stringtranslate.com

Pantalla montada en el casco

El sistema integrado de casco y mira con pantalla (IHADSS)
Torreta de cañón de cadena M230 de 30 mm en un Boeing AH-64 Apache apuntada con una mira montada en el casco.

Una pantalla montada en el casco ( HMD ) es un dispositivo que se lleva en la cabeza y que utiliza pantallas y ópticas para proyectar imágenes y/o simbología a los ojos. [1] [2] [3] Proporciona información visual al usuario cuando se requiere protección para la cabeza, sobre todo en aviones militares. El conjunto de visualización y óptica puede fijarse a un casco o integrarse en el diseño del casco. Un HMD proporciona al piloto conocimiento de la situación , una imagen mejorada de la escena y, en aplicaciones militares , indica a los sistemas de armas la dirección a la que apunta su cabeza. Las aplicaciones que permiten la señalización de sistemas de armas se denominan miras y pantalla montadas en el casco (HMSD) o miras montadas en el casco (HMS).

Requisito

Los diseños de HMD para aviación sirven para estos propósitos:

Los sistemas HMD, combinados con armas High Off- Boresight (HOBS), permiten a la tripulación atacar y destruir casi cualquier objetivo visto por el piloto. Estos sistemas permiten designar objetivos con maniobras mínimas de la aeronave, minimizando el tiempo pasado en el entorno de amenaza y permitiendo una mayor letalidad, capacidad de supervivencia y conciencia situacional del piloto .

Historia

En 1962, Hughes Aircraft Company presentó el Electrocular, una pantalla monocular CRT compacta montada en la cabeza que reflejaba una señal de televisión en un ocular transparente. [4] [5] [6] [7]

Desde 1966 hasta principios de la década de 1970, Mirage 3CZ y Mirage F1AZ de la SAAF ( Fuerza Aérea Sudafricana ) fueron los primeros en utilizar una mira montada en casco desarrollada localmente [ se necesita aclaración ] . Sudáfrica fue el primer país en desarrollar y utilizar HMS en combate, una mira montada en un casco desarrollada localmente e integrada con el misil de búsqueda térmica Armscor V3A. [8] [9] Esto permite al piloto realizar ataques fuera del calibre, sin tener que maniobrar hasta la posición óptima de disparo. Después de que el sistema sudafricano fue probado en combate, desempeñando un papel en el derribo de aviones soviéticos sobre Angola, los soviéticos se embarcaron en un programa de choque para contrarrestar la tecnología [ cita necesaria ] . Como resultado, el MiG-29 fue desplegado en 1985 con un HMD y un arma de alto ángulo de puntería ( R-73 ), dándoles una ventaja en enfrentamientos de maniobras cercanas.

Varias naciones [ ¿cuáles? ] respondió con programas para contrarrestar la combinación MiG-29/HMD/R-73 (y más tarde Su-27 ) una vez que se conoció su efectividad, principalmente a través del acceso a los antiguos MiG-29 de Alemania del Este que eran operados por la Fuerza Aérea unificada de Alemania.

Uno de los primeros aviones con dispositivos HMD simples apareció con fines experimentales a mediados de la década de 1970 para ayudar a apuntar a misiles buscadores de calor . Estos dispositivos rudimentarios se describían mejor como miras montadas en casco. El Sistema Visual de Adquisición de Objetivos (VTAS) de la Marina de los EE. UU. , fabricado por Honeywell Corporation, era una simple mira mecánica de estilo "anillo y cuenta" instalada en la parte delantera del casco del piloto que voló en el ACEVAL/AIMVAL de 1974-1978 en los EE. UU. Cazas F-14 y F-15 . VTAS recibió elogios [ ¿de quién? ] por su eficacia para apuntar a misiles fuera de puntería, pero Estados Unidos no intentó desplegarlo excepto para su integración en los últimos modelos de los Navy F-4 Phantom equipados con el AIM-9 Sidewinder de 1969. [10] Los HMD también se introdujeron en helicópteros durante este tiempo, los ejemplos incluyen el Boeing AH-64 Apache con el sistema integrado de observación de casco y pantalla (IHADSiSy) demostrado en 1985. [11]

Un HMD exitoso fue la serie Elbit DASH de la Fuerza Aérea Israelí , desplegada junto con el Python 4 , a principios de la década de 1990. Estados Unidos, Reino Unido y Alemania buscaron un HMD combinado con sistemas ASRAAM . Las dificultades técnicas llevaron a que Estados Unidos abandonara ASRAAM y, en su lugar, financiara el desarrollo del AIM-9X y el sistema conjunto de señales montado en el casco en 1990. Los HMD de combate estadounidenses y europeos se utilizaron ampliamente a finales de los años 1990 y principios de los 2000.

El primer uso civil de HMD en aviones fue el Elbit SkyLens HMD en un avión ATR 72/42.[12]

Tecnología

Si bien es conceptualmente simple, la implementación de HMD para aviones es bastante compleja. Hay muchas variables: [13]

Seguimiento de cabeza

Los diseños de HMD deben detectar la orientación (elevación, azimut y balanceo) y, en algunos casos, la posición (x, y, z) de la cabeza del piloto en relación con la estructura del avión con suficiente precisión incluso en condiciones de " g " alta, vibración y en condiciones rápidas. movimiento de la cabeza. En la tecnología HMD actual se utilizan cinco métodos básicos: inercial, óptico, electromagnético, sónico e híbrido. [13] Los rastreadores híbridos utilizan una combinación de sensores como el inercial y el óptico para mejorar la precisión del seguimiento, la tasa de actualización y la latencia. [14]

Óptica inercial híbrida

Los sistemas híbridos de seguimiento inercial emplean una unidad de medición inercial (IMU) sensible y un sensor óptico para proporcionar referencia a la aeronave. Las IMU basadas en MEMS se benefician de altas tasas de actualización, como 1000 Hz, pero sufren precesión y deriva con el tiempo, por lo que no se pueden usar solas. En esta clase de rastreador, el sensor óptico se utiliza para limitar la deriva de la IMU. Como resultado, los rastreadores híbridos inerciales/ópticos presentan baja latencia y alta precisión. Los HMCS Thales Scorpion® [15] y HMIT HMD utilizan un rastreador fabricado por InterSense llamado rastreador inercial híbrido de base óptica (HObIT). [dieciséis]

Óptico

Los sistemas ópticos emplean emisores de infrarrojos en el casco (o cabina de vuelo ) y detectores de infrarrojos en la cabina de vuelo (o casco), para medir la posición de la cabeza del piloto. Las principales limitaciones son los campos de visión restringidos y la sensibilidad a la luz solar u otras fuentes de calor. El sistema Archer MiG-29/AA-11 utiliza esta tecnología. [13] El Cobra HMD utilizado tanto en el Eurofighter Typhoon [17] como en el JAS39 Gripen [18] emplea el rastreador óptico de casco desarrollado por Denel Optronics (ahora parte de Zeiss Optronics [19] ).

Electromagnético

Los diseños de detección electromagnética utilizan bobinas (en el casco) colocadas en un campo alterno (generado en la cabina de vuelo) para producir voltajes eléctricos alternos basados ​​en el movimiento del casco en múltiples ejes. Esta técnica requiere un mapeo magnético preciso de la cabina de vuelo para tener en cuenta los materiales ferrosos y conductores en el asiento, los umbrales de la cabina de vuelo y la cubierta para reducir los errores angulares en la medición. [20]

Sonic

Los diseños de detección acústica utilizan sensores ultrasónicos para monitorear la posición de la cabeza del piloto mientras se actualizan mediante software de computadora en múltiples ejes. Las frecuencias operativas típicas están en el rango de 50 a 100  kHz y se puede hacer que transporten información de sonido directamente a los oídos del piloto a través de la modulación subportadora de las señales de detección ultrasónicas. [20] [ verificación fallida ]

Óptica

Los HMD más antiguos suelen emplear un CRT compacto integrado en el casco y ópticas adecuadas para mostrar simbología en la visera o retícula del piloto, enfocadas al infinito . Los HMD modernos han prescindido del CRT en favor de micropantallas como las de cristal líquido sobre silicio (LCOS) o pantalla de cristal líquido (LCD) junto con un iluminador LED para generar la imagen mostrada. Los HMD avanzados también pueden proyectar imágenes FLIR o de visión nocturna . Una mejora reciente es la capacidad de mostrar símbolos de color y vídeo.

Sistemas principales

Los sistemas se presentan en orden cronológico aproximado de capacidad operativa inicial .

Sistema integrado de visión con casco y pantalla (IHADSS)

IHADSS

En 1985, [21] el Ejército de EE. UU. utilizó el Apache AH-64 y con él el Sistema Integrado de Observación de Casco y Pantalla (IHADSS), un nuevo concepto de casco en el que se amplió la función del casco para proporcionar una interfaz acoplada visualmente entre el aviador y el avión. El Honeywell M142 IHADSS está equipado con una pantalla monocular de vídeo con simbología con un campo de visión de 40° por 30°. Los emisores de infrarrojos permiten que un sensor de cámara termográfica giratorio , montado en el morro del avión, sea esclavo de los movimientos de la cabeza del aviador. La pantalla también permite una navegación nocturna como la siesta de la tierra . IHADSS también se utiliza en el Agusta A129 Mangusta italiano . [22]

Medios relacionados con IHADSS en Wikimedia Commons

ZSH-5 / Shchel-3UM

El diseño ruso Shchel-3UM HMD se ha instalado en el casco de la serie ZSh-5 (y posteriormente en los cascos ZSh-7) y se ha utilizado en el MiG-29 y el Su-27 junto con el misil R-73 ( OTAN). nombre del informe : AA-11 Archer). La combinación HMD/Archer dio al MiG-29 y al Su-27 una capacidad de combate cuerpo a cuerpo significativamente mejorada. [23] [24]

Casco con pantalla y mira (DASH)

DASH IV HMDS

Elbit Systems DASH III fue el primer HMD occidental moderno en lograr el servicio operativo. El desarrollo del DASH comenzó a mediados de la década de 1980, cuando la IAF emitió un requisito para los aviones F-15 y F-16. El primer diseño entró en producción alrededor de 1986, y el casco actual GEN III entró en producción entre principios y mediados de la década de 1990. La variante de producción actual se implementa en aviones F-15 y F-16 de las FDI . Además, ha sido certificado para el F/A-18 y el F-5 . El DASH III se ha exportado e integrado en varios aviones heredados, incluido el MiG-21 . [25] [ ¿ fuente poco confiable? ] También constituye la tecnología de base para el JHMCS de EE. UU. [26]

El DASH GEN III es un diseño totalmente integrado, donde el paquete completo de bobinas ópticas y de detección de posición está integrado dentro del casco (ya sea el estándar HGU-55/P de la USAF o el estándar israelí HGU-22/P) utilizando una visera esférica para proporcionar una Imagen colimada al piloto. Un cable de desconexión rápida alimenta la pantalla y transmite señales de transmisión de video al tubo de rayos catódicos (CRT) del casco. DASH está estrechamente integrado con el sistema de armas del avión, a través de un bus MIL-STD-1553 B. El último modelo DASH IV está actualmente integrado en el HAL Tejas de la India . [27]

Sistema de señalización conjunto montado en casco (JHMCS)

JHMCS

Después de la retirada estadounidense de ASRAAM , Estados Unidos persiguió y envió al JHMCS junto con el Raytheon AIM-9X , en noviembre de 2003 con los escuadrones de caza 12 y 19 en la Base Aérea Elmendorf , Alaska. La Marina llevó a cabo RDT&E en el F/A-18 C como plataforma principal para el JHMCS, pero lo utilizó primero en los aviones F/A-18 Super Hornet E y F en 2003. La USAF también está integrando el JHMCS en su F-15E . Aviones F-15C y F-16C .

JHMCS es un derivado de DASH III y Kaiser Agile Eye HMD, y fue desarrollado por Vision Systems International (VSI), una empresa conjunta formada por Rockwell Collins y Elbit (Kaiser Electronics ahora es propiedad de Rockwell Collins). Boeing integró el sistema en el F/A-18 y comenzó la entrega de producción inicial a bajo ritmo en el año fiscal 2002. JHMCS se emplea en el F/A-18 A++/C/D/E/F, F-15C/D/ E/SA/QA/EX y F-16 Block 40/50 con un diseño 95% común a todas las plataformas. [28]

A diferencia del DASH, que está integrado en el propio casco, los conjuntos JHMCS se acoplan a los cascos HGU-55/P, HGU-56/P o HGU-68/P modificados. JHMCS emplea un paquete de procesamiento digital más nuevo y más rápido, pero conserva el mismo tipo de detección de posición electromagnética que el DASH. El paquete CRT es más capaz, pero sigue limitado a la presentación monocromática de simbología cursiva. JHMCS proporciona soporte para imágenes escaneadas rasterizadas para mostrar imágenes FLIR/ IRST para operaciones nocturnas y proporciona simbología e imágenes colimadas al piloto. La integración de las gafas de visión nocturna con el JHMCS fue un requisito clave del programa.

Cuando se combina con el AIM-9X, un arma avanzada de combate aéreo de corto alcance que emplea un buscador de matriz de plano focal y un paquete de control de cola de vectorización de empuje, JHMCS permite la designación efectiva de objetivos hasta 80 grados a cada lado de la nariz del avión. En marzo de 2009, un F/A-18 de la Real Fuerza Aérea Australiana (RAAF) utilizando JHMCS demostró un disparo exitoso de 'Bloqueo después del lanzamiento' de un ASRAAM contra un objetivo ubicado detrás de la línea del ala del avión 'tirador'. . [29]

TARGOII

Qatar e India utilizan el sistema diseñado por Elbit en el Rafale F3R [30] [31]

Orientación integrada montada en el casco (HMIT)

Pantalla montada en casco Scorpion

Thales introdujo el sistema de visualización montado en la cabeza/casco Scorpion® en el mercado de la aviación militar en 2008. En 2010, Scorpion fue el ganador del programa de orientación integrada montada en el casco (HMIT) de la USAF/ANG/AFRes. [32] El sistema HMIT fue calificado e implementado en las plataformas A-10 [33] y F-16 en 2012. [34] A partir de 2018, la base instalada de sistemas HMIT pasó por una actualización del rastreador de casco. El sensor de seguimiento magnético de CA original fue reemplazado por un rastreador híbrido óptico-inercial llamado Rastreador inercial de base óptica híbrida (HObIT). [35] [36] El HObIT fue desarrollado por InterSense [37] y probado por Thales en 2014. [38]

Scorpion tiene la distinción de ser el primer HMD introducido y desplegado que puede mostrar una simbología conforme a todo color. [39] Se utiliza junto con el sistema de misión de la aeronave para indicarle a la aeronave que apunta a cápsulas, sensores cardánicos y misiles de alto ángulo de puntería. Scorpion proporciona una capacidad de "ojos abiertos": incluso cuando los objetos pueden estar ocultos a la vista, Scorpion puede proporcionar señales gráficas visuales a la pantalla de campo cercano. [40] A diferencia de la mayoría de los HMD que requieren cascos personalizados, Scorpion fue diseñado para instalarse en cascos estándar HGU-55/P y HGU-68/P y es totalmente compatible con el equipo de vuelo de piloto estadounidense estándar sin accesorios especiales. También es totalmente compatible con las gafas de visión nocturna (NVG) y las gafas de visión nocturna panorámica (PNVG) AN/AVS-9 estándar sin modificar. Los pilotos, utilizando Scorpion, pueden ver tanto la imagen de visión nocturna como los símbolos en la pantalla. [41] [42]

Scorpion utiliza un novedoso sistema óptico que presenta un elemento óptico guía de luz (LOE) que proporciona al piloto una imagen colimada en color compacta. La pantalla puede ser posicionada por cada piloto, eliminando así la necesidad de una posición precisa del casco en la cabeza del usuario o de un ajuste especial del casco. La corrección del software se adapta a la posición de la pantalla, proporcionando una imagen precisa al piloto y permitiendo que el Scorpion HMCS se instale en el casco existente del piloto. Se puede desplegar una visera frente a la pantalla para brindar protección durante la expulsión. La visera puede ser transparente, deslumbrante, de alto contraste, degradada o con protección láser. Para operaciones nocturnas, se puede instalar un soporte NVG en lugar del visor durante el vuelo. Una vez instalados, los NVG se pueden colocar frente a la pantalla, lo que permite al piloto ver tanto los símbolos de la pantalla como la imagen del NVG simultáneamente.

Scorpion también es utilizado por Tactical Air Support Inc. en F-5AT, [43] por la Fuerza Aérea Francesa para Rafale F4, [44] por la Fuerza Aérea Española en EF-18, [45] el AC-130W Stinger II Gunship, [ 46] y el Lockheed Martin F-22 Raptor . [47]

Aselsan AVCI

Aselsan de Turquía está trabajando para desarrollar un sistema similar al casco francés TopOwl, llamado Sistema de señalización integrado de casco AVCI. El sistema también se utilizará en el helicóptero de ataque turco T-129 . [48]

TopOwl-F(Topsight/TopNight)

El vector de empuje francés Matra MICA (misil) para sus cazas Dassault Rafale y Mirage 2000 de último modelo estuvo acompañado por el Topsight HMD de Sextant Avionique. TopSight proporciona un campo de visión de 20 grados para el ojo derecho del piloto y una simbología cursiva generada a partir de los parámetros del objetivo y de la aeronave. Se emplea detección de posición electromagnética. El casco Topsight utiliza un diseño integrado integral y su forma contorneada está diseñada para proporcionar al piloto un campo de visión totalmente sin obstáculos.

TopNight, un derivado de Topsight, está diseñado específicamente para condiciones climáticas adversas y operaciones nocturnas aire-tierra, empleando ópticas más complejas para proyectar imágenes infrarrojas superpuestas con simbología. La versión más reciente del Topsight ha sido designada TopOwl-F y está calificada para el Mirage-2000-5 Mk2 y el Mig-29K.

Sistema de simbología montado en el casco del Eurofighter

HMSSS

El Eurofighter Typhoon utiliza el sistema de simbología montado en el casco (HMSS) desarrollado por BAE Systems y Pilkington Optronics . Llamado Striker y su versión posterior Striker II, es capaz de mostrar imágenes rasterizadas y simbología cursiva, con disposiciones para NVG integrados . Al igual que con el casco DASH, el sistema emplea un sensor de posición integrado para garantizar que los símbolos que representan entidades del mundo exterior se muevan en línea con los movimientos de la cabeza del piloto.

Sistema de visualización montado en el casco

Sistema de visualización montado en casco para el F-35 Lightning II
Sistema montado en casco Striker II de BAE System en DSEI-2019

Vision Systems International (VSI; la empresa conjunta de Elbit Systems / Rockwell Collins ) junto con Helmet Integrated Systems, Ltd. desarrollaron el sistema de visualización montado en el casco (HMDS) para el avión F-35 Joint Strike Fighter. Además de las capacidades HMD estándar que ofrecen otros sistemas, HMDS utiliza plenamente la arquitectura de aviónica avanzada del F-35 y proporciona imágenes al vídeo del piloto en condiciones diurnas o nocturnas. En consecuencia, el F-35 es el primer avión de combate táctico en 50 años que vuela sin HUD. [49] [50] Se consideró un casco de BAE Systems cuando el desarrollo de HMDS estaba experimentando problemas importantes, pero estos problemas finalmente se resolvieron. [51] [52] El sistema de visualización montado en el casco estaba en pleno funcionamiento y listo para su entrega en julio de 2014. [53]

Jedeye

Jedeye es un nuevo sistema introducido recientemente por Elbit Systems especialmente para cumplir con los requisitos de Apache y otras plataformas de ala giratoria. El sistema está diseñado para entornos de vuelo diurnos, nocturnos y con caídas de tensión . Jedeye tiene un campo de visión de 70 x 40 grados y una resolución de 2250x1200 píxeles.

Cobra

El caza sueco JAS 39C/D Gripen utiliza el Cobra HMD. El casco es un desarrollo y refinamiento adicional del casco Striker desarrollado para el Eurofighter por BAE Systems. El refinamiento lo realiza BAE en asociación con Denel Cumulus. [54] [55]

Tecnología del futuro

Ver también

Referencias

  1. ^ Erupción, CE; Ruso, señor; Letowski, TR; Schmeisser, et (2010). Pantallas montadas en casco: problemas de sensación, percepción y cognición . Fort Rucker AL: Laboratorio de Investigación Aeromédica del Ejército de EE. UU. ISBN 978-0-615-28375-3.
  2. ^ Kocian, Dean F.; Tarea, H. Lee (1995). "Hardware de sistemas visualmente acoplados e interfaz humana". En Barfield, Woodrow; Furness, Thomas A. (eds.). Entornos Virtuales y Diseño de Interfaz Avanzado . Prensa de la Universidad de Oxford. ISBN 0-19-507555-2.
  3. ^ Erupción, Clarence E. (2001). "Resumen introductorio". En Rash, Clarence E. (ed.). Pantallas montadas en cascos: problemas de diseño para aviones de ala giratoria . Comando de Material e Investigación Médica del Ejército de EE. UU.
  4. ^ "Ciencia: Segunda Vista", Time , viernes 13 de abril de 1962
  5. ^ Dr. James Miller, Fullerton, CA, psicólogo investigador del Ground Systems Group en Hughes, " Tengo un secreto ", 9 de abril de 1962 en CBS
  6. ^ "Tercer ojo para los exploradores espaciales", Popular Electronics , julio de 1962
  7. ^ "'Ver cosas' con electrocular", Ciencia y Mecánica, agosto de 1962
  8. ^ Lake, Jon (26 de noviembre de 2020). "¡La apariencia realmente puede matar!". Revista militar asiática . Consultado el 22 de abril de 2021 .
  9. ^ Dunnigan, James (12 de septiembre de 2015). "El casco que lo cambió todo". Página de estrategia . Consultado el 22 de abril de 2021 .
  10. ^ "Casco VTAS". Best-of-flightgear.dk . Consultado el 20 de agosto de 2010 .
  11. ^ Erupción, Clarence E.; Martín, John S. (agosto de 1988). El impacto de la pantalla montada en el casco AH-64 del ejército de EE. UU. en el futuro diseño de cascos de aviación (Informe). Laboratorio de investigación aeromédica del ejército Fort Rucker. Archivado desde el original el 27 de febrero de 2012 . Consultado el 31 de enero de 2010 .
  12. ^ ATR y Elbit desarrollan HUD AIN portátil en línea (julio de 2016)
  13. ^ Pantallas montadas en casco abc: sensación, percepción y problemas cognitivos. Laboratorio de Investigación Aeromédica del Ejército de EE. UU. 2009.ISBN 978-0-6152-83753. Archivado desde el original el 3 de marzo de 2012.
  14. ^ Atac, Robert; Foxlin, Eric (16 de mayo de 2013). "Rastreador inercial de base óptica híbrido Scorpion (HObIT)". En Marasco, Peter L; Havig, Paul R (eds.). Pantallas montadas en cabeza y casco XVIII: Diseño y aplicaciones . vol. 8735. pág. 873502. doi : 10.1117/12.2012194. S2CID  120186142.
  15. ^ "Tales | Visionix". www.thalesvisionix.com . Consultado el 30 de septiembre de 2018 .
  16. ^ "InterSense | Soluciones de seguimiento de movimiento de precisión | Sistema HObIT IS-1200+". www.intersense.com . 2 de octubre de 2017 . Consultado el 22 de septiembre de 2018 .
  17. ^ "Sistema de seguimiento de cabeza Denel Optronics para Eurofighter Typhoon". Charla de defensa . 4 de junio de 2007 . Consultado el 12 de julio de 2011 .
  18. ^ "PRIMER VUELO GRIPEN CON PANTALLA MONTADA EN EL CASCO". Saab . Consultado el 12 de julio de 2011 .
  19. ^ "Denel y Zeiss en asociación óptica". 27 de marzo de 2007 . Consultado el 12 de julio de 2011 .
  20. ^ ab Air Power Australia. "Monitores y pantallas montados en cascos". Ausairpower.net . Consultado el 20 de agosto de 2010 .
  21. ^ División de Investigación Sensorial (agosto de 1988). "El impacto de la pantalla montada en el casco AH-64 del ejército de EE. UU. en el futuro diseño de cascos de aviación" (PDF) . Laboratorio de Investigación Aeromédica del Ejército de los Estados Unidos. Archivado desde el original (PDF) el 23 de diciembre de 2016 . Consultado el 17 de agosto de 2016 .
  22. ^ "El impacto de la pantalla montada en el casco AH-64 del ejército de EE. UU. en el futuro diseño de cascos de aviación". Stinet.dtic.mil. Archivado desde el original el 27 de febrero de 2012 . Consultado el 20 de agosto de 2010 .
  23. ^ "Hojas técnicas: Mikoyan-Gurevich MiG-29A: Mikoyan-Gurevich MiG-29A". Museo Nacional.af.mil. 1977-10-06. Archivado desde el original el 12 de agosto de 2010 . Consultado el 20 de agosto de 2010 .
  24. ^ "Avión de combate, MiG-29/1". Ciencia ficción. Archivado desde el original el 14 de mayo de 2011 . Consultado el 20 de agosto de 2010 .
  25. ^ "Tecnología de la Fuerza Aérea de ataque terrestre de combate MiG-21 2000". Airforce-technology.com. 1995-05-24 . Consultado el 20 de agosto de 2010 .
  26. ^ "Vision Systems Internacional - DASH". Vsi-hmcs.com. Archivado desde el original el 3 de agosto de 2010 . Consultado el 20 de agosto de 2010 .
  27. ^ 31.º informe anual de la ADA (PDF) (Reporte).
  28. ^ "Vision Systems Internacional - JHMCS". Vsi-hmcs.com. Archivado desde el original el 3 de agosto de 2010 . Consultado el 20 de agosto de 2010 .
  29. ^ Noticias de la industria, su (9 de marzo de 2009). "La RAAF ha disparado con éxito ASRAAM contra un objetivo ubicado detrás de la línea del ala del avión 'tirador'". Noticias de su industria . Consultado el 10 de marzo de 2009 .
  30. ^ http://elbitsystems.com/product/targo/
  31. ^ "La Fuerza Aérea Francesa está probando el nuevo estándar Rafale F4-1: The Aviationist". Junio ​​de 2021.
  32. ^ "Raytheon producirá el sistema HMIT para la Fuerza Aérea de EE. UU.: The Engineer The Engineer". www.theengineer.co.uk . 19 de julio de 2010 . Consultado el 23 de septiembre de 2018 .
  33. ^ Cenciotti, David (13 de diciembre de 2018). "De cerca y en persona con el sistema de señales montado en el casco Scorpion del A-10 Warthog". El aviacionista . Consultado el 14 de diciembre de 2018 .
  34. ^ Atac, Robert; Bugno, Tony (1 de junio de 2011). "Calificación del sistema de señales del casco de escorpión". En Marasco, Peter L; Havig, Paul R (eds.). Pantallas montadas en cabeza y casco XVI: Diseño y aplicaciones . vol. 8041, págs. 182–188. doi : 10.1117/12.884195. S2CID  121603702.
  35. ^ D'Urso, Stefano (10 de septiembre de 2019). "El A-10C Warthog recibe nuevas actualizaciones para estar listo para luchar en futuros conflictos de alto nivel". El aviacionista . Consultado el 8 de octubre de 2019 .
  36. ^ Hacha, David (6 de octubre de 2019). "Nada puede matar al jabalí A-10 (y no queremos decir nada)". El Interés Nacional . Consultado el 8 de octubre de 2019 .
  37. ^ "InterSense | Soluciones de seguimiento de movimiento de precisión | Inicio". www.intersense.com . Consultado el 23 de septiembre de 2018 .
  38. ^ Atac, Robert; Girar, Scott; Calloway, Tom; Foxlin, Eric (13 de junio de 2014). "Resultados de la prueba del rastreador inercial de base óptica híbrida Scorpion (HObIT)". En Desjardins, Daniel D; Sarma, Kalluri R; Marasco, Peter L; Havig, Paul R; Browne, Michael P; Melzer, James E (eds.). Tecnologías de visualización y aplicaciones para defensa, seguridad y aviónica VIII; y Pantallas montadas en cabeza y casco XIX . vol. 9086, págs. 172-181. doi :10.1117/12.2050363. S2CID  121689580.
  39. ^ Atac, Robert (5 de mayo de 2010). "Aplicaciones del sistema de señales montado en casco color Scorpion". En Marasco, Peter L; Havig, Paul R (eds.). Pantallas montadas en cabeza y casco XV: Diseño y aplicaciones . vol. 7688, págs. 18-24. doi : 10.1117/12.849287. S2CID  120094908.
  40. ^ "Pantalla montada en casco Thales Scorpion para aviones de combate" (PDF) .
  41. ^ "Raytheon gana el contrato HMIT de la Fuerza Aérea de EE. UU. en Farnborough - Airforce Technology". Tecnología de la Fuerza Aérea . 21 de julio de 2010 . Consultado el 23 de septiembre de 2018 .
  42. ^ "Tales | Visionix". www.thalesvisionix.com . Consultado el 23 de septiembre de 2018 .
  43. ^ "Private Aggressor F-5 Fighter Force está volando con pantallas montadas en cascos". 16 de marzo de 2020.
  44. ^ "Francia invierte 2.000 millones de euros en el nuevo estándar F4 del Rafale".
  45. ^ "Thales entregará sistemas de señalización montados en casco Scorpion para el Ejército del Aire español". www.airforce-technology.com . 12 de mayo de 2016 . Consultado el 21 de diciembre de 2021 .
  46. ^ Hunter, Jamie (18 de agosto de 2020). "Echa un vistazo a este piloto de cañonera AC-130 con una pantalla montada en un casco Scorpion". La unidad . Consultado el 21 de diciembre de 2021 .
  47. ^ Rogoway, Tyler (8 de febrero de 2022). "F-22 Raptor visto volando con cápsulas sigilosas debajo de las alas". La unidad . Consultado el 9 de febrero de 2022 .
  48. ^ "Monch Yayıncılık - AVCI". Monch.com.tr. Archivado desde el original el 7 de septiembre de 2009 . Consultado el 20 de agosto de 2010 .
  49. ^ "El sistema de visualización montado en el casco de VSI vuela en Joint Strike Fighter". Rockwell Collins. 10 de abril de 2007. Archivado desde el original el 16 de mayo de 2007.
  50. ^ Programa de combate conjunto F-35. "> F-35 > Tecnología". JSF.mil. Archivado desde el original el 6 de mayo de 2012 . Consultado el 20 de agosto de 2010 .{{cite web}}: CS1 maint: numeric names: authors list (link)
  51. ^ "Lockheed Martin selecciona BAE Systems para suministrar la solución de visualización del casco F-35 Joint Strike Fighter (JSF)". Sistemas BAE. 10 de octubre de 2011. Archivado desde el original el 11 de octubre de 2011.
  52. ^ Programa de combate conjunto F-35. ">F-35>". Dailytech.com . Consultado el 4 de enero de 2017 .{{cite web}}: CS1 maint: numeric names: authors list (link)
  53. ^ SEAN GALLAGHER (24 de julio de 2014). ""Casco Mágico "para F-35 listo para entrega". Ars Técnica .
  54. ^ "Saab y BAE Systems firman un acuerdo para un nuevo sistema de visualización integrado en el casco para Gripen". CORPORATIVO SAAB . 17 de junio de 2003. Archivado desde el original el 17 de agosto de 2016.
  55. ^ "Ojos en el objetivo". Archivado desde el original el 10 de marzo de 2021.
  56. ^ "Tecnología de pantalla de retina virtual". Archivado desde el original el 13 de abril de 2008 . Consultado el 2 de octubre de 2009 .
  57. ^ MATT LAKE (26 de abril de 2001). "Cómo funciona: las pantallas de retina agregan una segunda capa de datos". Los New York Times . Consultado el 17 de agosto de 2016 .

Bibliografía

enlaces externos