Fue desarrollada por Vitaly Ginzburg y Lev Landau en 1950.[1] Se caracteriza por centrarse más en la teoría macroscópica, mientras la teoría BCS se centra en los efectos cuánticos (relacionados con la teoría microscópica).En una comparación con otros campos de la física, se podría decir que la teoría Ginzburg-Landau es a la teoría BCS lo que la termodinámica (teoría macroscópica) a la mecánica estadística (teoría microscópica).La situación política global de los años cincuenta afectó también a la comunicación entre los físicos que estudiaban la superconductividad.De esta forma, los físicos de Europa occidental y Estados Unidos tardaron casi una década en conocer esta teoría que, a pesar de que vio la luz en 1950, no apareció en ninguna publicación al otro lado del Telón de Acero hasta que físicos como Lev Gor'kov la dieron a conocer.Gor'kov sirvió como puente entre Occidente y la Unión Soviética (en la década de 1990 emigró a los EE.UU. y adquirió la ciudadanía estadounidense).No obstante, la poca atención prestada al principio a esta teoría no está únicamente relacionada con la política: su carácter fenomenológico, es decir, el hecho de que renunciaba a una explicación a partir de primeros principios y se centraba principalmente en los hechos experimentales observados fue una de las razones por las que sus logros no fueron suficientemente valorados.Los físicos occidentales estaban más interesados en conocer los fundamentos de la superconductividad, desarrollándola a partir de los principios de la mecánica cuántica (es decir, la teoría microscópica que culminó con la teoría BCS, publicada en 1957).Hubo que esperar hasta 1959, año en que el propio Lev Gor'kov concilió ambos puntos de vista demostrando que la teoría Ginzburg-Landau se podía derivar rigurosamente a partir de la teoría microscópica[2] en un artículo que también publicó en inglés.[3] La teoría de Ginzburg-Landau encuentra su principal aplicación en el estudio de los superconductores no convencionales (muchos de los cuales, si bien no todos, se conocen como superconductores sucios debido a que se caracterizan por su contenido de impurezas), entre los que se encuentran los famosos superconductores de alta temperatura.La razón de ello es que, aunque la teoría más precisa, que es la teoría BCS, explica con éxito muchos detalles de diferentes superconductores (en especial aquellos casos en los que el valor la banda prohibida Δ es constante en todo el espacio), esta no siempre es aplicable.De hecho, en muchos casos todo el interés se basa en la inhomogeneidad de la muestra.La teoría BCS es una teoría microscópica y por ello a veces los problemas que hay que afrontar resultan intratables por ser demasiado complejos, y es aquí donde la única salida es emplear la teoría Ginzburg-Landau.Ginzburg y Landau asumieron que la energía libre se podía expresar de la siguiente forma:es la energía libre en la fase normal,son parámetros que se pueden calcular mediante experimentos, m es la masa efectiva,es el potencial vectorial electromagnético yPara ver la situación, se puede observar que en ausencia de campos magnéticos y con gradiente nulo, la diferencia entre la energía libre en el estado superconductor y en el estado normal es:Como se puede observar en la gráfica adjunta, tomando β positivo y suponiendo que α sea negativo, habrá un rango del parámetro de orden para el cual la energía es inferior en el estado superconductor.Minimizando la energía libre con respecto a las fluctuaciones del parámetro de orden y el potencial vector, se puede llegar a las ecuaciones de Ginzburg-Landau:es la densidad de corriente y Re significa parte real.Las ecuaciones de Ginzburg-Landau, entre otras cosas, son importantes porque nos brindan dos cantidades fundamentales en nuestra comprensión de la superconductividad:el cual es clave para distinguir entre los superconductores de tipo I y los de tipo II, ya que, como demostró Abrikósov (que fue quien propuso este criterio para la clasificación de los superconductores en 1957 en un famoso artículo[4][5]), se obtiene que: Yendo un poco más lejos, y con la ayuda de la teoría BCS, se ve que se puede decir que cuando T ≈ Tc :, para un superconductor puro (sin impurezas), y, para un superconductor sucio siendo l el recorrido libre medio entre impurezas (por lo que cuantas más impurezas tenga la muestra, más corta será la l y más corta será a su vez la longitud de coherencia).de donde se concluyen los resultados previos simplemente sustituyendo las cantidades que predice la teoría BCS:(para un superconductor sucio) Así, es fácil hallar el parámetro de Ginzburg-Landau en cada caso:Puesto que el recorrido libre medio entre impurezas l disminuye con la cantidad de impurezas, se ve que cuantas más impurezas contenga la muestra, mayor será el parámetro κ., con lo que el superconductor pasará a ser de tipo II, lo cual explica por qué este tipo de superconductores suelen ser sustancias muy complejas constituidas por varios elementos diferentes.
Dependencia del campo magnético interno de un superconductor con respecto al campo magnético externo, el cual varía en función del parámetro de Ginzburg-Landau.