapiens (humano)] - Gen - NCBI". www.ncbi.nlm.nih.gov . Consultado el 30 de noviembre de 2017 .
  11. ^ abcd Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q (abril de 2017). "Caspasa-9: estructura, mecanismos y aplicación clínica". Oncoobjetivo . 8 (14): 23996–24008. doi :10.18632/oncotarget.15098. PMC 5410359 . PMID  28177918. 
  12. ^ abc Srinivasula SM, Fernandes-Alnemri T, Zangrilli J, Robertson N, Armstrong RC, Wang L, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (octubre de 1996). "El homólogo de enzima convertidora Ced-3 / interleucina 1beta Mch6 y la enzima escindedora de laminas Mch2alfa son sustratos para el mediador apoptótico CPP32". La Revista de Química Biológica . 271 (43): 27099–106. doi : 10.1074/jbc.271.43.27099 . PMID  8900201.
  13. ^ abcd Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS (diciembre de 2001). "La formación de dímeros impulsa la activación de la proteasa caspasa 9 de muerte celular". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 98 (25): 14250–5. Código Bib : 2001PNAS...9814250R. doi : 10.1073/pnas.231465798 . PMC 64668 . PMID  11734640. 
  14. ^ ab Duan H, Orth K, Chinnaiyan AM, Poirier GG, Froelich CJ, He WW, Dixit VM (julio de 1996). "ICE-LAP6, un nuevo miembro de la familia de genes ICE/Ced-3, es activado por la proteasa granzima B de células T citotóxicas". La Revista de Química Biológica . 271 (28): 16720–4. doi : 10.1074/jbc.271.28.16720 . PMID  8663294.
  15. ^ Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, García-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (julio de 1997). "Un enfoque combinatorio define las especificidades de los miembros de la familia caspasa y la granzima B. Se establecen relaciones funcionales para mediadores clave de la apoptosis". La Revista de Química Biológica . 272 (29): 17907–11. doi : 10.1074/jbc.272.29.17907 . PID  9218414.
  16. ^ ab Blasche S, Mörtl M, Steuber H, Siszler G, Nisa S, Schwarz F, Lavrik I, Gronewold TM, Maskos K, Donnenberg MS, Ullmann D, Uetz P, Kögl M (14 de marzo de 2013). "La proteína efectora NleF de E. coli es un inhibidor de caspasas". MÁS UNO . 8 (3): e58937. Código Bib : 2013PLoSO...858937B. doi : 10.1371/journal.pone.0058937 . PMC 3597564 . PMID  23516580. 
  17. ^ ab Zhivotovsky B, Samali A, Gahm A, Orrenius S (julio de 1999). "Caspasas: su localización intracelular y translocación durante la apoptosis". Muerte y diferenciación celular . 6 (7): 644–51. doi : 10.1038/sj.cdd.4400536 . PMID  10453075.
  18. ^ ab Han Y, Chen YS, Liu Z, Bodyak N, Rigor D, Bisping E, Pu WT, Kang PM (agosto de 2006). "La sobreexpresión de HAX-1 protege a los miocitos cardíacos de la apoptosis mediante la inhibición de la caspasa-9". Investigación de circulación . 99 (4): 415–23. doi : 10.1161/01.RES.0000237387.05259.a5 . PMID  16857965.
  19. ^ ab McIlwain DR, Berger T, Mak TW (abril de 2013). "La caspasa funciona en la muerte y la enfermedad celular". Perspectivas de Cold Spring Harbor en biología . 5 (4): a008656. doi : 10.1101/cshperspect.a008656. PMC 3683896 . PMID  23545416. 
  20. ^ McIlwain DR, Berger T, Mak TW (abril de 2013). "La caspasa funciona en la muerte y la enfermedad celular". Perspectivas de Cold Spring Harbor en biología . 5 (4): a008656. doi : 10.1101/cshperspect.a008656. PMC 3683896 . PMID  23545416. 
  21. ^ Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002). "Estructura tridimensional del apoptosoma: implicaciones para el ensamblaje, unión de procaspasa-9 y activación". Célula molecular . 9 (2): 423–32. doi : 10.1016/s1097-2765(02)00442-2 . PMID  11864614.
  22. ^ abc Hu Q, Wu D, Chen W, Yan Z, Shi Y (mayo de 2013). "El procesamiento proteolítico del zimógeno caspasa-9 es necesario para la activación de caspasa-9 mediada por apoptosoma". La Revista de Química Biológica . 288 (21): 15142–7. doi : 10.1074/jbc.M112.441568 . PMC 3663534 . PMID  23572523. 
  23. ^ Mace PD, Riedl SJ (diciembre de 2010). "Plataformas y conjuntos de muerte celular molecular". Opinión actual en biología celular . 22 (6): 828–36. doi :10.1016/j.ceb.2010.08.004. PMC 2993832 . PMID  20817427. 
  24. ^ Druskovic M, Suput D, Milisav I (diciembre de 2006). "La sobreexpresión de caspasa-9 desencadena su activación y apoptosis in vitro". Revista médica croata . 47 (6): 832–40. PMC 2080483 . PMID  17167855. 
  25. ^ abc Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (noviembre de 1998). "Regulación de la proteasa caspasa-9 de muerte celular mediante fosforilación". Ciencia . 282 (5392): 1318–21. Código Bib : 1998 Ciencia... 282.1318C. doi : 10.1126/ciencia.282.5392.1318. PMID  9812896.
  26. ^ Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (noviembre de 1998). "Regulación de la proteasa caspasa-9 de muerte celular mediante fosforilación". Ciencia . 282 (5392): 1318–21. Código Bib : 1998 Ciencia... 282.1318C. doi : 10.1126/ciencia.282.5392.1318. PMID  9812896.
  27. ^ ab Madden SD, Cotter TG (febrero de 2008). "Muerte celular en el desarrollo y la degeneración del cerebro: ¡el control de la expresión de caspasas puede ser clave!". Neurobiología Molecular . 37 (1): 1–6. doi :10.1007/s12035-008-8021-4. PMID  18449809. S2CID  12980212.
  28. ^ abc Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998). "Requisito diferencial de caspasa 9 en vías apoptóticas in vivo". Celúla . 94 (3): 339–52. doi : 10.1016/s0092-8674(00)81477-4 . PMID  9708736. S2CID  14390544.
  29. ^ Kelly JL, Novak AJ, Fredericksen ZS, Liebow M, Ansell SM, Dogan A, Wang AH, Witzig TE, Call TG, Kay NE, Habermann TM, Slager SL, Cerhan JR (noviembre de 2010). "Variación de la línea germinal en los genes de la vía de la apoptosis y riesgo de linfoma no Hodgkin". Epidemiología, biomarcadores y prevención del cáncer . 19 (11): 2847–58. doi :10.1158/1055-9965.EPI-10-0581. PMC 2976783 . PMID  20855536. 
  30. ^ Park JY, Park JM, Jang JS, Choi JE, Kim KM, Cha SI, Kim CH, Kang YM, Lee WK, Kam S, Park RW, Kim IS, Lee JT, Jung TH (junio de 2006). "Polimorfismos del promotor de caspasa 9 y riesgo de cáncer de pulmón primario". Genética Molecular Humana . 15 (12): 1963–71. doi : 10.1093/hmg/ddl119 . PMID  16687442.
  31. ^ ab Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM (junio de 2005). "Un interruptor de seguridad inducible de caspasa 9 para la terapia con células T". Sangre . 105 (11): 4247–54. doi :10.1182/sangre-2004-11-4564. PMC 1895037 . PMID  15728125. 
  32. ^ ab Choe JH, Williams JZ, Lim WA (2020). "Ingeniería de células T para tratar el cáncer: la convergencia de la inmunooncología y la biología sintética". Revisión anual de la biología del cáncer . 4 : 121-139. doi : 10.1146/annurev-cancerbio-030419-033657 .
  33. ^ abc "Definición de linfocitos T autólogos que expresan iCASP9-CD19". Instituto Nacional del Cáncer . Consultado el 2 de julio de 2020 .
  34. ^ abcd "CASP9 - Precursor de caspasa-9 - Homo sapiens (humano) - Gen y proteína CASP9". www.uniprot.org . Consultado el 1 de diciembre de 2017 .
  35. ^ Vu NT, Park MA, Shultz JC, Goehe RW, Hoeferlin LA, Shultz MD, Smith SA, Lynch KW, Chalfant CE (marzo de 2013). "hnRNP U mejora el empalme de caspasa-9 y está modulado por la fosforilación dependiente de AKT de hnRNP L". La Revista de Química Biológica . 288 (12): 8575–84. doi : 10.1074/jbc.M112.443333 . PMC 3605676 . PMID  23396972. 
  36. ^ ab Chu ZL, Pio F, Xie Z, Welsh K, Krajewska M, Krajewski S, Godzik A, Reed JC (marzo de 2001). "Un nuevo potenciador del apoptosoma Apaf1 implicado en la activación y apoptosis de caspasa dependiente del citocromo c". La Revista de Química Biológica . 276 (12): 9239–45. doi : 10.1074/jbc.M006309200 . PMID  11113115.
  37. ^ Cho DH, Hong YM, Lee HJ, Woo HN, Pyo JO, Mak TW, Jung YK (septiembre de 2004). "Inhibición inducida de lesión isquémica/hipóxica por APIP, una nueva proteína que interactúa con Apaf-1". La Revista de Química Biológica . 279 (38): 39942–50. doi : 10.1074/jbc.M405747200 . PMID  15262985.
  38. ^ Hu Y, Benedict MA, Wu D, Inohara N, Núñez G (abril de 1998). "Bcl-XL interactúa con Apaf-1 e inhibe la activación de caspasa-9 dependiente de Apaf-1". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 95 (8): 4386–91. Código bibliográfico : 1998PNAS...95.4386H. doi : 10.1073/pnas.95.8.4386 . PMC 22498 . PMID  9539746. 
  39. ^ Pan G, O'Rourke K, Dixit VM (marzo de 1998). "Caspasa-9, Bcl-XL y Apaf-1 forman un complejo ternario". La Revista de Química Biológica . 273 (10): 5841–5. doi : 10.1074/jbc.273.10.5841 . PMID  9488720.
  40. ^ abc Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (abril de 1998). "Las IAP bloquean los eventos apoptóticos inducidos por la caspasa-8 y el citocromo c mediante la inhibición directa de distintas caspasas". La Revista EMBO . 17 (8): 2215–23. doi :10.1093/emboj/17.8.2215. PMC 1170566 . PMID  9545235. 
  41. ^ Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (abril de 2002). "La caspasa-2 induce la apoptosis mediante la liberación de proteínas proapoptóticas de las mitocondrias". La Revista de Química Biológica . 277 (16): 13430–7. doi : 10.1074/jbc.M108029200 . PMID  11832478.
  42. ^ Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES (diciembre de 1996). "Ordenamiento molecular de la vía apoptótica Fas: la proteasa Fas/APO-1 Mch5 es una proteasa inhibible por CrmA que activa múltiples cisteína proteasas similares a Ced-3/ICE". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 93 (25): 14486–91. Código bibliográfico : 1996PNAS...9314486S. doi : 10.1073/pnas.93.25.14486 . PMC 26159 . PMID  8962078. 
  43. ^ Hlaing T, Guo RF, Dilley KA, Loussia JM, Morrish TA, Shi MM, Vincenz C, Ward PA (marzo de 2001). "Clonación molecular y caracterización de DEFCAP-L y -S, dos isoformas de un nuevo miembro de la familia de proteínas de apoptosis Ced-4 de mamíferos". La Revista de Química Biológica . 276 (12): 9230–8. doi : 10.1074/jbc.M009853200 . PMID  11076957.
  44. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S , Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (octubre de 2005). "Hacia un mapa a escala de proteoma de la red de interacción proteína-proteína humana". Naturaleza . 437 (7062): 1173–8. Código Bib : 2005Natur.437.1173R. doi : 10.1038/naturaleza04209. PMID  16189514. S2CID  4427026.
  45. ^ Davoodi J, Lin L, Kelly J, Liston P, MacKenzie AE (septiembre de 2004). "La proteína inhibidora de la apoptosis neuronal no interactúa con Smac y requiere ATP para unirse a la caspasa-9". La Revista de Química Biológica . 279 (39): 40622–8. doi : 10.1074/jbc.M405963200 . PMID  15280366.
  46. ^ Richter BW, Mir SS, Eiben LJ, Lewis J, Reffey SB, Frattini A, Tian L, Frank S, Youle RJ, Nelson DL, Notarangelo LD, Vezzoni P, Fearnhead HO, Duckett CS (julio de 2001). "Clonación molecular de ILP-2, un nuevo miembro de la familia de proteínas inhibidoras de la apoptosis". Biología Molecular y Celular . 21 (13): 4292–301. doi :10.1128/MCB.21.13.4292-4301.2001. PMC 87089 . PMID  11390657. 

Otras lecturas

enlaces externos