stringtranslate.com

Producto directo de grupos.

En matemáticas , específicamente en teoría de grupos , el producto directo es una operación que toma dos grupos G y H y construye un nuevo grupo, generalmente denotado G × H. Esta operación es el análogo en teoría de grupos del producto cartesiano de conjuntos y es una de varias nociones importantes de producto directo en matemáticas.

En el contexto de los grupos abelianos , el producto directo a veces se denomina suma directa y se denota . Las sumas directas juegan un papel importante en la clasificación de los grupos abelianos: según el teorema fundamental de los grupos abelianos finitos , todo grupo abeliano finito puede expresarse como la suma directa de grupos cíclicos .

Definición

Dados los grupos G (con operación * ) y H (con operación ), el producto directo G × H se define de la siguiente manera:

  1. El conjunto subyacente es el producto cartesiano, G × H. Es decir, los pares ordenados ( g , h ) , donde gG y hH .
  2. La operación binaria en G × H se define por componentes:
    ( gramo 1 , h 1 ) · ( gramo 2 , h 2 ) = ( gramo 1 * g 2 , h 1h 2 )

El objeto algebraico resultante satisface los axiomas de un grupo. Específicamente:

asociatividad
La operación binaria sobre G × H es asociativa .
Identidad
El producto directo tiene un elemento de identidad , a saber (1 G , 1 H ) , donde 1 G es el elemento de identidad de G y 1 H es el elemento de identidad de  H.
Inversas
El inverso de un elemento ( g , h ) de G × H es el par ( g −1 , h −1 ) , donde g −1 es el inverso de g en G y h −1 es el inverso de h en  H .

Ejemplos

( x 1 , y 1 ) + ( x 2 , y 2 ) = ( x 1 + x 2 , y 1 + y 2 ) .
( x 1 , y 1 ) × ( x 2 , y 2 ) = ( x 1 × x 2y 1 × y 2 ) .

Entonces el producto directo G × H es isomorfo al grupo de cuatro de Klein :

Propiedades elementales

estructura algebraica

Sean G y H grupos, sean P = G × H y considere los siguientes dos subconjuntos de  P :

G ′ = { ( g , 1 ) : gG }    y    H ′ = { (1, h ) : hH } .

Ambos son, de hecho , subgrupos de P , siendo el primero isomorfo a G y el segundo isomorfo a H. Si los identificamos con G y H , respectivamente, entonces podemos pensar que el producto directo P contiene los grupos originales G y H como subgrupos.

Estos subgrupos de P tienen las siguientes tres propiedades importantes: (Repitiendo que identificamos G y H con G y H , respectivamente).

  1. La intersección GH es trivial .
  2. Cada elemento de P se puede expresar de forma única como el producto de un elemento de G y un elemento  de H.
  3. Cada elemento de G conmuta con cada elemento de H .

Juntas, estas tres propiedades determinan completamente la estructura algebraica del producto directo P. Es decir, si P es cualquier grupo que tiene subgrupos G y H que satisfacen las propiedades anteriores, entonces P es necesariamente isomorfo al producto directo de G y H. En esta situación, a veces se hace referencia a P como el producto directo interno de sus subgrupos G y H.

En algunos contextos, la tercera propiedad anterior se reemplaza por la siguiente:

3′. Tanto G como H son normales en P. _

Esta propiedad es equivalente a la propiedad 3, ya que los elementos de dos subgrupos normales con intersección trivial necesariamente conmutan, hecho que se puede deducir considerando el conmutador [ g , h ] de cualquier g en G , h en H.

Ejemplos

Presentaciones

La estructura algebraica de G × H se puede utilizar para dar una presentación del producto directo en términos de las presentaciones de G y H. Específicamente, supongamos que

y

donde y son conjuntos generadores (separados) y y definen relaciones. Entonces

donde es un conjunto de relaciones que especifican que cada elemento de conmuta con cada elemento de .

Por ejemplo si

y

entonces

estructura normal

Como se mencionó anteriormente, los subgrupos G y H son normales en G × H. Específicamente, defina las funciones π G : G × HG y π H : G × HH por

π G ( gramo , h ) = gramo     y     π H ( gramo , h ) = h .

Entonces π G y π H son homomorfismos , conocidos como homomorfismos de proyección , cuyos núcleos son H y G , respectivamente.

De ello se deduce que G × H es una extensión de G por H (o viceversa). En el caso donde G × H es un grupo finito , se deduce que los factores de composición de G × H son precisamente la unión de los factores de composición de G y los factores de composición de H.

Otras propiedades

propiedad universal

El producto directo G × H se puede caracterizar por la siguiente propiedad universal . Sean π G : G × HG y π H : G × HH los homomorfismos de proyección. Entonces, para cualquier grupo P y cualquier homomorfismo ƒ G : PG y ƒ H : PH , existe un homomorfismo único ƒ: PG × H haciendo que el siguiente diagrama conmute :

Específicamente, el homomorfismo ƒ viene dado por la fórmula

ƒ( p ) =  ( ƒG ( p ) , ƒH ( p ) ) .

Éste es un caso especial de la propiedad universal de los productos en la teoría de categorías .

Subgrupos

Si A es un subgrupo de G y B es un subgrupo de H , entonces el producto directo A × B es un subgrupo de G × H. Por ejemplo, la copia isomorfa de G en G × H es el producto G × {1} , donde {1} es el subgrupo trivial de H .

Si A y B son normales, entonces A × B es un subgrupo normal de G × H. Además, el cociente de los productos directos es isomorfo al producto directo de los cocientes:

( G × H ) / ( A × B ) ( G / A ) × ( H / B ) .

Tenga en cuenta que , en general, no es cierto que cada subgrupo de G × H sea el producto de un subgrupo de G con un subgrupo de H. Por ejemplo, si G es un grupo no trivial, entonces el producto G × G tiene un subgrupo diagonal

Δ = { ( gramo , gramo ) : gramoGRAMO }

que no es el producto directo de dos subgrupos de G .

Los subgrupos de productos directos se describen mediante el lema de Goursat . Otros subgrupos incluyen productos de fibra de G y H.

Conjugación y centralizadores

Dos elementos ( g 1 , h 1 ) y ( g 2 , h 2 ) son conjugados en G × H si y sólo si g 1 y g 2 son conjugados en G y h 1 y h 2 son conjugados en H. De ello se deduce que cada clase de conjugación en G × H es simplemente el producto cartesiano de una clase de conjugación en G y una clase de conjugación en H.

En la misma línea, si ( g , h ) ∈ G × H , el centralizador de ( g , h ) es simplemente el producto de los centralizadores de g y h :

C GRAMO × H ( gramo , h )  =  C GRAMO ( gramo ) × CH ( h ) .

De manera similar, el centro de G × H es el producto de los centros de G y H :

Z ( GRAMO × H )  =  Z ( GRAMO ) × Z ( Alto ) .

Los normalizadores se comportan de una manera más compleja ya que no todos los subgrupos de productos directos se descomponen como productos directos.

Automorfismos y endomorfismos.

Si α es un automorfismo de G y β es un automorfismo de H , entonces la función producto α × β : G × HG × H definida por

( α × β )( gramo , h ) = ( α ( gramo ), β ( h ) )

es un automorfismo de G × H . De ello se deduce que Aut( G × H ) tiene un subgrupo isomorfo al producto directo Aut( G ) × Aut( H ) .

No es cierto en general que todo automorfismo de G × H tenga la forma anterior. (Es decir, Aut( G ) × Aut( H ) es a menudo un subgrupo propio de Aut( G × H ) .) Por ejemplo, si G es cualquier grupo, entonces existe un automorfismo σ de G × G que cambia los dos factores, es decir

σ ( gramo 1 , gramo 2 ) = ( gramo 2 , gramo 1 ) .

Para otro ejemplo, el grupo de automorfismos de Z × Z es GL (2, Z ) , el grupo de todas las matrices 2 × 2 con entradas enteras y determinante , ±1 . Este grupo de automorfismos es infinito, pero solo un número finito de automorfismos tienen la forma dada anteriormente.

En general, todo endomorfismo de G × H se puede escribir como una matriz de 2 × 2

donde α es un endomorfismo de G , δ es un endomorfismo de H , y β : HG y γ : GH son homomorfismos. Tal matriz debe tener la propiedad de que cada elemento de la imagen de α conmuta con cada elemento de la imagen de β , y cada elemento de la imagen de γ conmuta con cada elemento de la imagen de δ .

Cuando G y H son grupos indescomponibles y sin centros, entonces el grupo de automorfismo es relativamente sencillo, siendo Aut( G ) × Aut( H ) si G y H no son isomorfos, y Aut( G ) wr 2 si GH , wr denota el producto de la corona . Esto es parte del teorema de Krull-Schmidt y es válido de manera más general para productos directos finitos.

Generalizaciones

Productos directos finitos

Es posible tomar el producto directo de más de dos grupos a la vez. Dada una secuencia finita G 1 , ..., G n de grupos, el producto directo

se define de la siguiente manera:

Tiene muchas de las mismas propiedades que el producto directo de dos grupos y se puede caracterizar algebraicamente de manera similar.

Productos directos infinitos

También es posible tomar el producto directo de un número infinito de grupos. Para una secuencia infinita G 1 , G 2 , ... de grupos, esto se puede definir como el producto directo finito de arriba, siendo los elementos del producto directo infinito tuplas infinitas.

De manera más general, dada una familia indexadaG i  } iI de grupos, el producto directo Π iI G i se define de la siguiente manera:

A diferencia de un producto directo finito, el producto directo infinito Π iI G i no es generado por los elementos de los subgrupos isomórficos {  G i  } iI . En cambio, estos subgrupos generan un subgrupo del producto directo conocido como suma directa infinita , que consta de todos los elementos que tienen solo un número finito de componentes no idénticos.

Otros productos

Productos semidirectos

Recuerde que un grupo P con subgrupos G y H es isomorfo al producto directo de G y H siempre que satisfaga las tres condiciones siguientes:

  1. La intersección GH es trivial .
  2. Cada elemento de P se puede expresar de forma única como el producto de un elemento de G y un elemento  de H.
  3. Tanto G como H son normales en P. _

Se obtiene un producto semidirecto de G y H relajando la tercera condición, de modo que sólo se requiere que uno de los dos subgrupos G , H sea normal. El producto resultante todavía consta de pares ordenados ( g , h ) , pero con una regla de multiplicación un poco más complicada.

También es posible relajar completamente la tercera condición, sin requerir que ninguno de los dos subgrupos sea normal. En este caso , el grupo P se denomina producto Zappa-Szép de G y H.

Productos gratis

El producto libre de G y H , generalmente denotado GH , es similar al producto directo, excepto que no es necesario que los subgrupos G y H de GH conmuten. Es decir, si

GRAMO =S GRAMO | R G     y     H =S H | RH > , _

son presentaciones para G y H , entonces

GRAMOH =S GRAMOS H | R GR H .

A diferencia del producto directo, los elementos del producto gratuito no pueden representarse mediante pares ordenados. De hecho, el producto libre de dos grupos cualesquiera no triviales es infinito. El producto gratuito es en realidad el coproducto de la categoría de grupos .

Productos subdirectos

Si G y H son grupos, un producto subdirecto de G y H es cualquier subgrupo de G × H que se asigna sobreyectivamente a G y H bajo los homomorfismos de proyección. Según el lema de Goursat , todo producto subdirecto es un producto de fibra.

Productos de fibra

Sean G , H y Q grupos, y sean 𝜑 : GQ y χ : HQ homomorfismos. El producto de fibra de G y H sobre Q , también conocido como retroceso , es el siguiente subgrupo de G × H :

𝜑 : GQχ : HQepimorfismos

Referencias

  1. ^ Galliano, Joseph A. (2010). Álgebra abstracta contemporánea (7 ed.). Aprendizaje Cengage. pag. 157.ISBN _ 9780547165097.