stringtranslate.com

pág. 53

p53 , también conocida como proteína tumoral P53 , antígeno tumoral celular p53 ( nombre UniProt ) o proteína relacionada con la transformación 53 (TRP53) es una proteína reguladora que a menudo muta en los cánceres humanos. Las proteínas p53 (originalmente se pensaba que eran, y a menudo se habla de ellas, una sola proteína) son cruciales en los vertebrados , donde previenen la formación de cáncer . [5] Como tal, p53 ha sido descrito como "el guardián del genoma " debido a su papel en la conservación de la estabilidad al prevenir la mutación del genoma. [6] Por lo tanto, TP53 [nota 1] se clasifica como un gen supresor de tumores . [7] [8] [9] [10] [11]

El gen TP53 es el gen que muta con mayor frecuencia (>50%) en el cáncer humano, lo que indica que el gen TP53 desempeña un papel crucial en la prevención de la formación del cáncer. [5] El gen TP53 codifica proteínas que se unen al ADN y regulan la expresión genética para prevenir mutaciones del genoma. [12] Además de la proteína de longitud completa, el gen TP53 humano codifica al menos 12 isoformas de proteína . [13]

Gene

En los seres humanos, el gen TP53 se encuentra en el brazo corto del cromosoma 17 (17p13.1). [7] [8] [9] [10] El gen abarca 20 kb , con un exón 1 no codificante y un primer intrón muy largo de 10 kb, superpuesto al gen Hp53int1 . La secuencia codificante contiene cinco regiones que muestran un alto grado de conservación en vertebrados, predominantemente en los exones 2, 5, 6, 7 y 8, pero las secuencias encontradas en invertebrados muestran solo un parecido distante con el TP53 de los mamíferos. [14] Se han identificado ortólogos de TP53 [15] en la mayoría de los mamíferos para los que hay disponibles datos genómicos completos.

HumanoTP53gene

En los seres humanos, un polimorfismo común implica la sustitución de una arginina por una prolina en la posición del codón 72 del exón 4. Muchos estudios han investigado un vínculo genético entre esta variación y la susceptibilidad al cáncer; sin embargo, los resultados han sido controvertidos. Por ejemplo, un metaanálisis de 2009 no logró demostrar un vínculo con el cáncer de cuello uterino. [16] Un estudio de 2011 encontró que la mutación de prolina TP53 sí tenía un profundo efecto en el riesgo de cáncer de páncreas entre los hombres. [17] Un estudio de mujeres árabes encontró que la homocigosidad de prolina en el codón 72 de TP53 está asociada con un menor riesgo de cáncer de mama. [18] Un estudio sugirió que los polimorfismos del codón 72 de TP53 , MDM2 SNP309 y A2164G pueden estar asociados colectivamente con la susceptibilidad al cáncer no orofaríngeo y que MDM2 SNP309 en combinación con el codón 72 de TP53 puede acelerar el desarrollo del cáncer no orofaríngeo en mujeres. [19] Un estudio de 2011 encontró que el polimorfismo del codón 72 de TP53 estaba asociado con un mayor riesgo de cáncer de pulmón. [20]

Los metanálisis de 2011 no encontraron asociaciones significativas entre los polimorfismos del codón 72 de TP53 y el riesgo de cáncer colorrectal [21] y de cáncer de endometrio. [22] Un estudio de 2011 de una cohorte de nacimientos brasileña encontró una asociación entre la arginina TP53 no mutante y los individuos sin antecedentes familiares de cáncer. [23] Otro estudio de 2011 encontró que el genotipo homocigoto p53 (Pro/Pro) estaba asociado con un riesgo significativamente mayor de carcinoma de células renales. [24]

Función

Daños y reparación del ADN

p53 juega un papel en la regulación o progresión a través del ciclo celular, la apoptosis y la estabilidad genómica mediante varios mecanismos:

Ruta del p53 : En una célula normal, el p53 es inactivado por su regulador negativo, mdm2. Cuando se produce un daño en el ADN u otras situaciones de estrés, varias rutas conducen a la disociación del complejo p53 y mdm2. Una vez activado, el p53 inducirá una detención del ciclo celular para permitir la reparación y supervivencia de la célula o la apoptosis para descartar la célula dañada. Actualmente se desconoce cómo el p53 realiza esta elección.

WAF1/CIP1 codifica p21 y cientos de otros genes dependientes. p21 (WAF1) se une a los complejos G1 - S / CDK ( CDK4 / CDK6 , CDK2 y CDK1 ) (moléculas importantes para la transición G1/S en el ciclo celular) inhibiendo su actividad.

Cuando p21(WAF1) se combina con CDK2, la célula no puede continuar a la siguiente etapa de la división celular. Un p53 mutante ya no se unirá al ADN de manera efectiva y, como consecuencia, la proteína p21 no estará disponible para actuar como la "señal de detención" para la división celular. [26] Los estudios de células madre embrionarias humanas (hESC) describen comúnmente el eje p53-p21 no funcional de la vía del punto de control G1/S con la consiguiente relevancia para la regulación del ciclo celular y la respuesta al daño del ADN (DDR). Es importante destacar que el ARNm p21 está claramente presente y sobreexpresado después de la DDR en las hESC, pero la proteína p21 no es detectable. En este tipo de célula, p53 activa numerosos microARN (como miR-302a, miR-302b, miR-302c y miR-302d) que inhiben directamente la expresión de p21 en las hESC.

La proteína p21 se une directamente a los complejos ciclina-CDK que impulsan el ciclo celular e inhiben su actividad quinasa, lo que provoca la detención del ciclo celular para permitir que se lleve a cabo la reparación. p21 también puede mediar la detención del crecimiento asociada con la diferenciación y una detención del crecimiento más permanente asociada con la senescencia celular. El gen p21 contiene varios elementos de respuesta p53 que median la unión directa de la proteína p53, lo que da como resultado la activación transcripcional del gen que codifica la proteína p21.

Las vías p53 y RB1 están vinculadas a través de p14ARF, lo que aumenta la posibilidad de que las vías puedan regularse entre sí. [27]

La expresión de p53 puede ser estimulada por la luz ultravioleta, que también causa daño al ADN. En este caso, p53 puede iniciar eventos que conducen al bronceado . [28] [29]

Células madre

Los niveles de p53 juegan un papel importante en el mantenimiento de las células madre durante el desarrollo y el resto de la vida humana.

En las células madre embrionarias humanas (hESC), p53 se mantiene en niveles bajos e inactivos. [30] Esto se debe a que la activación de p53 conduce a una rápida diferenciación de las hESC. [31] Los estudios han demostrado que la eliminación de p53 retrasa la diferenciación y que la adición de p53 causa una diferenciación espontánea, lo que demuestra cómo p53 promueve la diferenciación de las hESC y desempeña un papel clave en el ciclo celular como regulador de la diferenciación. Cuando p53 se estabiliza y se activa en las hESC, aumenta p21 para establecer un G1 más largo. Esto generalmente conduce a la abolición de la entrada en la fase S, que detiene el ciclo celular en G1, lo que conduce a la diferenciación. Sin embargo, el trabajo en células madre embrionarias de ratón ha demostrado recientemente que la expresión de P53 no conduce necesariamente a la diferenciación. [32] p53 también activa miR-34a y miR-145 , que luego reprimen los factores de pluripotencia de las hESC, lo que instiga aún más la diferenciación. [30]

En las células madre adultas, la regulación de p53 es importante para el mantenimiento de la pluripotencia en los nichos de células madre adultas . Las señales mecánicas como la hipoxia afectan los niveles de p53 en estas células de nicho a través de los factores inducibles por hipoxia , HIF-1α y HIF-2α. Mientras que HIF-1α estabiliza p53, HIF-2α lo suprime. [33] La supresión de p53 juega un papel importante en el fenotipo de células madre cancerosas, células madre pluripotentes inducidas y otras funciones y comportamientos de las células madre, como la formación de blastema. Se ha demostrado que las células con niveles reducidos de p53 se reprograman en células madre con una eficiencia mucho mayor que las células normales. [34] [35] Los artículos sugieren que la falta de detención del ciclo celular y apoptosis da a más células la oportunidad de ser reprogramadas. También se demostró que los niveles reducidos de p53 son un aspecto crucial de la formación de blastema en las patas de las salamandras. [36] La regulación de p53 es muy importante porque actúa como barrera entre las células madre y un estado de células madre diferenciadas, así como también como barrera entre las células madre funcionales y las cancerosas. [37]

Otro

Una visión general del mecanismo de acción molecular de p53 sobre la angiogénesis [38]

Además de los efectos celulares y moleculares mencionados anteriormente, p53 tiene un efecto anticancerígeno a nivel tisular que funciona inhibiendo la angiogénesis . [38] A medida que los tumores crecen, necesitan reclutar nuevos vasos sanguíneos para abastecerlos, y p53 inhibe esto (i) interfiriendo con los reguladores de la hipoxia tumoral que también afectan la angiogénesis, como HIF1 y HIF2, (ii) inhibiendo la producción de factores promotores angiogénicos, y (iii) aumentando directamente la producción de inhibidores de la angiogénesis, como arresten . [39] [40]

Se ha demostrado que p53, al regular el factor inhibidor de la leucemia, facilita la implantación en el ratón y posiblemente la reproducción humana. [41]

La respuesta inmune a la infección también involucra a p53 y NF-κB . El control del ciclo celular y de la apoptosis por p53 es inhibido por algunas infecciones como la bacteria Mycoplasma , [42] lo que aumenta el espectro de la infección oncogénica .

Regulación

p53 actúa como un sensor de estrés celular. Normalmente se mantiene en niveles bajos al estar constantemente marcado para su degradación por la proteína ligasa de ubiquitina E3 MDM2 . [43] p53 se activa en respuesta a una gran variedad de factores estresantes, incluidos el daño del ADN (inducido por UV , IR o agentes químicos como el peróxido de hidrógeno), el estrés oxidativo , [44] el choque osmótico , el agotamiento de ribonucleótidos, las infecciones pulmonares virales [45] y la expresión desregulada de oncogenes. Esta activación está marcada por dos eventos principales. Primero, la vida media de la proteína p53 aumenta drásticamente, lo que lleva a una rápida acumulación de p53 en células estresadas. Segundo, un cambio conformacional obliga a p53 a activarse como regulador de la transcripción en estas células. El evento crítico que lleva a la activación de p53 es la fosforilación de su dominio N-terminal . El dominio de activación transcripcional N-terminal contiene una gran cantidad de sitios de fosforilación y puede considerarse el objetivo principal de las proteínas quinasas que transducen señales de estrés.

Las proteínas quinasas que se sabe que se dirigen a este dominio de activación transcripcional de p53 se pueden dividir aproximadamente en dos grupos. Un primer grupo de proteínas quinasas pertenece a la familia MAPK (JNK1-3, ERK1-2, p38 MAPK), que se sabe que responde a varios tipos de estrés, como daño de membrana, estrés oxidativo, choque osmótico, choque térmico, etc. Un segundo grupo de proteínas quinasas ( ATR , ATM , CHK1 y CHK2 , DNA-PK , CAK, TP53RK ) está implicado en el punto de control de integridad del genoma, una cascada molecular que detecta y responde a varias formas de daño del ADN causado por estrés genotóxico. Los oncogenes también estimulan la activación de p53, mediada por la proteína p14ARF .

En las células no estresadas, los niveles de p53 se mantienen bajos a través de una degradación continua de p53. Una proteína llamada Mdm2 (también llamada HDM2 en humanos), se une a p53, impidiendo su acción y lo transporta desde el núcleo hasta el citosol . Mdm2 también actúa como una ligasa de ubiquitina y une covalentemente la ubiquitina a p53 y, por lo tanto, marca p53 para su degradación por el proteasoma . Sin embargo, la ubiquitinación de p53 es reversible. Al activarse p53, Mdm2 también se activa, lo que establece un ciclo de retroalimentación . Los niveles de p53 pueden mostrar oscilaciones (o pulsos repetidos) en respuesta a ciertas tensiones, y estos pulsos pueden ser importantes para determinar si las células sobreviven al estrés o mueren. [46]

MI-63 se une a MDM2, reactivando p53 en situaciones donde la función de p53 se ha inhibido. [47]

Una proteasa específica de la ubiquitina, la USP7 (o HAUSP ), puede separar la ubiquitina de la p53, protegiéndola así de la degradación dependiente del proteasoma a través de la vía de la ubiquitina ligasa . Este es un medio por el cual la p53 se estabiliza en respuesta a las agresiones oncogénicas. También se ha demostrado que la USP42 desubiquitina la p53 y puede ser necesaria para la capacidad de la p53 de responder al estrés. [48]

Investigaciones recientes han demostrado que HAUSP se localiza principalmente en el núcleo, aunque una fracción de ella puede encontrarse en el citoplasma y las mitocondrias. La sobreexpresión de HAUSP produce una estabilización de p53. Sin embargo, la disminución de HAUSP no produce una disminución de los niveles de p53, sino que aumenta los niveles de p53 debido al hecho de que HAUSP se une a Mdm2 y lo desubiquitina. Se ha demostrado que HAUSP es un mejor socio de unión a Mdm2 que p53 en células no estresadas.

Sin embargo, se ha demostrado que la USP10 se encuentra en el citoplasma de las células no estresadas y desubiquitina la p53 citoplasmática, revirtiendo la ubiquitinación de Mdm2. Después del daño del ADN, la USP10 se transloca al núcleo y contribuye a la estabilidad de la p53. Además, la USP10 no interactúa con Mdm2. [49]

La fosforilación del extremo N-terminal de p53 por las proteínas quinasas mencionadas anteriormente interrumpe la unión de Mdm2. Otras proteínas, como Pin1, luego se reclutan a p53 e inducen un cambio conformacional en p53, lo que previene aún más la unión de Mdm2. La fosforilación también permite la unión de coactivadores transcripcionales, como p300 y PCAF , que luego acetilan el extremo C-terminal de p53, exponiendo el dominio de unión al ADN de p53, lo que le permite activar o reprimir genes específicos. Las enzimas desacetilasas, como Sirt1 y Sirt7 , pueden desacetilar p53, lo que lleva a una inhibición de la apoptosis. [50] Algunos oncogenes también pueden estimular la transcripción de proteínas que se unen a MDM2 e inhiben su actividad.

Las marcas epigenéticas como la metilación de histonas también pueden regular p53, por ejemplo, p53 interactúa directamente con un cofactor represor Trim24 que se une a las histonas en regiones del genoma que están reprimidas epigenéticamente. [51] Trim24 evita que p53 active sus objetivos, pero solo en estas regiones, lo que le da a p53 la capacidad de "leer" el perfil de histonas en genes objetivo clave y actuar de una manera específica para cada gen.

Papel en la enfermedad

Descripción general de las vías de transducción de señales implicadas en la apoptosis
Una micrografía que muestra células con expresión anormal de p53 (marrón) en un tumor cerebral. Inmunotinción de p53 .

Si el gen TP53 está dañado, la supresión tumoral se ve gravemente comprometida. Las personas que heredan solo una copia funcional del gen TP53 probablemente desarrollarán tumores en la adultez temprana, un trastorno conocido como síndrome de Li-Fraumeni .

El gen TP53 también puede ser modificado por mutágenos ( sustancias químicas , radiación o virus ), lo que aumenta la probabilidad de una división celular descontrolada. Más del 50 por ciento de los tumores humanos contienen una mutación o deleción del gen TP53 . [52] La pérdida de p53 crea una inestabilidad genómica que, con mayor frecuencia, da como resultado un fenotipo de aneuploidía . [53]

Aumentar la cantidad de p53 puede parecer una solución para el tratamiento de tumores o la prevención de su propagación. Sin embargo, este no es un método de tratamiento utilizable, ya que puede causar envejecimiento prematuro. [54] Restaurar la función normal endógena de p53 es prometedor. La investigación ha demostrado que esta restauración puede conducir a la regresión de ciertas células cancerosas sin dañar otras células en el proceso. Las formas en que se produce la regresión del tumor dependen principalmente del tipo de tumor. Por ejemplo, la restauración de la función endógena de p53 en linfomas puede inducir apoptosis , mientras que el crecimiento celular puede reducirse a niveles normales. Por lo tanto, la reactivación farmacológica de p53 se presenta como una opción viable para el tratamiento del cáncer. [55] [56] La primera terapia génica comercial, Gendicine , fue aprobada en China en 2003 para el tratamiento del carcinoma de células escamosas de cabeza y cuello . Proporciona una copia funcional del gen p53 utilizando un adenovirus diseñado . [57]

Ciertos patógenos también pueden afectar a la proteína p53 que expresa el gen TP53 . Un ejemplo de ello, el virus del papiloma humano (VPH), codifica una proteína, E6, que se une a la proteína p53 y la inactiva. Este mecanismo, en sinergia con la inactivación del regulador del ciclo celular pRb por la proteína E7 del VPH, permite la división celular repetida que se manifiesta clínicamente como verrugas . Ciertos tipos de VPH, en particular los tipos 16 y 18, también pueden conducir a la progresión de una verruga benigna a una displasia cervical de grado bajo o alto , que son formas reversibles de lesiones precancerosas. La infección persistente del cuello uterino a lo largo de los años puede causar cambios irreversibles que conducen al carcinoma in situ y, finalmente, al cáncer cervical invasivo. Esto es resultado de los efectos de los genes del VPH, en particular los que codifican E6 y E7, que son las dos oncoproteínas virales que se retienen y expresan preferentemente en los cánceres cervicales mediante la integración del ADN viral en el genoma del huésped. [58]

La proteína p53 se produce y degrada continuamente en células de personas sanas, lo que da como resultado una oscilación amortiguada (consulte un modelo estocástico de este proceso en [59] ). La degradación de la proteína p53 está asociada con la unión de MDM2. En un ciclo de retroalimentación negativa , la propia MDM2 es inducida por la proteína p53. Las proteínas p53 mutantes a menudo no logran inducir MDM2, lo que hace que p53 se acumule en niveles muy altos. Además, la propia proteína p53 mutante puede inhibir los niveles normales de proteína p53. En algunos casos, se ha demostrado que las mutaciones únicas sin sentido en p53 alteran la estabilidad y la función de p53. [60]

La inmunohistoquímica para p53 puede ayudar a distinguir una neoplasia urotelial papilar de bajo potencial maligno (PUNLMP) de un carcinoma urotelial de bajo grado . La sobreexpresión se observa en el 75 % de los carcinomas uroteliales de bajo grado y solo en el 10 % de los PUNLMP. [62] [63]

Se ha demostrado que la supresión de p53 en células de cáncer de mama humano conduce a una mayor expresión del gen del receptor de quimiocina CXCR5 y a una migración celular activada en respuesta a la quimiocina CXCL13 . [64]

Un estudio descubrió que las proteínas p53 y Myc eran clave para la supervivencia de las células de leucemia mieloide crónica (LMC). El uso de fármacos para tratar las proteínas p53 y Myc dio resultados positivos en ratones con LMC. [65] [66]

Análisis experimental de mutaciones del p53

La mayoría de las mutaciones del p53 se detectan mediante secuenciación de ADN. Sin embargo, se sabe que las mutaciones sin sentido únicas pueden tener un amplio espectro de efectos funcionales, desde leves hasta muy graves. [60]

El amplio espectro de fenotipos de cáncer debido a mutaciones en el gen TP53 también se ve respaldado por el hecho de que las diferentes isoformas de las proteínas p53 tienen diferentes mecanismos celulares para la prevención del cáncer. Las mutaciones en TP53 pueden dar lugar a diferentes isoformas, impidiendo su funcionalidad general en diferentes mecanismos celulares y, por lo tanto, ampliando el fenotipo del cáncer de leve a severo. Estudios recientes muestran que las isoformas de p53 se expresan de manera diferencial en diferentes tejidos humanos, y las mutaciones de pérdida de función o ganancia de función dentro de las isoformas pueden causar cáncer específico de tejido o proporcionar potencial de células madre cancerosas en diferentes tejidos. [11] [67] [68] [69] La mutación de TP53 también afecta el metabolismo energético y aumenta la glucólisis en las células de cáncer de mama. [70]

La dinámica de las proteínas p53, junto con su antagonista Mdm2 , indica que los niveles de p53, en unidades de concentración, oscilan en función del tiempo. Esta oscilación " amortiguada " está documentada clínicamente [71] y modelada matemáticamente . [72] [73] Los modelos matemáticos también indican que la concentración de p53 oscila mucho más rápido una vez que se introducen en el sistema teratógenos, como roturas de doble cadena (DSB) o radiación UV . Esto respalda y modela la comprensión actual de la dinámica de p53, donde el daño del ADN induce la activación de p53 (consulte la regulación de p53 para obtener más información). Los modelos actuales también pueden ser útiles para modelar las mutaciones en las isoformas de p53 y sus efectos sobre la oscilación de p53, promoviendo así el descubrimiento de fármacos farmacológicos específicos de tejido de novo .

Descubrimiento

El p53 fue identificado en 1979 por Lionel Crawford , David P. Lane , Arnold Levine y Lloyd Old , que trabajaban en el Imperial Cancer Research Fund (Reino Unido), la Universidad de Princeton /UMDNJ (Instituto del Cáncer de Nueva Jersey) y el Memorial Sloan Kettering Cancer Center , respectivamente. Se había planteado la hipótesis de que existía anteriormente como objetivo del virus SV40 , una cepa que inducía el desarrollo de tumores. El nombre p53 se le dio en 1979 para describir la masa molecular aparente .

El gen TP53 del ratón fue clonado por primera vez por Peter Chumakov de la Academia de Ciencias de la URSS en 1982, [74] e independientemente en 1983 por Moshe Oren en colaboración con David Givol ( Instituto de Ciencias Weizmann ). [75] [76] El gen TP53 humano fue clonado en 1984 [7] y el clon de longitud completa en 1985. [77]

Inicialmente se supuso que era un oncogén debido al uso de ADNc mutado después de la purificación del ARNm de células tumorales . Su papel como gen supresor de tumores fue revelado en 1989 por Bert Vogelstein en la Facultad de Medicina Johns Hopkins y Arnold Levine en la Universidad de Princeton. [78] [79] p53 fue identificado más tarde como un factor de transcripción por Guillermina Lozano, que trabajaba en el MD Anderson Cancer Center . [80]

Warren Maltzman, del Instituto Waksman de la Universidad Rutgers, fue el primero en demostrar que el TP53 respondía al daño del ADN en forma de radiación ultravioleta. [81] En una serie de publicaciones de 1991-92, Michael Kastan de la Universidad Johns Hopkins informó que el TP53 era una parte fundamental de una vía de transducción de señales que ayudaba a las células a responder al daño del ADN. [82]

En 1993, la p53 fue votada como molécula del año por la revista Science . [83]

Estructura

Esquema de los dominios proteicos conocidos en p53 (NLS = señal de localización nuclear)
Estructura cristalina de cuatro dominios de unión al ADN de p53 (tal como se encuentran en el homotetrámero bioactivo)

p53 tiene siete dominios :

  1. un dominio de activación de transcripción (TAD) del extremo N ácido, también conocido como dominio de activación 1 (AD1), que activa los factores de transcripción . El extremo N contiene dos dominios de activación de transcripción complementarios, uno principal en los residuos 1-42 y uno secundario en los residuos 55-75, específicamente involucrados en la regulación de varios genes proapoptóticos. [84]
  2. Dominio de activación 2 (AD2), importante para la actividad apoptótica : residuos 43-63.
  3. Dominio rico en prolina importante para la actividad apoptótica de p53 por exportación nuclear a través de MAPK : residuos 64-92.
  4. Dominio central de unión al ADN ( DBD ). Contiene un átomo de zinc y varios aminoácidos arginina : residuos 102-292. Esta región es responsable de la unión del correpresor p53 LMO3 . [85]
  5. Dominio de señalización de localización nuclear (NLS), residuos 316–325.
  6. Dominio de homooligomerización (OD): residuos 307–355. La tetramerización es esencial para la actividad de p53 in vivo .
  7. C-terminal involucrado en la regulación negativa de la unión del ADN del dominio central: residuos 356–393. [86]

Las mutaciones que desactivan el p53 en el cáncer suelen producirse en el DBD. La mayoría de estas mutaciones destruyen la capacidad de la proteína para unirse a sus secuencias de ADN diana y, por tanto, impiden la activación transcripcional de estos genes. Por tanto, las mutaciones en el DBD son mutaciones recesivas de pérdida de función . Las moléculas de p53 con mutaciones en el OD dimerizan con el p53 de tipo salvaje y les impiden activar la transcripción. Por tanto, las mutaciones en el OD tienen un efecto negativo dominante sobre la función de p53.

El p53 de tipo salvaje es una proteína lábil , que comprende regiones plegadas y no estructuradas que funcionan de manera sinérgica. [87]

El análisis SDS-PAGE indica que p53 es una proteína de 53 kilodaltons (kDa). Sin embargo, la masa real de la proteína p53 de longitud completa (p53α) basada en la suma de las masas de los residuos de aminoácidos es de solo 43,7 kDa. Esta diferencia se debe a la gran cantidad de residuos de prolina en la proteína, que ralentizan su migración en SDS-PAGE, lo que la hace parecer más pesada de lo que es en realidad. [88]

Isoformas

Al igual que el 95% de los genes humanos, el TP53 codifica más de una proteína. Todas estas proteínas p53 se denominan isoformas p53 . [5] Estas proteínas varían en tamaño de 3,5 a 43,7 kDa. Se descubrieron varias isoformas en 2005 y hasta ahora se han identificado 12 isoformas p53 humanas (p53α, p53β, p53γ, ∆40p53α, ∆40p53β, ∆40p53γ, ∆133p53α, ∆133p53β, ∆133p53γ, ∆160p53α, ∆160p53β, ∆160p53γ). Además, las isoformas de p53 se expresan de manera dependiente del tejido y p53α nunca se expresa solo. [11]

Las proteínas de la isoforma p53 de longitud completa se pueden subdividir en diferentes dominios proteicos . Comenzando por el extremo N , primero están los dominios de activación de transcripción amino-terminal (TAD 1, TAD 2), que son necesarios para inducir un subconjunto de genes diana de p53. Este dominio es seguido por el dominio rico en prolina (PXXP), por el cual se repite el motivo PXXP (P es una prolina y X puede ser cualquier aminoácido). Es necesario entre otros para la apoptosis mediada por p53 . [89] Algunas isoformas carecen del dominio rico en prolina, como Δ133p53β,γ y Δ160p53α,β,γ; por lo tanto, algunas isoformas de p53 no median la apoptosis, lo que enfatiza los roles diversificadores del gen TP53 . [67] Después está el dominio de unión al ADN (DBD), que permite a las proteínas secuenciar la unión específica. El dominio C-terminal completa la proteína. Incluye la señal de localización nuclear (NLS), la señal de exportación nuclear (NES) y el dominio de oligomerización (OD). El NLS y el NES son responsables de la regulación subcelular de p53. A través del OD, p53 puede formar un tetrámero y luego unirse al ADN. Entre las isoformas, pueden faltar algunos dominios, pero todos ellos comparten la mayor parte del dominio de unión al ADN altamente conservado.

Las isoformas se forman por diferentes mecanismos. Las isoformas beta y gamma se generan por empalme múltiple del intrón 9, lo que conduce a un extremo C diferente. Además, el uso de un promotor interno en el intrón 4 produce las isoformas ∆133 y ∆160, que carecen del dominio TAD y de una parte del DBD. Además, la iniciación alternativa de la traducción en el codón 40 o 160 da lugar a las isoformas ∆40p53 y ∆160p53. [11]

Debido a la naturaleza isofórmica de las proteínas p53, existen varias fuentes de evidencia que muestran que las mutaciones dentro del gen TP53 que dan lugar a isoformas mutadas son agentes causales de varios fenotipos de cáncer, desde leves a severos, debido a una sola mutación en el gen TP53 (consulte la sección Análisis experimental de mutaciones de p53 para obtener más detalles).

Interacciones

Se ha demostrado que p53 interactúa con:

Véase también

Notas

  1. ^ Las cursivas se utilizan para indicar el nombre del gen TP53 y distinguirlo de la proteína que codifica.

Referencias

  1. ^ abc GRCh38: Lanzamiento de Ensembl 89: ENSG00000141510 – Ensembl , mayo de 2017
  2. ^ abc GRCm38: Lanzamiento de Ensembl 89: ENSMUSG00000059552 – Ensembl , mayo de 2017
  3. ^ "Referencia de PubMed humana:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  4. ^ "Referencia PubMed de ratón:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU . .
  5. ^ abc Surget S, Khoury MP, Bourdon JC (diciembre de 2013). "Descubrimiento del papel de las variantes de empalme de p53 en la malignidad humana: una perspectiva clínica". OncoTargets and Therapy . 7 : 57–68. doi : 10.2147/OTT.S53876 . PMC 3872270 . PMID  24379683. 
  6. ^ Toufektchan E, Toledo F (mayo de 2018). "El guardián del genoma revisitado: p53 regula a la baja los genes necesarios para el mantenimiento de los telómeros, la reparación del ADN y la estructura del centrómero". Cánceres . 10 (5): 135. doi : 10.3390/cancers10050135 . PMC 5977108 . PMID  29734785. 
  7. ^ abc Matlashewski G, Lamb P, Pim D, et al. (diciembre de 1984). "Aislamiento y caracterización de un clon de ADNc p53 humano: expresión del gen p53 humano". The EMBO Journal . 3 (13): 3257–62. doi :10.1002/j.1460-2075.1984.tb02287.x. PMC 557846 . PMID  6396087. 
  8. ^ ab Isobe M, Emanuel BS, Givol D, et al. (1986). "Localización del gen del antígeno tumoral p53 humano en la banda 17p13". Nature . 320 (6057): 84–5. Bibcode :1986Natur.320...84I. doi :10.1038/320084a0. PMID  3456488. S2CID  4310476.
  9. ^ ab Kern SE, Kinzler KW, Bruskin A, et al. (junio de 1991). "Identificación de p53 como proteína de unión a ADN específica de secuencia". Science . 252 (5013): 1708–11. Bibcode :1991Sci...252.1708K. doi :10.1126/science.2047879. PMID  2047879. S2CID  19647885.
  10. ^ ab McBride OW, Merry D, Givol D (enero de 1986). "El gen del antígeno tumoral celular p53 humano se encuentra en el brazo corto del cromosoma 17 (17p13)". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 83 (1): 130–4. Bibcode :1986PNAS...83..130M. doi : 10.1073/pnas.83.1.130 . PMC 322805 . PMID  3001719. 
  11. ^ abcd Bourdon JC, Fernandes K, Murray-Zmijewski F, et al. (septiembre de 2005). "Las isoformas de p53 pueden regular la actividad transcripcional de p53". Genes & Development . 19 (18): 2122–37. doi :10.1101/gad.1339905. PMC 1221884 . PMID  16131611. 
  12. ^ Levine AJ, Lane DP, eds. (2010). La familia p53 . Perspectivas de biología de Cold Spring Harbor. Cold Spring Harbor, Nueva York: Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-830-0.
  13. ^ Khoury MP, Bourdon JC (abril de 2011). "Isoformas de p53: ¿un microprocesador intracelular?". Genes Cancer . 2 (4): 453–65. doi :10.1177/1947601911408893. PMC 3135639 . PMID  21779513. 
  14. ^ May P, May E (diciembre de 1999). "Veinte años de investigación sobre p53: aspectos estructurales y funcionales de la proteína p53". Oncogene . 18 (53): 7621–36. doi : 10.1038/sj.onc.1203285 . PMID  10618702.
  15. ^ "Marcador filogenético OrthoMaM: secuencia codificante de TP53". Archivado desde el original el 17 de marzo de 2018. Consultado el 2 de diciembre de 2009 .
  16. ^ Klug SJ, Ressing M, Koenig J, et al. (agosto de 2009). "Polimorfismo del codón 72 de TP53 y cáncer de cuello uterino: un análisis agrupado de datos individuales de 49 estudios". The Lancet. Oncología . 10 (8): 772–84. doi :10.1016/S1470-2045(09)70187-1. PMID  19625214.
  17. ^ Sonoyama T, Sakai A, Mita Y, et al. (2011). "El polimorfismo del codón 72 de TP53 está asociado con el riesgo de cáncer de páncreas en hombres, fumadores y bebedores". Molecular Medicine Reports . 4 (3): 489–95. doi : 10.3892/mmr.2011.449 . PMID  21468597.
  18. ^ Alawadi S, Ghabreau L, Alsaleh M, et al. (septiembre de 2011). "Polimorfismos del gen P53 y riesgo de cáncer de mama en mujeres árabes". Oncología médica . 28 (3): 709–15. doi :10.1007/s12032-010-9505-4. PMID  20443084. S2CID  207372095.
  19. ^ Yu H, Huang YJ, Liu Z, et al. (septiembre de 2011). "Efectos de los polimorfismos del promotor MDM2 y del polimorfismo del codón 72 de p53 en el riesgo y la edad de aparición del carcinoma de células escamosas de cabeza y cuello". Molecular Carcinogenesis . 50 (9): 697–706. doi :10.1002/mc.20806. PMC 3142329 . PMID  21656578. 
  20. ^ Piao JM, Kim HN, Song HR, et al. (septiembre de 2011). "Polimorfismo del codón 72 de p53 y riesgo de cáncer de pulmón en una población coreana". Cáncer de pulmón . 73 (3): 264–7. doi :10.1016/j.lungcan.2010.12.017. PMID  21316118.
  21. ^ Wang JJ, Zheng Y, Sun L, et al. (noviembre de 2011). "Polimorfismo del codón 72 de TP53 y susceptibilidad al cáncer colorrectal: un metaanálisis". Molecular Biology Reports . 38 (8): 4847–53. doi :10.1007/s11033-010-0619-8. PMID  21140221. S2CID  11730631.
  22. ^ Jiang DK, Yao L, Ren WH, et al. (diciembre de 2011). "Polimorfismo TP53 Arg72Pro y riesgo de cáncer de endometrio: un metaanálisis". Oncología médica . 28 (4): 1129–35. doi :10.1007/s12032-010-9597-x. PMID  20552298. S2CID  32990396.
  23. ^ Thurow HS, Haack R, Hartwig FP, et al. (diciembre de 2011). "Polimorfismo del gen TP53: importancia para el cáncer, la etnia y el peso al nacer en una cohorte brasileña". Journal of Biosciences . 36 (5): 823–31. doi :10.1007/s12038-011-9147-5. PMID  22116280. S2CID  23027087.
  24. ^ Huang CY, Su CT, Chu JS, et al. (diciembre de 2011). "Los polimorfismos del codón 72 de P53 y el SNP309 de MDM2 y el riesgo de carcinoma de células renales en un área de baja exposición al arsénico". Toxicología y farmacología aplicada . 257 (3): 349–55. Bibcode :2011ToxAP.257..349H. doi :10.1016/j.taap.2011.09.018. PMID  21982800.
  25. ^ Gilbert SF. Biología del desarrollo, 10.ª ed . Sunderland, MA, EE. UU.: Sinauer Associates, Inc. Publishers. pág. 588.
  26. ^ Centro Nacional de Información Biotecnológica (1998). "Piel y tejido conectivo". Genes y enfermedades . Institutos Nacionales de Salud de Estados Unidos . Consultado el 28 de mayo de 2008 .
  27. ^ Bates S, Phillips AC, Clark PA, et al. (septiembre de 1998). "p14ARF vincula los supresores tumorales RB y p53". Nature . 395 (6698): 124–5. Bibcode :1998Natur.395..124B. doi :10.1038/25867. PMID  9744267. S2CID  4355786.
  28. ^ "El guardián del genoma se broncea". New Scientist . 17 de marzo de 2007. Consultado el 29 de marzo de 2007 .
  29. ^ Cui R, Widlund HR, Feige E, et al. (marzo de 2007). "Papel central de p53 en la respuesta al bronceado y la hiperpigmentación patológica". Cell . 128 (5): 853–64. doi : 10.1016/j.cell.2006.12.045 . PMID  17350573.
  30. ^ ab Jain AK, Allton K, Iacovino M, et al. (2012). "p53 regula el ciclo celular y los microARN para promover la diferenciación de células madre embrionarias humanas". PLOS Biology . 10 (2): e1001268. doi : 10.1371/journal.pbio.1001268 . PMC 3289600 . PMID  22389628. 
  31. ^ Maimets T, Neganova I, Armstrong L, et al. (septiembre de 2008). "La activación de p53 por nutlin conduce a una rápida diferenciación de células madre embrionarias humanas". Oncogene . 27 (40): 5277–87. doi : 10.1038/onc.2008.166 . PMID  18521083.
  32. ^ ter Huurne M, Peng T, Yi G, et al. (febrero de 2020). "Función crítica de P53 en la regulación del ciclo celular de las células madre embrionarias en estado fundamental". Informes de células madre . 14 (2): 175–183. doi : 10.1016/j.stemcr.2020.01.001 . PMC 7013234 . PMID  32004494. 
  33. ^ Das B, Bayat-Mokhtari R, Tsui M, et al. (agosto de 2012). "HIF-2α suprime p53 para mejorar la pluripotencia y el potencial regenerativo de las células madre embrionarias humanas". Células madre . 30 (8): 1685–95. doi :10.1002/stem.1142. PMC 3584519 . PMID  22689594. 
  34. ^ Lake BB, Fink J, Klemetsaune L, et al. (mayo de 2012). "Mejora dependiente del contexto de la reprogramación de células madre pluripotentes inducidas mediante el silenciamiento de Puma". Células madre . 30 (5): 888–97. doi :10.1002/stem.1054. PMC 3531606 . PMID  22311782. 
  35. ^ Marión RM, Strati K, Li H, et al. (August 2009). "A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity". Nature. 460 (7259): 1149–53. Bibcode:2009Natur.460.1149M. doi:10.1038/nature08287. PMC 3624089. PMID 19668189.
  36. ^ Yun MH, Gates PB, Brockes JP (October 2013). "Regulation of p53 is critical for vertebrate limb regeneration". Proceedings of the National Academy of Sciences of the United States of America. 110 (43): 17392–7. Bibcode:2013PNAS..11017392Y. doi:10.1073/pnas.1310519110. PMC 3808590. PMID 24101460.
  37. ^ Aloni-Grinstein R, Shetzer Y, Kaufman T, et al. (August 2014). "p53: the barrier to cancer stem cell formation". FEBS Letters. 588 (16): 2580–9. Bibcode:2014FEBSL.588.2580A. doi:10.1016/j.febslet.2014.02.011. PMID 24560790. S2CID 37901173.
  38. ^ a b Babaei G, Aliarab A, Asghari Vostakolaei M, et al. (November 2021). "Crosslink between p53 and metastasis: focus on epithelial-mesenchymal transition, cancer stem cell, angiogenesis, autophagy, and anoikis". Molecular Biology Reports. 48 (11): 7545–7557. doi:10.1007/s11033-021-06706-1. PMID 34519942. S2CID 237506513.
  39. ^ Teodoro JG, Evans SK, Green MR (November 2007). "Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome". Journal of Molecular Medicine (Review). 85 (11): 1175–1186. doi:10.1007/s00109-007-0221-2. PMID 17589818. S2CID 10094554.
  40. ^ Assadian S, El-Assaad W, Wang XQ, et al. (March 2012). "p53 inhibits angiogenesis by inducing the production of Arresten". Cancer Research. 72 (5): 1270–1279. doi:10.1158/0008-5472.CAN-11-2348. PMID 22253229.
  41. ^ Hu W, Feng Z, Teresky AK, et al. (November 2007). "p53 regulates maternal reproduction through LIF". Nature. 450 (7170): 721–4. Bibcode:2007Natur.450..721H. doi:10.1038/nature05993. PMID 18046411. S2CID 4357527.
  42. ^ Borchsenius SN, Daks A, Fedorova O, et al. (January 2018). "Effects of mycoplasma infection on the host organism response via p53/NF-κB signaling". Journal of Cellular Physiology. 234 (1): 171–180. doi:10.1002/jcp.26781. PMID 30146800.
  43. ^ Bykov VJ, Eriksson SE, Bianchi J, et al. (February 2018). "Targeting mutant p53 for efficient cancer therapy". Nature Reviews. Cancer. 18 (2): 89–102. doi:10.1038/nrc.2017.109. PMID 29242642. S2CID 4552678.
  44. ^ Han ES, Muller FL, Pérez VI, et al. (June 2008). "The in vivo gene expression signature of oxidative stress". Physiological Genomics. 34 (1): 112–126. doi:10.1152/physiolgenomics.00239.2007. PMC 2532791. PMID 18445702.
  45. ^ Grajales-Reyes GE, Colonna M (August 2020). "Interferon responses in viral pneumonias". Science. 369 (6504): 626–627. Bibcode:2020Sci...369..626G. doi:10.1126/science.abd2208. PMID 32764056.
  46. ^ Purvis JE, Karhohs KW, Mock C, et al. (June 2012). "p53 dynamics control cell fate". Science. 336 (6087): 1440–1444. Bibcode:2012Sci...336.1440P. doi:10.1126/science.1218351. PMC 4162876. PMID 22700930.
  47. ^ Canner JA, Sobo M, Ball S, et al. (September 2009). "MI-63: a novel small-molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53". British Journal of Cancer. 101 (5): 774–81. doi:10.1038/sj.bjc.6605199. PMC 2736841. PMID 19707204.
  48. ^ Hock AK, Vigneron AM, Carter S, et al. (November 2011). "Regulation of p53 stability and function by the deubiquitinating enzyme USP42". The EMBO Journal. 30 (24): 4921–30. doi:10.1038/emboj.2011.419. PMC 3243628. PMID 22085928.
  49. ^ a b Yuan J, Luo K, Zhang L, et al. (February 2010). "USP10 Regulates p53 Localization and Stability by Deubiquitinating p53". Cell. 140 (3): 384–396. doi:10.1016/j.cell.2009.12.032. PMC 2820153. PMID 20096447.
  50. ^ Vakhrusheva O, Smolka C, Gajawada P, et al. (March 2008). "Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice". Circulation Research. 102 (6): 703–10. doi:10.1161/CIRCRESAHA.107.164558. PMID 18239138.
  51. ^ Isbel L, Iskar M, Durdu S, et al. (June 2023). "Readout of histone methylation by Trim24 locally restricts chromatin opening by p53". Nature Structural & Molecular Biology. 30 (7): 948–57. doi:10.1038/s41594-023-01021-8. hdl:2440/139184. PMC 10352137. PMID 37386214.
  52. ^ Hollstein M, Sidransky D, Vogelstein B, et al. (July 1991). "p53 mutations in human cancers". Science. 253 (5015): 49–53. Bibcode:1991Sci...253...49H. doi:10.1126/science.1905840. PMID 1905840. S2CID 38527914.
  53. ^ Schmitt CA, Fridman JS, Yang M, et al. (April 2002). "Dissecting p53 tumor suppressor functions in vivo". Cancer Cell. 1 (3): 289–98. doi:10.1016/S1535-6108(02)00047-8. PMID 12086865.
  54. ^ Tyner SD, Venkatachalam S, Choi J, et al. (January 2002). "p53 mutant mice that display early ageing-associated phenotypes". Nature. 415 (6867): 45–53. Bibcode:2002Natur.415...45T. doi:10.1038/415045a. PMID 11780111. S2CID 749047.
  55. ^ Ventura A, Kirsch DG, McLaughlin ME, et al. (February 2007). "Restoration of p53 function leads to tumour regression in vivo". Nature. 445 (7128): 661–5. doi:10.1038/nature05541. PMID 17251932. S2CID 4373520.
  56. ^ Herce HD, Deng W, Helma J, et al. (2013). "Visualization and targeted disruption of protein interactions in living cells". Nature Communications. 4: 2660. Bibcode:2013NatCo...4.2660H. doi:10.1038/ncomms3660. PMC 3826628. PMID 24154492.
  57. ^ Pearson S, Jia H, Kandachi K (January 2004). "China approves first gene therapy". Nature Biotechnology. 22 (1): 3–4. doi:10.1038/nbt0104-3. PMC 7097065. PMID 14704685.
  58. ^ Angeletti PC, Zhang L, Wood C (2008). "The Viral Etiology of AIDS-Associated Malignancies". HIV-1: Molecular Biology and Pathogenesis. Advances in Pharmacology. Vol. 56. pp. 509–57. doi:10.1016/S1054-3589(07)56016-3. ISBN 978-0-12-373601-7. PMC 2149907. PMID 18086422.
  59. ^ Ribeiro AS, Charlebois DA, Lloyd-Price J (December 2007). "CellLine, a stochastic cell lineage simulator". Bioinformatics. 23 (24): 3409–3411. doi:10.1093/bioinformatics/btm491. PMID 17928303.
  60. ^ a b Bullock AN, Henckel J, DeDecker BS, et al. (December 1997). "Thermodynamic stability of wild-type and mutant p53 core domain". Proceedings of the National Academy of Sciences of the United States of America. 94 (26): 14338–42. Bibcode:1997PNAS...9414338B. doi:10.1073/pnas.94.26.14338. PMC 24967. PMID 9405613.
  61. ^ Köbel M, Ronnett BM, Singh N, et al. (January 2019). "Interpretation of P53 Immunohistochemistry in Endometrial Carcinomas: Toward Increased Reproducibility". International Journal of Gynecological Pathology. 38 (Suppl 1): S123–S131. doi:10.1097/PGP.0000000000000488. PMC 6127005. PMID 29517499.  This article incorporates text available under the CC BY 4.0 license.
  62. ^ Image is taken from following source, with some modification by Mikael Häggström, MD:
    - Schallenberg S, Plage H, Hofbauer S, et al. (2023). "Altered p53/p16 expression is linked to urothelial carcinoma progression but largely unrelated to prognosis in muscle-invasive tumors". Acta Oncol. 62 (12): 1880–1889. doi:10.1080/0284186X.2023.2277344. PMID 37938166.
  63. ^ Source for role in distinguishing PUNLMP from low-grade carcinoma:
    - Kalantari MR, Ahmadnia H (2007). "P53 overexpression in bladder urothelial neoplasms: new aspect of World Health Organization/International Society of Urological Pathology classification". Urol J. 4 (4): 230–3. PMID 18270948.
  64. ^ Mitkin NA, Hook CD, Schwartz AM, et al. (March 2015). "p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells". Scientific Reports. 5 (5): 9330. Bibcode:2015NatSR...5E9330M. doi:10.1038/srep09330. PMC 4365401. PMID 25786345.
  65. ^ Abraham SA, Hopcroft LE, Carrick E, et al. (June 2016). "Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells". Nature. 534 (7607): 341–6. Bibcode:2016Natur.534..341A. doi:10.1038/nature18288. PMC 4913876. PMID 27281222.
  66. ^ "Scientists identify drugs to target 'Achilles heel' of Chronic Myeloid Leukaemia cells". myScience. 2016-06-08. Retrieved 2016-06-09.
  67. ^ a b Khoury MP, Bourdon JC (April 2011). "p53 Isoforms: An Intracellular Microprocessor?". Genes & Cancer. 2 (4): 453–65. doi:10.1177/1947601911408893. PMC 3135639. PMID 21779513.
  68. ^ Avery-Kiejda KA, Morten B, Wong-Brown MW, et al. (March 2014). "The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome". Carcinogenesis. 35 (3): 586–96. doi:10.1093/carcin/bgt411. PMID 24336193.
  69. ^ Arsic N, Gadea G, Lagerqvist EL, et al. (April 2015). "The p53 isoform Δ133p53β promotes cancer stem cell potential". Stem Cell Reports. 4 (4): 531–40. doi:10.1016/j.stemcr.2015.02.001. PMC 4400643. PMID 25754205.
  70. ^ Harami-Papp H, Pongor LS, Munkácsy G, et al. (October 2016). "TP53 mutation hits energy metabolism and increases glycolysis in breast cancer". Oncotarget. 7 (41): 67183–67195. doi:10.18632/oncotarget.11594. PMC 5341867. PMID 27582538.
  71. ^ Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, et al. (June 2006). "Oscillations and variability in the p53 system". Molecular Systems Biology. 2: 2006.0033. doi:10.1038/msb4100068. PMC 1681500. PMID 16773083.
  72. ^ Proctor CJ, Gray DA (August 2008). "Explaining oscillations and variability in the p53-Mdm2 system". BMC Systems Biology. 2 (75): 75. doi:10.1186/1752-0509-2-75. PMC 2553322. PMID 18706112.
  73. ^ Chong KH, Samarasinghe S, Kulasiri D (December 2013). "Mathematical modelling of p53 basal dynamics and DNA damage response". C-fACS. 259 (20th International Congress on Mathematical Modelling and Simulation): 670–6. doi:10.1016/j.mbs.2014.10.010. PMID 25433195.
  74. ^ Chumakov PM, Iotsova VS, Georgiev GP (1982). "[Isolation of a plasmid clone containing the mRNA sequence for mouse nonviral T-antigen]". Doklady Akademii Nauk SSSR (in Russian). 267 (5): 1272–5. PMID 6295732.
  75. ^ Oren M, Levine AJ (January 1983). "Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen". Proceedings of the National Academy of Sciences of the United States of America. 80 (1): 56–9. Bibcode:1983PNAS...80...56O. doi:10.1073/pnas.80.1.56. PMC 393308. PMID 6296874.
  76. ^ Zakut-Houri R, Oren M, Bienz B, et al. (1983). "A single gene and a pseudogene for the cellular tumour antigen p53". Nature. 306 (5943): 594–7. Bibcode:1983Natur.306..594Z. doi:10.1038/306594a0. PMID 6646235. S2CID 4325094.
  77. ^ Zakut-Houri R, Bienz-Tadmor B, Givol D, et al. (May 1985). "Human p53 cellular tumor antigen: cDNA sequence and expression in COS cells". The EMBO Journal. 4 (5): 1251–5. doi:10.1002/j.1460-2075.1985.tb03768.x. PMC 554332. PMID 4006916.
  78. ^ Baker SJ, Fearon ER, Nigro JM, et al. (April 1989). "Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas". Science. 244 (4901): 217–21. Bibcode:1989Sci...244..217B. doi:10.1126/science.2649981. PMID 2649981.
  79. ^ Finlay CA, Hinds PW, Levine AJ (June 1989). "The p53 proto-oncogene can act as a suppressor of transformation". Cell. 57 (7): 1083–93. doi:10.1016/0092-8674(89)90045-7. PMID 2525423.
  80. ^ Raycroft L, Wu HY, Lozano G (August 1990). "Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene". Science. 249 (4972): 1049–1051. Bibcode:1990Sci...249.1049R. doi:10.1126/science.2144364. PMC 2935288. PMID 2144364.
  81. ^ Maltzman W, Czyzyk L (September 1984). "UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells". Molecular and Cellular Biology. 4 (9): 1689–94. doi:10.1128/mcb.4.9.1689. PMC 368974. PMID 6092932.
  82. ^ Kastan MB, Kuerbitz SJ (December 1993). "Control of G1 arrest after DNA damage". Environmental Health Perspectives. 101 (Suppl 5): 55–8. doi:10.2307/3431842. JSTOR 3431842. PMC 1519427. PMID 8013425.
  83. ^ Koshland DE (December 1993). "Molecule of the year". Science. 262 (5142): 1953. Bibcode:1993Sci...262.1953K. doi:10.1126/science.8266084. PMID 8266084.
  84. ^ Venot C, Maratrat M, Dureuil C, et al. (August 1998). "The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression". The EMBO Journal. 17 (16): 4668–79. doi:10.1093/emboj/17.16.4668. PMC 1170796. PMID 9707426.
  85. ^ a b Larsen S, Yokochi T, Isogai E, et al. (February 2010). "LMO3 interacts with p53 and inhibits its transcriptional activity". Biochemical and Biophysical Research Communications. 392 (3): 252–7. doi:10.1016/j.bbrc.2009.12.010. PMID 19995558.
  86. ^ Harms KL, Chen X (March 2005). "The C terminus of p53 family proteins is a cell fate determinant". Molecular and Cellular Biology. 25 (5): 2014–30. doi:10.1128/MCB.25.5.2014-2030.2005. PMC 549381. PMID 15713654.
  87. ^ Bell S, Klein C, Müller L, et al. (October 2002). "p53 contains large unstructured regions in its native state". Journal of Molecular Biology. 322 (5): 917–27. doi:10.1016/S0022-2836(02)00848-3. PMID 12367518.
  88. ^ Ziemer MA, Mason A, Carlson DM (September 1982). "Cell-free translations of proline-rich protein mRNAs". The Journal of Biological Chemistry. 257 (18): 11176–80. doi:10.1016/S0021-9258(18)33948-6. PMID 7107651.
  89. ^ Zhu J, Zhang S, Jiang J, et al. (December 2000). "Definition of the p53 functional domains necessary for inducing apoptosis". The Journal of Biological Chemistry. 275 (51): 39927–34. doi:10.1074/jbc.M005676200. PMID 10982799.
  90. ^ a b Han JM, Park BJ, Park SG, et al. (August 2008). "AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53". Proceedings of the National Academy of Sciences of the United States of America. 105 (32): 11206–11. Bibcode:2008PNAS..10511206H. doi:10.1073/pnas.0800297105. PMC 2516205. PMID 18695251.
  91. ^ a b Kojic S, Medeot E, Guccione E, et al. (May 2004). "The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle". Journal of Molecular Biology. 339 (2): 313–25. doi:10.1016/j.jmb.2004.03.071. PMID 15136035.
  92. ^ a b Gueven N, Becherel OJ, Kijas AW, et al. (May 2004). "Aprataxin, a novel protein that protects against genotoxic stress". Human Molecular Genetics. 13 (10): 1081–93. doi:10.1093/hmg/ddh122. PMID 15044383.
  93. ^ a b Fabbro M, Savage K, Hobson K, et al. (July 2004). "BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage". The Journal of Biological Chemistry. 279 (30): 31251–8. doi:10.1074/jbc.M405372200. PMID 15159397.
  94. ^ a b c Kim ST, Lim DS, Canman CE, et al. (December 1999). "Substrate specificities and identification of putative substrates of ATM kinase family members". The Journal of Biological Chemistry. 274 (53): 37538–43. doi:10.1074/jbc.274.53.37538. PMID 10608806.
  95. ^ Kang J, Ferguson D, Song H, et al. (January 2005). "Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression". Molecular and Cellular Biology. 25 (2): 661–70. doi:10.1128/MCB.25.2.661-670.2005. PMC 543410. PMID 15632067.
  96. ^ Khanna KK, Keating KE, Kozlov S, et al. (December 1998). "ATM associates with and phosphorylates p53: mapping the region of interaction". Nature Genetics. 20 (4): 398–400. doi:10.1038/3882. PMID 9843217. S2CID 23994762.
  97. ^ Westphal CH, Schmaltz C, Rowan S, et al. (May 1997). "Genetic interactions between atm and p53 influence cellular proliferation and irradiation-induced cell cycle checkpoints". Cancer Research. 57 (9): 1664–7. PMID 9135004.
  98. ^ Stelzl U, Worm U, Lalowski M, et al. (September 2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. hdl:11858/00-001M-0000-0010-8592-0. PMID 16169070.
  99. ^ Yan C, Wang H, Boyd DD (March 2002). "ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter". The Journal of Biological Chemistry. 277 (13): 10804–12. doi:10.1074/jbc.M112069200. PMID 11792711.
  100. ^ Chen SS, Chang PC, Cheng YW, et al. (September 2002). "Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function". The EMBO Journal. 21 (17): 4491–9. doi:10.1093/emboj/cdf409. PMC 126178. PMID 12198151.
  101. ^ Leu JI, Dumont P, Hafey M, et al. (May 2004). "Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex". Nature Cell Biology. 6 (5): 443–50. doi:10.1038/ncb1123. PMID 15077116. S2CID 43063712.
  102. ^ a b c d e f Dong Y, Hakimi MA, Chen X, et al. (November 2003). "Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair". Molecular Cell. 12 (5): 1087–99. doi:10.1016/S1097-2765(03)00424-6. PMID 14636569.
  103. ^ a b c Sengupta S, Robles AI, Linke SP, et al. (September 2004). "Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest". The Journal of Cell Biology. 166 (6): 801–13. doi:10.1083/jcb.200405128. PMC 2172115. PMID 15364958.
  104. ^ Wang XW, Tseng A, Ellis NA, et al. (August 2001). "Functional interaction of p53 and BLM DNA helicase in apoptosis". The Journal of Biological Chemistry. 276 (35): 32948–55. doi:10.1074/jbc.M103298200. PMID 11399766.
  105. ^ Garkavtsev IV, Kley N, Grigorian IA, et al. (December 2001). "The Bloom syndrome protein interacts and cooperates with p53 in regulation of transcription and cell growth control". Oncogene. 20 (57): 8276–80. doi:10.1038/sj.onc.1205120. PMID 11781842. S2CID 13084911.
  106. ^ a b Yang Q, Zhang R, Wang XW, et al. (August 2002). "The processing of Holliday junctions by BLM and WRN helicases is regulated by p53". The Journal of Biological Chemistry. 277 (35): 31980–7. doi:10.1074/jbc.M204111200. hdl:10026.1/10341. PMID 12080066.
  107. ^ Abramovitch S, Werner H (2003). "Functional and physical interactions between BRCA1 and p53 in transcriptional regulation of the IGF-IR gene". Hormone and Metabolic Research. 35 (11–12): 758–62. doi:10.1055/s-2004-814154. PMID 14710355. S2CID 20898175.
  108. ^ Ouchi T, Monteiro AN, August A, et al. (March 1998). "BRCA1 regulates p53-dependent gene expression". Proceedings of the National Academy of Sciences of the United States of America. 95 (5): 2302–6. Bibcode:1998PNAS...95.2302O. doi:10.1073/pnas.95.5.2302. PMC 19327. PMID 9482880.
  109. ^ Chai YL, Cui J, Shao N, et al. (January 1999). "The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter". Oncogene. 18 (1): 263–8. doi:10.1038/sj.onc.1202323. PMID 9926942. S2CID 7462625.
  110. ^ Zhang H, Somasundaram K, Peng Y, et al. (April 1998). "BRCA1 physically associates with p53 and stimulates its transcriptional activity". Oncogene. 16 (13): 1713–21. doi:10.1038/sj.onc.1201932. PMID 9582019. S2CID 24616900.
  111. ^ Marmorstein LY, Ouchi T, Aaronson SA (November 1998). "The BRCA2 gene product functionally interacts with p53 and RAD51". Proceedings of the National Academy of Sciences of the United States of America. 95 (23): 13869–74. Bibcode:1998PNAS...9513869M. doi:10.1073/pnas.95.23.13869. PMC 24938. PMID 9811893.
  112. ^ Uramoto H, Izumi H, Nagatani G, et al. (April 2003). "Physical interaction of tumour suppressor p53/p73 with CCAAT-binding transcription factor 2 (CTF2) and differential regulation of human high-mobility group 1 (HMG1) gene expression". The Biochemical Journal. 371 (Pt 2): 301–10. doi:10.1042/BJ20021646. PMC 1223307. PMID 12534345.
  113. ^ a b Li L, Ljungman M, Dixon JE (January 2000). "The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53". The Journal of Biological Chemistry. 275 (4): 2410–4. doi:10.1074/jbc.275.4.2410. PMID 10644693.
  114. ^ Luciani MG, Hutchins JR, Zheleva D, et al. (July 2000). "The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A". Journal of Molecular Biology. 300 (3): 503–18. doi:10.1006/jmbi.2000.3830. PMID 10884347.
  115. ^ Ababneh M, Götz C, Montenarh M (May 2001). "Downregulation of the cdc2/cyclin B protein kinase activity by binding of p53 to p34(cdc2)". Biochemical and Biophysical Research Communications. 283 (2): 507–12. doi:10.1006/bbrc.2001.4792. PMID 11327730.
  116. ^ Abedini MR, Muller EJ, Brun J, et al. (June 2008). "Cisplatin induces p53-dependent FLICE-like inhibitory protein ubiquitination in ovarian cancer cells". Cancer Research. 68 (12): 4511–7. doi:10.1158/0008-5472.CAN-08-0673. PMID 18559494.
  117. ^ a b Goudelock DM, Jiang K, Pereira E, et al. (August 2003). "Regulatory interactions between the checkpoint kinase Chk1 and the proteins of the DNA-dependent protein kinase complex". The Journal of Biological Chemistry. 278 (32): 29940–7. doi:10.1074/jbc.M301765200. PMID 12756247.
  118. ^ Tian H, Faje AT, Lee SL, et al. (2002). "Radiation-induced phosphorylation of Chk1 at S345 is associated with p53-dependent cell cycle arrest pathways". Neoplasia. 4 (2): 171–80. doi:10.1038/sj.neo.7900219. PMC 1550321. PMID 11896572.
  119. ^ Zhao L, Samuels T, Winckler S, et al. (January 2003). "Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways". Molecular Cancer Research. 1 (3): 195–206. PMID 12556559.
  120. ^ a b Ito A, Kawaguchi Y, Lai CH, et al. (November 2002). "MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation". The EMBO Journal. 21 (22): 6236–45. doi:10.1093/emboj/cdf616. PMC 137207. PMID 12426395.
  121. ^ a b Livengood JA, Scoggin KE, Van Orden K, et al. (March 2002). "p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300". The Journal of Biological Chemistry. 277 (11): 9054–61. doi:10.1074/jbc.M108870200. PMID 11782467.
  122. ^ a b Giebler HA, Lemasson I, Nyborg JK (July 2000). "p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation". Molecular and Cellular Biology. 20 (13): 4849–58. doi:10.1128/MCB.20.13.4849-4858.2000. PMC 85936. PMID 10848610.
  123. ^ a b Schneider E, Montenarh M, Wagner P (November 1998). "Regulation of CAK kinase activity by p53". Oncogene. 17 (21): 2733–41. doi:10.1038/sj.onc.1202504. PMID 9840937. S2CID 6281777.
  124. ^ a b Ko LJ, Shieh SY, Chen X, et al. (December 1997). "p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner". Molecular and Cellular Biology. 17 (12): 7220–9. doi:10.1128/mcb.17.12.7220. PMC 232579. PMID 9372954.
  125. ^ Yavuzer U, Smith GC, Bliss T, et al. (July 1998). "DNA end-independent activation of DNA-PK mediated via association with the DNA-binding protein C1D". Genes & Development. 12 (14): 2188–99. doi:10.1101/gad.12.14.2188. PMC 317006. PMID 9679063.
  126. ^ a b Rizos H, Diefenbach E, Badhwar P, et al. (February 2003). "Association of p14ARF with the p120E4F transcriptional repressor enhances cell cycle inhibition". The Journal of Biological Chemistry. 278 (7): 4981–9. doi:10.1074/jbc.M210978200. PMID 12446718.
  127. ^ Sandy P, Gostissa M, Fogal V, et al. (January 2000). "p53 is involved in the p120E4F-mediated growth arrest". Oncogene. 19 (2): 188–99. doi:10.1038/sj.onc.1203250. PMID 10644996.
  128. ^ a b c Gallagher WM, Argentini M, Sierra V, et al. (June 1999). "MBP1: a novel mutant p53-specific protein partner with oncogenic properties". Oncogene. 18 (24): 3608–16. doi:10.1038/sj.onc.1202937. PMID 10380882.
  129. ^ Cuddihy AR, Wong AH, Tam NW, et al. (April 1999). "The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro". Oncogene. 18 (17): 2690–702. doi:10.1038/sj.onc.1202620. PMID 10348343. S2CID 22467088.
  130. ^ Shinobu N, Maeda T, Aso T, et al. (June 1999). "Physical interaction and functional antagonism between the RNA polymerase II elongation factor ELL and p53". The Journal of Biological Chemistry. 274 (24): 17003–10. doi:10.1074/jbc.274.24.17003. PMID 10358050.
  131. ^ Grossman SR, Perez M, Kung AL, et al. (October 1998). "p300/MDM2 complexes participate in MDM2-mediated p53 degradation". Molecular Cell. 2 (4): 405–15. doi:10.1016/S1097-2765(00)80140-9. PMID 9809062.
  132. ^ An W, Kim J, Roeder RG (June 2004). "Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53". Cell. 117 (6): 735–48. doi:10.1016/j.cell.2004.05.009. PMID 15186775.
  133. ^ Pastorcic M, Das HK (November 2000). "Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 protooncogene". The Journal of Biological Chemistry. 275 (45): 34938–45. doi:10.1074/jbc.M005411200. PMID 10942770.
  134. ^ a b Wang XW, Yeh H, Schaeffer L, et al. (June 1995). "p53 modulation of TFIIH-associated nucleotide excision repair activity". Nature Genetics. 10 (2): 188–95. doi:10.1038/ng0695-188. hdl:1765/54884. PMID 7663514. S2CID 38325851.
  135. ^ Yu A, Fan HY, Liao D, et al. (May 2000). "Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes". Molecular Cell. 5 (5): 801–10. doi:10.1016/S1097-2765(00)80320-2. PMID 10882116.
  136. ^ Tsai RY, McKay RD (December 2002). "A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells". Genes & Development. 16 (23): 2991–3003. doi:10.1101/gad.55671. PMC 187487. PMID 12464630.
  137. ^ Peng YC, Kuo F, Breiding DE, et al. (September 2001). "AMF1 (GPS2) modulates p53 transactivation". Molecular and Cellular Biology. 21 (17): 5913–24. doi:10.1128/MCB.21.17.5913-5924.2001. PMC 87310. PMID 11486030.
  138. ^ Watcharasit P, Bijur GN, Zmijewski JW, et al. (June 2002). "Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage". Proceedings of the National Academy of Sciences of the United States of America. 99 (12): 7951–5. Bibcode:2002PNAS...99.7951W. doi:10.1073/pnas.122062299. PMC 123001. PMID 12048243.
  139. ^ a b Akakura S, Yoshida M, Yoneda Y, et al. (May 2001). "A role for Hsc70 in regulating nucleocytoplasmic transport of a temperature-sensitive p53 (p53Val-135)". The Journal of Biological Chemistry. 276 (18): 14649–57. doi:10.1074/jbc.M100200200. PMID 11297531.
  140. ^ Wang C, Chen J (January 2003). "Phosphorylation and hsp90 binding mediate heat shock stabilization of p53". The Journal of Biological Chemistry. 278 (3): 2066–71. doi:10.1074/jbc.M206697200. PMID 12427754.
  141. ^ Peng Y, Chen L, Li C, et al. (November 2001). "Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization". The Journal of Biological Chemistry. 276 (44): 40583–90. doi:10.1074/jbc.M102817200. PMID 11507088.
  142. ^ Chen D, Li M, Luo J, et al. (April 2003). "Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function". The Journal of Biological Chemistry. 278 (16): 13595–8. doi:10.1074/jbc.C200694200. PMID 12606552.
  143. ^ Ravi R, Mookerjee B, Bhujwalla ZM, et al. (January 2000). "Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha". Genes & Development. 14 (1): 34–44. doi:10.1101/gad.14.1.34. PMC 316350. PMID 10640274.
  144. ^ Hansson LO, Friedler A, Freund S, et al. (August 2002). "Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53". Proceedings of the National Academy of Sciences of the United States of America. 99 (16): 10305–9. Bibcode:2002PNAS...9910305H. doi:10.1073/pnas.122347199. PMC 124909. PMID 12124396.
  145. ^ An WG, Kanekal M, Simon MC, et al. (March 1998). "Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha". Nature. 392 (6674): 405–8. Bibcode:1998Natur.392..405A. doi:10.1038/32925. PMID 9537326. S2CID 4423081.
  146. ^ Kondo S, Lu Y, Debbas M, et al. (April 2003). "Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1)". Proceedings of the National Academy of Sciences of the United States of America. 100 (9): 5431–6. Bibcode:2003PNAS..100.5431K. doi:10.1073/pnas.0530308100. PMC 154362. PMID 12702766.
  147. ^ Hofmann TG, Möller A, Sirma H, et al. (January 2002). "Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2". Nature Cell Biology. 4 (1): 1–10. doi:10.1038/ncb715. PMID 11740489. S2CID 37789883.
  148. ^ Kim EJ, Park JS, Um SJ (August 2002). "Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo". The Journal of Biological Chemistry. 277 (35): 32020–8. doi:10.1074/jbc.M200153200. PMID 11925430.
  149. ^ Imamura T, Izumi H, Nagatani G, et al. (March 2001). "Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein". The Journal of Biological Chemistry. 276 (10): 7534–40. doi:10.1074/jbc.M008143200. PMID 11106654.
  150. ^ Dintilhac A, Bernués J (March 2002). "HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences". The Journal of Biological Chemistry. 277 (9): 7021–8. doi:10.1074/jbc.M108417200. hdl:10261/112516. PMID 11748221.
  151. ^ Wadhwa R, Yaguchi T, Hasan MK, et al. (April 2002). "Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein". Experimental Cell Research. 274 (2): 246–53. doi:10.1006/excr.2002.5468. PMID 11900485.
  152. ^ Steffan JS, Kazantsev A, Spasic-Boskovic O, et al. (June 2000). "The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription". Proceedings of the National Academy of Sciences of the United States of America. 97 (12): 6763–8. Bibcode:2000PNAS...97.6763S. doi:10.1073/pnas.100110097. PMC 18731. PMID 10823891.
  153. ^ Leung KM, Po LS, Tsang FC, et al. (September 2002). "The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2". Cancer Research. 62 (17): 4890–3. PMID 12208736.
  154. ^ Garkavtsev I, Grigorian IA, Ossovskaya VS, et al. (January 1998). "The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control". Nature. 391 (6664): 295–8. Bibcode:1998Natur.391..295G. doi:10.1038/34675. PMID 9440695. S2CID 4429461.
  155. ^ a b Shiseki M, Nagashima M, Pedeux RM, et al. (May 2003). "p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity". Cancer Research. 63 (10): 2373–8. PMID 12750254.
  156. ^ Tsai KW, Tseng HC, Lin WC (October 2008). "Two wobble-splicing events affect ING4 protein subnuclear localization and degradation". Experimental Cell Research. 314 (17): 3130–41. doi:10.1016/j.yexcr.2008.08.002. PMID 18775696.
  157. ^ Chang NS (March 2002). "The non-ankyrin C terminus of Ikappa Balpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta 1-mediated growth suppression". The Journal of Biological Chemistry. 277 (12): 10323–31. doi:10.1074/jbc.M106607200. PMID 11799106.
  158. ^ a b Kurki S, Latonen L, Laiho M (October 2003). "Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization". Journal of Cell Science. 116 (Pt 19): 3917–25. doi:10.1242/jcs.00714. PMID 12915590.
  159. ^ a b Freeman DJ, Li AG, Wei G, et al. (February 2003). "PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms". Cancer Cell. 3 (2): 117–30. doi:10.1016/S1535-6108(03)00021-7. PMID 12620407.
  160. ^ a b Zhang Y, Xiong Y, Yarbrough WG (March 1998). "ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways". Cell. 92 (6): 725–34. doi:10.1016/S0092-8674(00)81401-4. PMID 9529249.
  161. ^ Badciong JC, Haas AL (December 2002). "MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination". The Journal of Biological Chemistry. 277 (51): 49668–75. doi:10.1074/jbc.M208593200. PMID 12393902.
  162. ^ Shvarts A, Bazuine M, Dekker P, et al. (July 1997). "Isolation and identification of the human homolog of a new p53-binding protein, Mdmx" (PDF). Genomics. 43 (1): 34–42. doi:10.1006/geno.1997.4775. hdl:2066/142231. PMID 9226370. S2CID 11794685.
  163. ^ Frade R, Balbo M, Barel M (December 2000). "RB18A, whose gene is localized on chromosome 17q12-q21.1, regulates in vivo p53 transactivating activity". Cancer Research. 60 (23): 6585–9. PMID 11118038.
  164. ^ Drané P, Barel M, Balbo M, et al. (December 1997). "Identification of RB18A, a 205 kDa new p53 regulatory protein which shares antigenic and functional properties with p53". Oncogene. 15 (25): 3013–24. doi:10.1038/sj.onc.1201492. PMID 9444950.
  165. ^ Hu MC, Qiu WR, Wang YP (November 1997). "JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases". Oncogene. 15 (19): 2277–87. doi:10.1038/sj.onc.1201401. PMID 9393873.
  166. ^ Lin Y, Khokhlatchev A, Figeys D, et al. (December 2002). "Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis". The Journal of Biological Chemistry. 277 (50): 47991–8001. doi:10.1074/jbc.M202630200. PMID 12384512.
  167. ^ Taniura H, Matsumoto K, Yoshikawa K (June 1999). "Physical and functional interactions of neuronal growth suppressor necdin with p53". The Journal of Biological Chemistry. 274 (23): 16242–8. doi:10.1074/jbc.274.23.16242. PMID 10347180.
  168. ^ Daniely Y, Dimitrova DD, Borowiec JA (August 2002). "Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation". Molecular and Cellular Biology. 22 (16): 6014–22. doi:10.1128/MCB.22.16.6014-6022.2002. PMC 133981. PMID 12138209.
  169. ^ Colaluca IN, Tosoni D, Nuciforo P, et al. (January 2008). "NUMB controls p53 tumour suppressor activity". Nature. 451 (7174): 76–80. Bibcode:2008Natur.451...76C. doi:10.1038/nature06412. PMID 18172499. S2CID 4431258.
  170. ^ a b c Choy MK, Movassagh M, Siggens L, et al. (June 2010). "High-throughput sequencing identifies STAT3 as the DNA-associated factor for p53-NF-kappaB-complex-dependent gene expression in human heart failure". Genome Medicine. 2 (6): 37. doi:10.1186/gm158. PMC 2905097. PMID 20546595.
  171. ^ a b Zhang Y, Wolf GW, Bhat K, et al. (December 2003). "Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway". Molecular and Cellular Biology. 23 (23): 8902–12. doi:10.1128/MCB.23.23.8902-8912.2003. PMC 262682. PMID 14612427.
  172. ^ Nikolaev AY, Li M, Puskas N, et al. (January 2003). "Parc: a cytoplasmic anchor for p53". Cell. 112 (1): 29–40. doi:10.1016/S0092-8674(02)01255-2. PMID 12526791.
  173. ^ Malanga M, Pleschke JM, Kleczkowska HE, et al. (May 1998). "Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions". The Journal of Biological Chemistry. 273 (19): 11839–43. doi:10.1074/jbc.273.19.11839. PMID 9565608.
  174. ^ Kahyo T, Nishida T, Yasuda H (September 2001). "Involvement of PIAS1 in the sumoylation of tumor suppressor p53". Molecular Cell. 8 (3): 713–8. doi:10.1016/S1097-2765(01)00349-5. PMID 11583632.
  175. ^ Wulf GM, Liou YC, Ryo A, et al. (December 2002). "Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage". The Journal of Biological Chemistry. 277 (50): 47976–9. doi:10.1074/jbc.C200538200. PMID 12388558.
  176. ^ Zacchi P, Gostissa M, Uchida T, et al. (October 2002). "The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults". Nature. 419 (6909): 853–7. Bibcode:2002Natur.419..853Z. doi:10.1038/nature01120. PMID 12397362. S2CID 4311658.
  177. ^ Huang SM, Schönthal AH, Stallcup MR (April 2001). "Enhancement of p53-dependent gene activation by the transcriptional coactivator Zac1". Oncogene. 20 (17): 2134–43. doi:10.1038/sj.onc.1204298. PMID 11360197. S2CID 21331603.
  178. ^ Xie S, Wu H, Wang Q, et al. (November 2001). "Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway". The Journal of Biological Chemistry. 276 (46): 43305–12. doi:10.1074/jbc.M106050200. PMID 11551930.
  179. ^ Bahassi EM, Conn CW, Myer DL, et al. (September 2002). "Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways". Oncogene. 21 (43): 6633–40. doi:10.1038/sj.onc.1205850. PMID 12242661. S2CID 24106070.
  180. ^ Simons A, Melamed-Bessudo C, Wolkowicz R, et al. (January 1997). "PACT: cloning and characterization of a cellular p53 binding protein that interacts with Rb". Oncogene. 14 (2): 145–55. doi:10.1038/sj.onc.1200825. PMID 9010216.
  181. ^ Fusaro G, Dasgupta P, Rastogi S, et al. (November 2003). "Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling". The Journal of Biological Chemistry. 278 (48): 47853–61. doi:10.1074/jbc.M305171200. PMID 14500729.
  182. ^ Fogal V, Gostissa M, Sandy P, et al. (November 2000). "Regulation of p53 activity in nuclear bodies by a specific PML isoform". The EMBO Journal. 19 (22): 6185–95. doi:10.1093/emboj/19.22.6185. PMC 305840. PMID 11080164.
  183. ^ Guo A, Salomoni P, Luo J, et al. (October 2000). "The function of PML in p53-dependent apoptosis". Nature Cell Biology. 2 (10): 730–6. doi:10.1038/35036365. PMID 11025664. S2CID 13480833.
  184. ^ a b Zhang Z, Zhang R (March 2008). "Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation". The EMBO Journal. 27 (6): 852–64. doi:10.1038/emboj.2008.25. PMC 2265109. PMID 18309296.
  185. ^ Lim ST, Chen XL, Lim Y, et al. (January 2008). "Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation". Molecular Cell. 29 (1): 9–22. doi:10.1016/j.molcel.2007.11.031. PMC 2234035. PMID 18206965.
  186. ^ Bernal JA, Luna R, Espina A, et al. (October 2002). "Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis". Nature Genetics. 32 (2): 306–11. doi:10.1038/ng997. PMID 12355087. S2CID 1770399.
  187. ^ Stürzbecher HW, Donzelmann B, Henning W, et al. (April 1996). "p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction". The EMBO Journal. 15 (8): 1992–2002. doi:10.1002/j.1460-2075.1996.tb00550.x. PMC 450118. PMID 8617246.
  188. ^ Buchhop S, Gibson MK, Wang XW, et al. (October 1997). "Interaction of p53 with the human Rad51 protein". Nucleic Acids Research. 25 (19): 3868–74. doi:10.1093/nar/25.19.3868. PMC 146972. PMID 9380510.
  189. ^ Leng RP, Lin Y, Ma W, et al. (March 2003). "Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation". Cell. 112 (6): 779–91. doi:10.1016/S0092-8674(03)00193-4. PMID 12654245.
  190. ^ Sheng Y, Laister RC, Lemak A, et al. (December 2008). "Molecular basis of Pirh2-mediated p53 ubiquitylation". Nature Structural & Molecular Biology. 15 (12): 1334–42. doi:10.1038/nsmb.1521. PMC 4075976. PMID 19043414.
  191. ^ Romanova LY, Willers H, Blagosklonny MV, et al. (December 2004). "The interaction of p53 with replication protein A mediates suppression of homologous recombination". Oncogene. 23 (56): 9025–33. doi:10.1038/sj.onc.1207982. PMID 15489903. S2CID 23482723.
  192. ^ Riva F, Zuco V, Vink AA, et al. (December 2001). "UV-induced DNA incision and proliferating cell nuclear antigen recruitment to repair sites occur independently of p53-replication protein A interaction in p53 wild type and mutant ovarian carcinoma cells". Carcinogenesis. 22 (12): 1971–8. doi:10.1093/carcin/22.12.1971. PMID 11751427.
  193. ^ Lin J, Yang Q, Yan Z, et al. (August 2004). "Inhibiting S100B restores p53 levels in primary malignant melanoma cancer cells". The Journal of Biological Chemistry. 279 (32): 34071–7. doi:10.1074/jbc.M405419200. PMID 15178678.
  194. ^ a b Minty A, Dumont X, Kaghad M, et al. (November 2000). "Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif". The Journal of Biological Chemistry. 275 (46): 36316–23. doi:10.1074/jbc.M004293200. PMID 10961991.
  195. ^ a b Ivanchuk SM, Mondal S, Rutka JT (June 2008). "p14ARF interacts with DAXX: effects on HDM2 and p53". Cell Cycle. 7 (12): 1836–50. doi:10.4161/cc.7.12.6025. PMID 18583933.
  196. ^ a b Lee D, Kim JW, Seo T, et al. (June 2002). "SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription". The Journal of Biological Chemistry. 277 (25): 22330–7. doi:10.1074/jbc.M111987200. PMID 11950834.
  197. ^ Young PJ, Day PM, Zhou J, et al. (January 2002). "A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy". The Journal of Biological Chemistry. 277 (4): 2852–9. doi:10.1074/jbc.M108769200. PMID 11704667.
  198. ^ Seto E, Usheva A, Zambetti GP, et al. (December 1992). "Wild-type p53 binds to the TATA-binding protein and represses transcription". Proceedings of the National Academy of Sciences of the United States of America. 89 (24): 12028–32. Bibcode:1992PNAS...8912028S. doi:10.1073/pnas.89.24.12028. PMC 50691. PMID 1465435.
  199. ^ Cvekl A, Kashanchi F, Brady JN, et al. (June 1999). "Pax-6 interactions with TATA-box-binding protein and retinoblastoma protein". Investigative Ophthalmology & Visual Science. 40 (7): 1343–50. PMID 10359315.
  200. ^ McPherson LA, Loktev AV, Weigel RJ (November 2002). "Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53". The Journal of Biological Chemistry. 277 (47): 45028–33. doi:10.1074/jbc.M208924200. PMID 12226108.
  201. ^ Sørensen TS, Girling R, Lee CW, et al. (October 1996). "Functional interaction between DP-1 and p53". Molecular and Cellular Biology. 16 (10): 5888–95. doi:10.1128/mcb.16.10.5888. PMC 231590. PMID 8816502.
  202. ^ Green DR, Chipuk JE (July 2006). "p53 and metabolism: Inside the TIGAR". Cell. 126 (1): 30–2. doi:10.1016/j.cell.2006.06.032. PMID 16839873.
  203. ^ Gobert C, Skladanowski A, Larsen AK (August 1999). "The interaction between p53 and DNA topoisomerase I is regulated differently in cells with wild-type and mutant p53". Proceedings of the National Academy of Sciences of the United States of America. 96 (18): 10355–60. Bibcode:1999PNAS...9610355G. doi:10.1073/pnas.96.18.10355. PMC 17892. PMID 10468612.
  204. ^ Mao Y, Mehl IR, Muller MT (February 2002). "Subnuclear distribution of topoisomerase I is linked to ongoing transcription and p53 status". Proceedings of the National Academy of Sciences of the United States of America. 99 (3): 1235–40. Bibcode:2002PNAS...99.1235M. doi:10.1073/pnas.022631899. PMC 122173. PMID 11805286.
  205. ^ a b Cowell IG, Okorokov AL, Cutts SA, et al. (February 2000). "Human topoisomerase IIalpha and IIbeta interact with the C-terminal region of p53". Experimental Cell Research. 255 (1): 86–94. doi:10.1006/excr.1999.4772. PMID 10666337.
  206. ^ Derbyshire DJ, Basu BP, Serpell LC, et al. (July 2002). "Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor". The EMBO Journal. 21 (14): 3863–72. doi:10.1093/emboj/cdf383. PMC 126127. PMID 12110597.
  207. ^ Ekblad CM, Friedler A, Veprintsev D, et al. (March 2004). "Comparison of BRCT domains of BRCA1 and 53BP1: a biophysical analysis". Protein Science. 13 (3): 617–25. doi:10.1110/ps.03461404. PMC 2286730. PMID 14978302.
  208. ^ Lo KW, Kan HM, Chan LN, et al. (March 2005). "The 8-kDa dynein light chain binds to p53-binding protein 1 and mediates DNA damage-induced p53 nuclear accumulation". The Journal of Biological Chemistry. 280 (9): 8172–9. doi:10.1074/jbc.M411408200. PMID 15611139.
  209. ^ Joo WS, Jeffrey PD, Cantor SB, et al. (March 2002). "Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure". Genes & Development. 16 (5): 583–93. doi:10.1101/gad.959202. PMC 155350. PMID 11877378.
  210. ^ Derbyshire DJ, Basu BP, Date T, et al. (October 2002). "Purification, crystallization and preliminary X-ray analysis of the BRCT domains of human 53BP1 bound to the p53 tumour suppressor". Acta Crystallographica D. 58 (Pt 10 Pt 2): 1826–9. Bibcode:2002AcCrD..58.1826D. doi:10.1107/S0907444902010910. PMID 12351827.
  211. ^ a b Iwabuchi K, Bartel PL, Li B, et al. (June 1994). "Two cellular proteins that bind to wild-type but not mutant p53". Proceedings of the National Academy of Sciences of the United States of America. 91 (13): 6098–102. Bibcode:1994PNAS...91.6098I. doi:10.1073/pnas.91.13.6098. PMC 44145. PMID 8016121.
  212. ^ Naumovski L, Cleary ML (July 1996). "The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M". Molecular and Cellular Biology. 16 (7): 3884–92. doi:10.1128/MCB.16.7.3884. PMC 231385. PMID 8668206.
  213. ^ Tomasini R, Samir AA, Carrier A, et al. (September 2003). "TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity". The Journal of Biological Chemistry. 278 (39): 37722–9. doi:10.1074/jbc.M301979200. PMID 12851404.
  214. ^ Okamura S, Arakawa H, Tanaka T, et al. (July 2001). "p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis". Molecular Cell. 8 (1): 85–94. doi:10.1016/S1097-2765(01)00284-2. PMID 11511362.
  215. ^ Li L, Liao J, Ruland J, et al. (February 2001). "A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback control". Proceedings of the National Academy of Sciences of the United States of America. 98 (4): 1619–24. Bibcode:2001PNAS...98.1619L. doi:10.1073/pnas.98.4.1619. PMC 29306. PMID 11172000.
  216. ^ Lyakhovich A, Shekhar MP (April 2003). "Supramolecular complex formation between Rad6 and proteins of the p53 pathway during DNA damage-induced response". Molecular and Cellular Biology. 23 (7): 2463–75. doi:10.1128/MCB.23.7.2463-2475.2003. PMC 150718. PMID 12640129.
  217. ^ Shen Z, Pardington-Purtymun PE, Comeaux JC, et al. (October 1996). "Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system". Genomics. 37 (2): 183–6. doi:10.1006/geno.1996.0540. PMID 8921390.
  218. ^ Bernier-Villamor V, Sampson DA, Matunis MJ, et al. (February 2002). "Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1". Cell. 108 (3): 345–56. doi:10.1016/S0092-8674(02)00630-X. PMID 11853669.
  219. ^ Sehat B, Andersson S, Girnita L, et al. (July 2008). "Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis". Cancer Research. 68 (14): 5669–77. doi:10.1158/0008-5472.CAN-07-6364. PMID 18632619.
  220. ^ Song MS, Song SJ, Kim SY, et al. (July 2008). "The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex". The EMBO Journal. 27 (13): 1863–74. doi:10.1038/emboj.2008.115. PMC 2486425. PMID 18566590.
  221. ^ Yang W, Dicker DT, Chen J, et al. (March 2008). "CARPs enhance p53 turnover by degrading 14-3-3sigma and stabilizing MDM2". Cell Cycle. 7 (5): 670–82. doi:10.4161/cc.7.5.5701. PMID 18382127.
  222. ^ Abe Y, Oda-Sato E, Tobiume K, et al. (March 2008). "Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2". Proceedings of the National Academy of Sciences of the United States of America. 105 (12): 4838–43. Bibcode:2008PNAS..105.4838A. doi:10.1073/pnas.0712216105. PMC 2290789. PMID 18359851.
  223. ^ Dohmesen C, Koeppel M, Dobbelstein M (January 2008). "Specific inhibition of Mdm2-mediated neddylation by Tip60". Cell Cycle. 7 (2): 222–31. doi:10.4161/cc.7.2.5185. PMID 18264029. S2CID 8023403.
  224. ^ Li M, Chen D, Shiloh A, et al. (April 2002). "Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization". Nature. 416 (6881): 648–53. Bibcode:2002Natur.416..648L. doi:10.1038/nature737. PMID 11923872. S2CID 4389394.
  225. ^ Brosh RM, Karmakar P, Sommers JA, et al. (September 2001). "p53 Modulates the exonuclease activity of Werner syndrome protein". The Journal of Biological Chemistry. 276 (37): 35093–102. doi:10.1074/jbc.M103332200. PMID 11427532.
  226. ^ Chang NS, Pratt N, Heath J, et al. (February 2001). "Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity". The Journal of Biological Chemistry. 276 (5): 3361–70. doi:10.1074/jbc.M007140200. PMID 11058590.
  227. ^ Okamoto T, Izumi H, Imamura T, et al. (December 2000). "Direct interaction of p53 with the Y-box binding protein, YB-1: a mechanism for regulation of human gene expression". Oncogene. 19 (54): 6194–202. doi:10.1038/sj.onc.1204029. PMID 11175333. S2CID 19222684.
  228. ^ Kelley KD, Miller KR, Todd A, et al. (May 2010). "YPEL3, a p53-regulated gene that induces cellular senescence". Cancer Research. 70 (9): 3566–75. doi:10.1158/0008-5472.CAN-09-3219. PMC 2862112. PMID 20388804.
  229. ^ Waterman MJ, Stavridi ES, Waterman JL, et al. (June 1998). "ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins". Nature Genetics. 19 (2): 175–8. doi:10.1038/542. PMID 9620776. S2CID 26600934.
  230. ^ Liu J, Grogan L, Nau MM, et al. (April 2001). "Physical interaction between p53 and primary response gene Egr-1". International Journal of Oncology. 18 (4): 863–70. doi:10.3892/ijo.18.4.863. PMID 11251186.
  231. ^ Bai L, Merchant JL (July 2001). "ZBP-89 promotes growth arrest through stabilization of p53". Molecular and Cellular Biology. 21 (14): 4670–83. doi:10.1128/MCB.21.14.4670-4683.2001. PMC 87140. PMID 11416144.
  232. ^ Yamakuchi M, Lowenstein CJ (March 2009). "MiR-34, SIRT1 and p53: the feedback loop". Cell Cycle. 8 (5): 712–5. doi:10.4161/cc.8.5.7753. PMID 19221490.
  233. ^ Wang Y, Zhang J, Li J, et al. (May 2019). "CircRNA_014511 affects the radiosensitivity of bone marrow mesenchymal stem cells by binding to miR-29b-2-5p". Bosnian Journal of Basic Medical Sciences. 19 (2): 155–163. doi:10.17305/bjbms.2019.3935. PMC 6535393. PMID 30640591.

External links