stringtranslate.com

metamaterial

Configuración de matriz de metamateriales de índice negativo , que se construyó con resonadores de anillos divididos de cobre y cables montados en láminas entrelazadas de una placa de circuito de fibra de vidrio. La matriz total consta de 3 × 20 × 20 celdas unitarias con dimensiones totales de 10 mm × 100 mm × 100 mm (0,39  pulg. × 3,94 pulg. × 3,94 pulg.). [1] [2]

Un metamaterial (de la palabra griega μετά meta , que significa "más allá" o "después", y la palabra latina materia , que significa "materia" o "material") es cualquier material diseñado para tener una propiedad que rara vez se observa en materiales naturales. . Están hechos de conjuntos de múltiples elementos fabricados a partir de materiales compuestos como metales y plásticos. Estos materiales suelen estar dispuestos en patrones repetidos , en escalas más pequeñas que las longitudes de onda de los fenómenos en los que influyen. Los metamateriales derivan sus propiedades no de las propiedades de los materiales base, sino de sus estructuras recién diseñadas. Su forma , geometría , tamaño , orientación y disposición precisas les confieren propiedades inteligentes capaces de manipular ondas electromagnéticas : bloqueando, absorbiendo, potenciando o doblando ondas, para lograr beneficios que van más allá de lo que es posible con los materiales convencionales.

Los metamateriales diseñados adecuadamente pueden afectar las ondas de radiación electromagnética o el sonido de una manera que no se observa en los materiales a granel. [3] [4] [5] Aquellos que exhiben un índice de refracción negativo para longitudes de onda particulares han sido el foco de una gran cantidad de investigaciones. [6] [7] [8] Estos materiales se conocen como metamateriales de índice negativo .

Las aplicaciones potenciales de los metamateriales son diversas e incluyen filtros ópticos , dispositivos médicos , aplicaciones aeroespaciales remotas , detección de sensores y monitoreo de infraestructura , gestión inteligente de energía solar , láseres, [9] control de multitudes , radomos , comunicación de alta frecuencia en el campo de batalla y lentes de alta ganancia. antenas, mejorando sensores ultrasónicos e incluso protegiendo estructuras de terremotos . [10] [11] [12] [13] Los metamateriales ofrecen el potencial de crear súper lentes . [14] Una lente de este tipo puede permitir obtener imágenes por debajo del límite de difracción , que es la resolución mínima d=λ/(2NA) que se puede lograr con lentes convencionales que tienen una apertura numérica NA y una longitud de onda de iluminación λ. Los metamateriales ópticos de longitud de onda inferior, cuando se integran con medios de grabación ópticos, se pueden utilizar para lograr una densidad de datos óptica superior a la limitada por la difracción. [15] Se demostró una forma de "invisibilidad" utilizando materiales de índice de gradiente . Los metamateriales acústicos y sísmicos también son áreas de investigación. [10] [16]

La investigación de metamateriales es interdisciplinaria e involucra campos como la ingeniería eléctrica , el electromagnetismo , la óptica clásica , la física del estado sólido , la ingeniería de microondas y antenas , la optoelectrónica , las ciencias de los materiales , la nanociencia y la ingeniería de semiconductores . [4]

Historia

La exploración de materiales artificiales para manipular ondas electromagnéticas comenzó a finales del siglo XIX. Algunas de las primeras estructuras que pueden considerarse metamateriales fueron estudiadas por Jagadish Chandra Bose , quien en 1898 investigó sustancias con propiedades quirales . Karl Ferdinand Lindman estudió la interacción de ondas con hélices metálicas como medios quirales artificiales a principios del siglo XX.

A finales de la década de 1940, Winston E. Kock de AT&T Bell Laboratories desarrolló materiales que tenían características similares a los metamateriales. En las décadas de 1950 y 1960 se estudiaron dieléctricos artificiales para antenas de microondas ligeras . Los absorbentes de radar de microondas se investigaron en las décadas de 1980 y 1990 como aplicaciones para medios quirales artificiales. [4] [17] [18]

Los materiales de índice negativo fueron descritos teóricamente por primera vez por Victor Veselago en 1967. [19] Demostró que dichos materiales podían transmitir luz . Demostró que la velocidad de fase podría hacerse antiparalela a la dirección del vector de Poynting . Esto es contrario a la propagación de ondas en materiales naturales. [8]

En 1995, John M. Guerra fabricó una rejilla transparente por debajo de la longitud de onda (más tarde llamada metamaterial fotónico) que tenía líneas y espacios de 50 nm, y luego la combinó con un objetivo de microscopio de inmersión en aceite estándar (la combinación más tarde se denominó superlente) para resolver una rejilla en una oblea de silicio que también tiene líneas y espacios de 50 nm. Esta imagen súper resuelta se logró con iluminación con una longitud de onda de 650 nm en el aire. [14]

En 2000, John Pendry fue el primero en identificar una forma práctica de crear un metamaterial zurdo, un material en el que no se sigue la regla de la mano derecha . [19] Un material de este tipo permite que una onda electromagnética transmita energía (tenga una velocidad de grupo ) contra su velocidad de fase . La idea de Pendry era que los cables metálicos alineados a lo largo de la dirección de una onda podrían proporcionar permitividad negativa ( función dieléctrica ε <0). Los materiales naturales (como los ferroeléctricos ) muestran permitividad negativa; el desafío era lograr una permeabilidad negativa (μ <0). En 1999, Pendry demostró que un anillo partido (en forma de C) con su eje colocado a lo largo de la dirección de propagación de la onda podía lograrlo. En el mismo artículo, demostró que una disposición periódica de alambres y anillos podría dar lugar a un índice de refracción negativo. Pendry también propuso un diseño relacionado de permeabilidad negativa, el rollo suizo .

En 2000, David R. Smith et al. informó la demostración experimental del funcionamiento de metamateriales electromagnéticos apilando horizontalmente, periódicamente , resonadores de anillos divididos y estructuras de alambre delgado. En 2002 se proporcionó un método para realizar metamateriales de índice negativo utilizando líneas de transmisión cargadas de elementos agrupados artificiales en tecnología de microcinta . En 2003, se demostró el índice de refracción negativo complejo (tanto la parte real como la imaginaria) [20] y la obtención de imágenes mediante lentes planas [21] utilizando metamateriales para zurdos. En 2007, muchos grupos habían realizado experimentos que involucraban un índice de refracción negativo . [3] [13] En frecuencias de microondas, la primera capa de invisibilidad imperfecta se realizó en 2006. [22] [23] [24] [25] [26]

Desde el punto de vista de las ecuaciones rectoras, los investigadores contemporáneos pueden clasificar el ámbito de los metamateriales en tres ramas principales: [27] metamateriales de ondas electromagnéticas/ópticas, otros metamateriales de ondas y metamateriales de difusión . Estas ramas se caracterizan por sus respectivas ecuaciones rectoras, que incluyen las ecuaciones de Maxwell (una ecuación de onda que describe ondas transversales), otras ecuaciones de onda (para ondas longitudinales y transversales) y ecuaciones de difusión (pertenecientes a los procesos de difusión). [28] Para obtener información completa, consulte la Sección IB, "Evolución de la física de metamateriales", en la Ref. [27]

Metamateriales electromagnéticos

Un metamaterial electromagnético afecta las ondas electromagnéticas que inciden o interactúan con sus características estructurales, que son más pequeñas que la longitud de onda. Para comportarse como un material homogéneo descrito con precisión mediante un índice de refracción efectivo , sus características deben ser mucho más pequeñas que la longitud de onda. [ cita necesaria ]

Las propiedades inusuales de los metamateriales surgen de la respuesta resonante de cada elemento constituyente más que de su disposición espacial en una red. Permite considerar los parámetros locales efectivos del material (permisividad y permeabilidad ). El efecto de resonancia relacionado con la disposición mutua de los elementos es responsable de la dispersión de Bragg , que subyace a la física de los cristales fotónicos , otra clase de materiales electromagnéticos. A diferencia de las resonancias locales, la dispersión de Bragg y la correspondiente banda de parada de Bragg tienen un límite de baja frecuencia determinado por el espaciado de la red. La aproximación de sublongitud de onda garantiza que las bandas de parada de Bragg con fuertes efectos de dispersión espacial estén en frecuencias más altas y puedan despreciarse. El criterio para desplazar la resonancia local por debajo de la banda de parada de Bragg inferior permite construir un diagrama de transición de fase fotónica en un espacio de parámetros, por ejemplo, el tamaño y la permitividad del elemento constituyente. Dicho diagrama muestra el dominio de los parámetros estructurales que permiten la observación de las propiedades del metamaterial en el material electromagnético. [29]

Para la radiación de microondas , las características son del orden de milímetros . Los metamateriales de frecuencia de microondas generalmente se construyen como conjuntos de elementos eléctricamente conductores (como bucles de alambre) que tienen características inductivas y capacitivas adecuadas . Muchos metamateriales de microondas utilizan resonadores de anillos divididos . [5] [6]

Los metamateriales fotónicos están estructurados a escala nanométrica y manipulan la luz a frecuencias ópticas. Los cristales fotónicos y las superficies selectivas de frecuencia, como las rejillas de difracción , los espejos dieléctricos y los recubrimientos ópticos, exhiben similitudes con los metamateriales estructurados por debajo de la longitud de onda . Sin embargo, generalmente se consideran distintos de los metamateriales, ya que su función surge de la difracción o interferencia y, por lo tanto, no pueden aproximarse como un material homogéneo. [ cita necesaria ] Sin embargo, las estructuras materiales como los cristales fotónicos son efectivas en el espectro de luz visible . La mitad del espectro visible tiene una longitud de onda de aproximadamente 560 nm (para la luz solar). Las estructuras de cristales fotónicos generalmente tienen la mitad de este tamaño o menos, es decir, <280 nm. [ cita necesaria ]

Los metamateriales plasmónicos utilizan plasmones de superficie , que son paquetes de carga eléctrica que oscilan colectivamente en las superficies de los metales a frecuencias ópticas.

Las superficies selectivas de frecuencia (FSS) pueden exhibir características de sublongitud de onda y se conocen como conductores magnéticos artificiales (AMC) o superficies de alta impedancia (HIS). Los FSS muestran características inductivas y capacitivas que están directamente relacionadas con su estructura de sublongitud de onda. [30]

Los metamateriales electromagnéticos se pueden dividir en diferentes clases, de la siguiente manera: [3] [19] [4] [31]

Índice de refracción negativo

Una comparación de la refracción en un metamaterial zurdo con la de un material normal

Los metamateriales de índice negativo (NIM) se caracterizan por un índice de refracción negativo. Otros términos para los NIM incluyen "medios para zurdos", "medios con un índice de refracción negativo" y "medios de onda invertida". [3] Los NIM en los que el índice de refracción negativo surge de la permitividad y la permeabilidad negativas simultáneamente también se conocen como metamateriales doblemente negativos o materiales doblemente negativos (DNG). [19]

Suponiendo un material bien aproximado por una permitividad y permeabilidad reales, la relación entre permitividad , permeabilidad e índice de refracción n viene dada por . Todos los materiales transparentes no metamateriales conocidos (vidrio, agua, ...) poseen valores positivos y . Por convención, se utiliza la raíz cuadrada positiva para n . Sin embargo, algunos metamateriales diseñados tienen y . Como el producto es positivo, n es real . En tales circunstancias, es necesario sacar la raíz cuadrada negativa de n . Cuando ambos y son positivos (negativos), las ondas viajan en dirección hacia adelante ( hacia atrás ). Las ondas electromagnéticas no pueden propagarse en materiales con y de signo opuesto ya que el índice de refracción se vuelve imaginario . Dichos materiales son opacos a la radiación electromagnética y los ejemplos incluyen materiales plasmónicos como los metales ( oro , plata ,...).

Vídeo que representa la refracción negativa de la luz en una interfaz plana uniforme.

Las consideraciones anteriores son simplistas para los materiales reales, que deben tener valores complejos y . Las partes reales de ambos y no tienen que ser negativas para que un material pasivo muestre refracción negativa. [32] [33] De hecho, un índice de refracción negativo para ondas polarizadas circularmente también puede surgir de la quiralidad. [34] [35] Los metamateriales con n negativo tienen numerosas propiedades interesantes: [4] [36]

El índice de refracción negativo se deriva matemáticamente del triplete de vectores E , H y k . [4]

Para las ondas planas que se propagan en metamateriales electromagnéticos, el campo eléctrico, el campo magnético y el vector de onda siguen una regla de la mano izquierda , lo contrario del comportamiento de los materiales ópticos convencionales.

Hasta la fecha, sólo los metamateriales presentan un índice de refracción negativo. [3] [36] [37]

Solo negativo

Los metamateriales negativos únicos (SNG) tienen permitividad relativa negativa (ε r ) o permeabilidad relativa negativa (μ r ), pero no ambas. [19] Actúan como metamateriales cuando se combinan con un SNG diferente y complementario, actuando conjuntamente como un DNG.

Los medios negativos Epsilon (ENG) muestran un ε r negativo mientras que µ r es positivo. [3] [36] [19] Muchos plasmas exhiben esta característica. Por ejemplo, los metales nobles como el oro o la plata son ENG en los espectros infrarrojo y visible .

Los medios mu negativos (MNG) muestran un ε r positivo y un µ r negativo . [3] [36] [19] Los materiales girotrópicos o giromagnéticos exhiben esta característica. Un material girotrópico es aquel que ha sido alterado por la presencia de un campo magnético cuasiestático , permitiendo un efecto magnetoóptico . [ cita necesaria ] Un efecto magnetoóptico es un fenómeno en el que una onda electromagnética se propaga a través de dicho medio. En dicho material, las polarizaciones elípticas que giran hacia la izquierda y hacia la derecha pueden propagarse a diferentes velocidades. Cuando la luz se transmite a través de una capa de material magnetoóptico, el resultado se denomina efecto Faraday : el plano de polarización se puede girar, formando un rotador de Faraday . Los resultados de tal reflexión se conocen como efecto Kerr magnetoóptico (que no debe confundirse con el efecto Kerr no lineal ). Dos materiales girotrópicos con direcciones de rotación invertidas de las dos polarizaciones principales se denominan isómeros ópticos .

Unir una losa de material ENG y una losa de material MNG dio como resultado propiedades como resonancias, túneles anómalos, transparencia y reflexión cero. Al igual que los materiales de índice negativo, los SNG son innatamente dispersivos, por lo que su ε r , µ r y su índice de refracción n son función de la frecuencia. [36]

Hiperbólico

Los metamateriales hiperbólicos (HMM) se comportan como un metal para cierta polarización o dirección de propagación de la luz y se comportan como un dieléctrico para otra debido a los componentes tensoriales de permitividad negativos y positivos, lo que proporciona una anisotropía extrema . La relación de dispersión del material en el espacio vectorial de onda forma un hiperboloide y por lo tanto se llama metamaterial hiperbólico. La anisotropía extrema de los HMM conduce a la propagación direccional de la luz dentro y sobre la superficie. [38] Los HMM han mostrado varias aplicaciones potenciales, como detección, modulador de reflexión, [39] imágenes, dirección de señales ópticas y efectos de resonancia de plasmón mejorados. [40]

banda prohibida

Los metamateriales de banda prohibida electromagnética (EBG o EBM) controlan la propagación de la luz. Esto se logra con cristales fotónicos (PC) o materiales zurdos (LHM). Las PC pueden prohibir por completo la propagación de la luz. Ambas clases pueden permitir que la luz se propague en direcciones específicas diseñadas y ambas pueden diseñarse con bandas prohibidas en las frecuencias deseadas. [41] [42] El tamaño del período de los EBG es una fracción apreciable de la longitud de onda, lo que crea interferencias constructivas y destructivas.

Las PC se distinguen de las estructuras por debajo de la longitud de onda, como los metamateriales sintonizables , porque las PC derivan sus propiedades de sus características de banda prohibida. Las PC tienen un tamaño que coincide con la longitud de onda de la luz, a diferencia de otros metamateriales que exponen una estructura por debajo de la longitud de onda. Además, las PC funcionan difractando la luz. Por el contrario, el metamaterial no utiliza difracción. [43]

Las PC tienen inclusiones periódicas que inhiben la propagación de ondas debido a la interferencia destructiva de la dispersión de las inclusiones. La propiedad de banda prohibida fotónica de las PC las convierte en el análogo electromagnético de los cristales semiconductores electrónicos. [44]

Los EBG tienen el objetivo de crear estructuras dieléctricas periódicas y de alta calidad y bajas pérdidas. Una EBG afecta a los fotones de la misma manera que los materiales semiconductores afectan a los electrones. Las PC son el material de banda prohibida perfecto porque no permiten la propagación de la luz. [45] Cada unidad de la estructura periódica prescrita actúa como un átomo, aunque de un tamaño mucho mayor. [3] [45]

Los EBG están diseñados para evitar la propagación de un ancho de banda de frecuencias asignado, para ciertos ángulos de llegada y polarizaciones . Se han propuesto varias geometrías y estructuras para fabricar las propiedades especiales de EBG. En la práctica, es imposible construir un dispositivo EBG impecable. [3] [4]

Los EBG se han fabricado para frecuencias que van desde unos pocos gigahercios (GHz) hasta unos pocos terahercios (THz), regiones de frecuencia de radio, microondas e infrarrojo medio. Los desarrollos de aplicaciones de EBG incluyen una línea de transmisión , pilas de leña hechas de barras dieléctricas cuadradas y varios tipos diferentes de antenas de baja ganancia . [3] [4]

Medio positivo doble

Los medios doblemente positivos (DPS) se encuentran en la naturaleza, como los dieléctricos naturales . La permitividad y la permeabilidad magnética son positivas y la propagación de las ondas se realiza en dirección directa. Se han fabricado materiales artificiales que combinan propiedades DPS, ENG y MNG. [3] [19]

Biisotrópico y bianisotrópico

La categorización de metamateriales en negativos dobles o simples, o dobles positivos, normalmente supone que el metamaterial tiene respuestas eléctricas y magnéticas independientes descritas por ε y µ. Sin embargo, en muchos casos, el campo eléctrico provoca polarización magnética , mientras que el campo magnético induce polarización eléctrica, conocida como acoplamiento magnetoeléctrico. Estos medios se denominan biisotrópicos . Los medios que exhiben acoplamiento magnetoeléctrico y que son anisotrópicos (como es el caso de muchas estructuras metamateriales [46] ) se denominan bianisotrópicos. [47] [48]

Cuatro parámetros materiales son intrínsecos al acoplamiento magnetoeléctrico de medios biisotrópicos. Son las intensidades de los campos eléctrico ( E ) y magnético ( H ) , y las densidades de flujo eléctrico ( D ) y magnético ( B ) . Estos parámetros son ε, µ, κ y χ o permitividad, permeabilidad, fuerza de quiralidad y el parámetro Tellegen, respectivamente. En este tipo de medios, los parámetros del material no varían con los cambios a lo largo de un sistema de medidas de coordenadas rotadas . En este sentido son invariantes o escalares . [4]

Los parámetros magnetoeléctricos intrínsecos, κ y χ , afectan la fase de la onda. El efecto del parámetro de quiralidad es dividir el índice de refracción. En medios isotrópicos esto da como resultado la propagación de ondas sólo si ε y µ tienen el mismo signo. En medios biisotrópicos en los que se supone que χ es cero y κ es un valor distinto de cero, aparecen resultados diferentes. Puede ocurrir una onda hacia atrás o hacia adelante. Alternativamente, pueden ocurrir dos ondas hacia adelante o dos ondas hacia atrás, dependiendo de la fuerza del parámetro de quiralidad.

En el caso general, las relaciones constitutivas para materiales bianisotrópicos son donde y son los tensores de permitividad y permeabilidad, respectivamente, mientras que y son los dos tensores magnetoeléctricos. Si el medio es recíproco, la permitividad y la permeabilidad son tensores simétricos, y , donde está el tensor quiral que describe la respuesta electromagnética quiral y magnetoeléctrica recíproca. El tensor quiral se puede expresar como , donde es la traza de , I es la matriz identidad, N es un tensor simétrico sin traza y J es un tensor antisimétrico. Dicha descomposición nos permite clasificar la respuesta bianisotrópica recíproca y podemos identificar las siguientes tres clases principales: (i) medios quirales ( ), (ii) medios pseudoquirales ( ), (iii) medios omega ( ).

quiral

La lateralidad de los metamateriales es una fuente potencial de confusión, ya que la literatura sobre metamateriales incluye dos usos contradictorios de los términos zurdo y diestro . La primera se refiere a una de las dos ondas polarizadas circularmente que son los modos de propagación en medios quirales. El segundo se relaciona con el triplete de campo eléctrico, campo magnético y vector de Poynting que surgen en medios de índice de refracción negativo, que en la mayoría de los casos no son quirales.

Generalmente, una respuesta electromagnética quiral y/o bianisotrópica es una consecuencia de la quiralidad geométrica 3D: los metamateriales quirales 3D se componen incrustando estructuras quirales 3D en un medio huésped y muestran efectos de polarización relacionados con la quiralidad, como actividad óptica y dicroísmo circular . El concepto de quiralidad 2D también existe y se dice que un objeto plano es quiral si no puede superponerse a su imagen especular a menos que se levante del plano. Se ha observado que los metamateriales quirales 2D que son anisotrópicos y con pérdida exhiben una transmisión (reflexión, absorción) direccionalmente asimétrica de ondas polarizadas circularmente debido a la conversión circular de dicrosima. [49] [50] Por otro lado, la respuesta bianisotrópica puede surgir de estructuras geométricas aquirales que no poseen quiralidad intrínseca ni 2D ni 3D. Plum y sus colegas investigaron el acoplamiento magnetoeléctrico debido a la quiralidad extrínseca , donde la disposición de una estructura (aquiral) junto con el vector de onda de radiación es diferente de su imagen especular, y observaron una gran actividad óptica lineal sintonizable, [51] actividad óptica no lineal. , [52] actividad óptica especular [53] y dicroísmo de conversión circular. [54] Rizza et al. [55] sugirieron metamateriales quirales 1D donde el tensor quiral efectivo no desaparece si el sistema es geométricamente quiral unidimensional (la imagen especular de toda la estructura no se puede superponer sobre él mediante el uso de traslaciones sin rotaciones).

Los metamateriales quirales 3D se construyen a partir de materiales quirales o resonadores en los que el parámetro de quiralidad efectiva es distinto de cero. Las propiedades de propagación de ondas en tales metamateriales quirales demuestran que la refracción negativa se puede realizar en metamateriales con una fuerte quiralidad y positiva . [56] [57] Esto se debe a que el índice de refracción tiene valores distintos para ondas polarizadas circularmente izquierda y derecha, dado por

Se puede ver que se producirá un índice negativo para una polarización si > . En este caso, no es necesario que uno o ambos sean negativos para la propagación de la onda hacia atrás. [4] Plum et al. observaron por primera vez de forma simultánea e independiente un índice de refracción negativo debido a la quiralidad . [34] y Zhang et al. [35] en 2009.

basado en FSS

Los metamateriales de superficie selectivos en frecuencia bloquean las señales en una banda de ondas y las transmiten a otra banda de ondas. Se han convertido en una alternativa a los metamateriales de frecuencia fija. Permiten cambios opcionales de frecuencias en un solo medio, en lugar de las limitaciones restrictivas de una respuesta de frecuencia fija . [58]

Otros tipos

Elástico

Estos metamateriales utilizan diferentes parámetros para conseguir un índice de refracción negativo en materiales que no son electromagnéticos. Además, "un nuevo diseño de metamateriales elásticos que puedan comportarse como líquidos o sólidos en un rango de frecuencia limitado puede permitir nuevas aplicaciones basadas en el control de ondas acústicas, elásticas y sísmicas ". [59] También se les llama metamateriales mecánicos . [ cita necesaria ]

Acústico

Los metamateriales acústicos controlan, dirigen y manipulan el sonido en forma de ondas sónicas, infrasónicas o ultrasónicas en gases , líquidos y sólidos . Al igual que las ondas electromagnéticas, las ondas sónicas pueden presentar una refracción negativa. [dieciséis]

El control de las ondas sonoras se logra principalmente a través del módulo de masa β , la densidad de masa ρ y la quiralidad. El módulo de masa y la densidad son análogos de la permitividad y la permeabilidad en los metamateriales electromagnéticos. Relacionada con esto está la mecánica de la propagación de ondas sonoras en una estructura reticular . También los materiales tienen masa y grados intrínsecos de rigidez . Juntos forman un sistema resonante y la resonancia mecánica (sónica) puede excitarse mediante frecuencias sonoras apropiadas (por ejemplo, impulsos audibles ).

Estructural

Los metamateriales estructurales proporcionan propiedades como triturabilidad y peso ligero. Utilizando la microestereolitografía de proyección , se pueden crear microredes utilizando formas muy parecidas a cerchas y vigas . Se han creado materiales cuatro órdenes de magnitud más rígidos que el aerogel convencional, pero con la misma densidad. Dichos materiales pueden soportar una carga de al menos 160.000 veces su propio peso si los limitan excesivamente. [60] [61]

Un metamaterial cerámico de nanotruss se puede aplanar y volver a su estado original. [62]

Térmico

Normalmente, los materiales que se encuentran en la naturaleza, cuando son homogéneos, son térmicamente isotrópicos. Es decir, el calor pasa a través de ellos aproximadamente a la misma velocidad en todas direcciones. Sin embargo, los metamateriales térmicos suelen ser anisotrópicos debido a su estructura interna altamente organizada. Un ejemplo de ello son los materiales compuestos con partículas o estructuras internas muy alineadas, como las fibras, como por ejemplo los nanotubos de carbono (CNT).

No lineal

Se pueden fabricar metamateriales que incluyan algún tipo de medio no lineal , cuyas propiedades cambian con la potencia de la onda incidente. Los medios no lineales son esenciales para la óptica no lineal . La mayoría de los materiales ópticos tienen una respuesta relativamente débil, lo que significa que sus propiedades cambian sólo una pequeña cantidad ante grandes cambios en la intensidad del campo electromagnético . Los campos electromagnéticos locales de las inclusiones en metamateriales no lineales pueden ser mucho mayores que el valor medio del campo. Además, se han predicho y observado efectos no lineales notables si la permitividad dieléctrica efectiva del metamaterial es muy pequeña (medio épsilon cercano a cero). [63] [64] [65] Además, propiedades exóticas, como un índice de refracción negativo, crean oportunidades para adaptar las condiciones de coincidencia de fases que deben cumplirse en cualquier estructura óptica no lineal.

Metamateriales Hall

En 2009, Marc Briane y Graeme Milton [66] demostraron matemáticamente que, en principio, se puede invertir el signo de un compuesto basado en 3 materiales en 3D hecho únicamente de materiales con coeficiente de Hall de signo positivo o negativo. Posteriormente, en 2015, Muamer Kadic et al. [67] demostraron que una simple perforación de un material isotrópico puede provocar un cambio de signo en el coeficiente de Hall. Esta afirmación teórica fue finalmente demostrada experimentalmente por Christian Kern et al. [68]

En 2015, Christian Kern et al. también lo demostraron. que una perforación anisotrópica de un solo material puede provocar un efecto aún más inusual: el efecto Hall paralelo. [69] Esto significa que el campo eléctrico inducido dentro de un medio conductor ya no es ortogonal a la corriente y al campo magnético, sino que en realidad es paralelo a este último.

Bandas de frecuencia

Terahercios

Los metamateriales de terahercios interactúan a frecuencias de terahercios , generalmente definidas como de 0,1 a 10 THz . La radiación de terahercios se encuentra en el extremo más alejado de la banda infrarroja, justo después del final de la banda de microondas. Esto corresponde a longitudes de onda milimétricas y submilimétricas entre 3 mm ( banda EHF ) y 0,03 mm (borde de longitud de onda larga de la luz infrarroja lejana ).

Fotónico

El metamaterial fotónico interactúa con frecuencias ópticas ( infrarrojo medio ). El período por debajo de la longitud de onda los distingue de las estructuras de banda prohibida fotónica . [70] [71]

Ajustable

Los metamateriales sintonizables permiten ajustes arbitrarios a los cambios de frecuencia en el índice de refracción. Un metamaterial sintonizable se expande más allá de las limitaciones de ancho de banda en materiales zurdos mediante la construcción de varios tipos de metamateriales.

plasmónico

Los metamateriales plasmónicos explotan los plasmones de superficie , que se producen a partir de la interacción de la luz con dieléctricos metálicos . En condiciones específicas, la luz incidente se acopla con los plasmones de superficie para crear ondas electromagnéticas u ondas superficiales autosostenidas y propagadas [72] conocidas como polaritones de plasmón de superficie . Las oscilaciones del plasma volumétrico hacen posible el efecto de masa negativa (densidad). [73] [74]

Aplicaciones

Se están considerando metamateriales para muchas aplicaciones. [75] Las antenas de metamateriales están disponibles comercialmente.

En 2007, un investigador afirmó que para que se realicen aplicaciones de metamateriales, se debe reducir la pérdida de energía, los materiales deben extenderse a materiales isotrópicos tridimensionales y las técnicas de producción deben industrializarse. [76]

Antenas

Las antenas de metamateriales son una clase de antenas que utilizan metamateriales para mejorar el rendimiento. [13] [19] [77] [78] Las demostraciones demostraron que los metamateriales podrían mejorar la potencia radiada de una antena . [13] [79] Los materiales que pueden alcanzar permeabilidad negativa permiten propiedades tales como tamaño de antena pequeño, alta directividad y frecuencia sintonizable. [13] [19]

Amortiguador

Un absorbente de metamaterial manipula los componentes de pérdida de la permitividad y la permeabilidad magnética de los metamateriales para absorber grandes cantidades de radiación electromagnética . [80] Esta es una característica útil para la fotodetección [81] [82] y aplicaciones solares fotovoltaicas . [83] Los componentes de pérdida también son relevantes en aplicaciones de índice de refracción negativo (metamateriales fotónicos, sistemas de antenas) u óptica de transformación ( encubrimiento de metamateriales , mecánica celeste), pero a menudo no se utilizan en estas aplicaciones.

Superlente

Una superlente es un dispositivo bidimensional o tridimensional que utiliza metamateriales, generalmente con propiedades de refracción negativas, para lograr una resolución más allá del límite de difracción (idealmente, resolución infinita). Este comportamiento es posible gracias a la capacidad de los materiales doblemente negativos de producir una velocidad de fase negativa. El límite de difracción es inherente a los dispositivos o lentes ópticos convencionales. [84] [85]

Dispositivos de camuflaje

Los metamateriales son una base potencial para un dispositivo de camuflaje práctico . La prueba de principio se demostró el 19 de octubre de 2006. No se sabe públicamente que existen encubrimiento prácticos. [86] [87] [88] [89] [90] [91]

Metamateriales reductores de sección transversal de radar (RCS)

Convencionalmente, el RCS se ha reducido mediante material absorbente de radar (RAM) o dando forma específica a los objetivos de manera que la energía dispersada pueda redirigirse lejos de la fuente. Si bien las RAM tienen una funcionalidad de banda de frecuencia estrecha, la configuración del propósito limita el rendimiento aerodinámico del objetivo. Más recientemente, se sintetizan metamateriales o metasuperficies que pueden redirigir la energía dispersa lejos de la fuente utilizando la teoría de matrices [92] [93] [94] [95] o la ley generalizada de Snell. [96] [97] Esto ha llevado a formas aerodinámicamente favorables para los objetivos con el RCS reducido.

Protección sísmica

Los metamateriales sísmicos contrarrestan los efectos adversos de las ondas sísmicas en las estructuras artificiales. [10] [98] [99]

Filtrado de sonido

Los metamateriales texturizados con arrugas a nanoescala podrían controlar señales de luz o sonido, como cambiar el color de un material o mejorar la resolución del ultrasonido . Los usos incluyen pruebas de materiales no destructivos , diagnósticos médicos y supresión de sonido . Los materiales se pueden fabricar mediante un proceso de deposición multicapa de alta precisión. El espesor de cada capa se puede controlar dentro de una fracción de una longitud de onda. Luego, el material se comprime, creando arrugas precisas cuyo espaciado puede provocar la dispersión de frecuencias seleccionadas. [100] [101]

Manipulaciones en modo guiado

Los metamateriales se pueden integrar con guías de ondas ópticas para adaptar ondas electromagnéticas guiadas ( meta-guía de ondas ). [102] Las estructuras de sublongitud de onda como los metamateriales se pueden integrar, por ejemplo, con guías de ondas de silicio para desarrollar divisores de haz de polarización [103] y acopladores ópticos, [104] agregando nuevos grados de libertad para controlar la propagación de la luz a nanoescala para dispositivos fotónicos integrados. [105] Se pueden desarrollar otras aplicaciones, como convertidores de modo integrados, [106] (de)multiplexores de polarización, [107] generación de luz estructurada, [108] y biosensores en chip [109] . [102]

Modelos teóricos

Todos los materiales están formados por átomos , que son dipolos . Estos dipolos modifican la velocidad de la luz en un factor n (el índice de refracción). En un resonador de anillo dividido , las unidades de anillo y alambre actúan como dipolos atómicos: el alambre actúa como un átomo ferroeléctrico , mientras que el anillo actúa como un inductor L, mientras que la sección abierta actúa como un condensador C. El anillo en su conjunto actúa como un circuito LC . Cuando el campo electromagnético pasa a través del anillo, se crea una corriente inducida. El campo generado es perpendicular al campo magnético de la luz. La resonancia magnética da como resultado una permeabilidad negativa; el índice de refracción también es negativo. (La lente no es realmente plana, ya que la capacitancia de la estructura impone una pendiente para la inducción eléctrica).

Varios materiales (matemáticos) modelan la respuesta de frecuencia en DNG. Uno de ellos es el modelo de Lorentz , que describe el movimiento de los electrones en términos de un oscilador armónico amortiguado . El modelo de relajación de Debye se aplica cuando el componente de aceleración del modelo matemático de Lorentz es pequeño en comparación con los otros componentes de la ecuación. El modelo Drude se aplica cuando el componente de la fuerza restauradora es insignificante y el coeficiente de acoplamiento es generalmente la frecuencia del plasma . Otras distinciones de componentes requieren el uso de uno de estos modelos, dependiendo de su polaridad o propósito. [3]

Los compuestos tridimensionales de inclusiones metálicas/no metálicas incrustadas periódicamente/al azar en una matriz de baja permitividad generalmente se modelan mediante métodos analíticos, incluidas fórmulas de mezcla y métodos basados ​​en matrices de dispersión. La partícula se modela mediante un dipolo eléctrico paralelo al campo eléctrico o un par de dipolos eléctricos y magnéticos cruzados paralelos a los campos eléctrico y magnético, respectivamente, de la onda aplicada. Estos dipolos son los términos principales de la serie multipolar. Son los únicos existentes para una esfera homogénea, cuya polarizabilidad se puede obtener fácilmente a partir de los coeficientes de dispersión de Mie . En general, este procedimiento se conoce como "aproximación punto-dipolo", que es una buena aproximación para metamateriales que consisten en compuestos de esferas eléctricamente pequeñas. Las ventajas de estos métodos incluyen el bajo coste de cálculo y la simplicidad matemática. [110] [111]

Tres concepciones: medio de índice negativo, cristal no reflectante y superlente son los fundamentos de la teoría del metamaterial. Otras técnicas de primeros principios para analizar medios electromagnéticos de triple periodicidad se pueden encontrar en Computación de la estructura de bandas fotónicas.

Redes institucionales

MURI

La Iniciativa de Investigación Universitaria Multidisciplinaria (MURI) abarca docenas de universidades y algunas organizaciones gubernamentales. Las universidades participantes incluyen UC Berkeley, UC Los Ángeles, UC San Diego, el Instituto de Tecnología de Massachusetts y el Imperial College de Londres. Los patrocinadores son la Oficina de Investigación Naval y la Agencia de Proyectos de Investigación Avanzada de Defensa . [112]

MURI apoya la investigación que cruza más de una disciplina tradicional de ciencia e ingeniería para acelerar tanto la investigación como la traducción a aplicaciones. En 2009, se esperaba que 69 instituciones académicas participaran en 41 esfuerzos de investigación. [113]

Metamorfosearse

El Instituto Virtual de Materiales y Metamateriales Electromagnéticos Artificiales "Metamorphose VI AISBL" es una asociación internacional para promover materiales y metamateriales electromagnéticos artificiales. Organiza conferencias científicas, apoya revistas especializadas, crea y gestiona programas de investigación, ofrece programas de formación (incluidos programas de doctorado y de formación para socios industriales); y transferencia de tecnología a la industria europea. [114] [115]

Ver también

Referencias

  1. ^ Shelby, RA; Smith DR; Shultz S.; Nemat-Nasser SC (2001). "Transmisión por microondas a través de un metamaterial zurdo, isotrópico y bidimensional" (PDF) . Letras de Física Aplicada . 78 (4): 489. Código bibliográfico : 2001ApPhL..78..489S. doi : 10.1063/1.1343489. Archivado desde el original (PDF) el 18 de junio de 2010.
  2. ^ Smith, DR; Padilla, WJ; Vier, CC; Nemat-Nasser, SC; Schultz, S (2000). "Medio compuesto con permeabilidad y permitividad simultáneamente negativas". Cartas de revisión física . 84 (18): 4184–87. Código bibliográfico : 2000PhRvL..84.4184S. doi : 10.1103/PhysRevLett.84.4184 . PMID  10990641.
  3. ^ abcdefghijkl Engheta, Nader ; Richard W. Ziolkowski (junio de 2006). Metamateriales: exploraciones de física e ingeniería. Wiley e hijos . págs. xv, 3–30, 37, 143–50, 215–34, 240–56. ISBN 978-0-471-76102-0.
  4. ^ abcdefghij Zouhdi, Saïd; Ari Sihvola; Alexey P. Vinogradov (diciembre de 2008). Metamateriales y plasmónica: fundamentos, modelado, aplicaciones. Nueva York: Springer-Verlag. págs. 3–10, cap. 3, 106. ISBN 978-1-4020-9406-4.
  5. ^ ab Smith, David R. (10 de junio de 2006). "¿Qué son los metamateriales electromagnéticos?". Nuevos materiales electromagnéticos . El grupo de investigación del DR Smith. Archivado desde el original el 20 de julio de 2009 . Consultado el 19 de agosto de 2009 .
  6. ^ ab Shelby, RA; Smith, DR; Schultz, S. (2001). "Verificación experimental de un índice de refracción negativo". Ciencia . 292 (5514): 77–79. Código Bib : 2001 Ciencia... 292... 77S. CiteSeerX 10.1.1.119.1617 . doi : 10.1126/ciencia.1058847. PMID  11292865. S2CID  9321456. 
  7. ^ Pendry, John B. (2004). Refracción negativa (PDF) . vol. 45. Prensa de la Universidad de Princeton. págs. 191-202. Código Bib : 2004ConPh..45..191P. doi :10.1080/00107510410001667434. ISBN 978-0-691-12347-9. S2CID  218544892. Archivado desde el original (PDF) el 20 de octubre de 2016 . Consultado el 26 de agosto de 2009 . {{cite book}}: |journal=ignorado ( ayuda )
  8. ^ ab Veselago, VG (1968). "La electrodinámica de sustancias con valores simultáneamente negativos de ε y μ". Física-Uspekhi . 10 (4): 509–514. Código bibliográfico : 1968SvPhU..10..509V. doi :10.1070/PU1968v010n04ABEH003699.
  9. ^ Awad, Ehab (octubre de 2021). "Un novedoso nanoláser de guía de ondas de ganancia de metamaterial". Óptica y tecnología láser . 142 : 107202. Código Bib : 2021OptLT.14207202A. doi :10.1016/j.optlastec.2021.107202.
  10. ^ abc Brun, M.; S. Guenneau; y AB Movchan (9 de febrero de 2009). "Lograr el control de ondas elásticas en el plano". Aplica. Física. Letón. 94 (61903): 061903. arXiv : 0812.0912 . Código Bib : 2009ApPhL..94f1903B. doi : 10.1063/1.3068491. S2CID  17568906.
  11. ^ Rainsford, Tamath J.; D. Abbott ; Abbott, Derek (9 de marzo de 2005). Al-Sarawi, Said F (ed.). "Aplicaciones de detección de rayos T: revisión de los desarrollos globales". Proc. ESPÍA . Estructuras, dispositivos y sistemas inteligentes II. 5649 Estructuras, dispositivos y sistemas inteligentes II (sesión de carteles): 826–38. Código Bib : 2005SPIE.5649..826R. doi :10.1117/12.607746. S2CID  14374107.
  12. ^ Algodón, Micheal G. (diciembre de 2003). «Electromagnetismo Aplicado» (PDF) . Informe de Progreso Técnico 2003 (NITA – ITS) . Teoría de las telecomunicaciones (3): 4–5. Archivado desde el original (PDF) el 16 de septiembre de 2008 . Consultado el 14 de septiembre de 2009 .
  13. ^ abcde Alici, Kamil Boratay; Özbay, Ekmel (2007). "Propiedades de radiación de un resonador de anillo partido y un compuesto monopolo". Estado físico Solidi B. 244 (4): 1192–96. Código Bib : 2007PSSBR.244.1192A. doi :10.1002/pssb.200674505. hdl : 11693/49278 . S2CID  5348103.
  14. ^ ab Guerra, John M. (26 de junio de 1995). "Superresolución mediante iluminación mediante ondas evanescentes nacidas de difracción". Letras de Física Aplicada . 66 (26): 3555–3557. Código bibliográfico : 1995ApPhL..66.3555G. doi :10.1063/1.113814. ISSN  0003-6951.
  15. ^ Guerra, Juan; Vézenov, Dmitri; Sullivan, Pablo; Haimberger, Walter; Thulin, Lucas (30 de marzo de 2002). "Grabación óptica de campo cercano sin cabezales de vuelo bajo: medios ópticos de campo cercano (INFO) integrales". Revista Japonesa de Física Aplicada . 41 (Parte 1, núm. 3B): 1866–1875. Código Bib : 2002JaJAP..41.1866G. doi :10.1143/jjap.41.1866. ISSN  0021-4922. S2CID  119544019.
  16. ^ ab Guenneau, SB; Movchan, A.; Petursson, G.; Anantha Ramakrishna, S. (2007). "Metamateriales acústicos para el enfoque y confinamiento del sonido". Nueva Revista de Física . 9 (11): 399. Código bibliográfico : 2007NJPh....9..399G. doi : 10.1088/1367-2630/9/11/399 .
  17. ^ Zharov, Alejandro A.; Zharova, Nina A.; Noskov, Roman E.; Shadrivov, Ilya V.; Kivshar, Yuri S. (2005). "Metamateriales birrefringentes zurdos y lentes perfectas para campos vectoriales". Nueva Revista de Física . 7 (1): 220. arXiv : física/0412128 . Código Bib : 2005NJPh....7..220Z. doi : 10.1088/1367-2630/7/1/220 .
  18. ^ Bowers JA; Hyde RA y cols. "Lentes evanescentes de conversión de ondas electromagnéticas I, II, III" Oficina de Patentes y Marcas de EE. UU., concesión US-9081202-B2, 14 de julio de 2015, patente de EE. UU. 9.081.202
  19. ^ abcdefghij Slyusar, VI (6 al 9 de octubre de 2009). Metamateriales en soluciones de antenas (PDF) . VII Congreso Internacional sobre Teoría y Técnicas de Antenas ICATT'09. Lviv, Ucrania. págs. 19-24.
  20. ^ AIP News, Número 628 #1, 13 de marzo Physics Today, mayo de 2003, conferencia de prensa en la reunión de marzo de APS, Austin, Texas, 4 de marzo de 2003, New Scientist, vol 177, p. 24.
  21. ^ Parimi, PV; Lu, peso; Vodo, P; Sridhar, S (2003). "Cristales fotónicos: imágenes mediante lentes planas mediante refracción negativa". Naturaleza . 426 (6965): 404. Bibcode :2003Natur.426..404P. doi : 10.1038/426404a . PMID  14647372. S2CID  4411307.
  22. ^ Kock, NOSOTROS (1946). "Antenas de lentes metálicas". Procedimiento IRE . 34 (11): 828–36. doi :10.1109/JRPROC.1946.232264. S2CID  51658054.
  23. ^ Kock, NOSOTROS (1948). "Lentes de retardo metálico". Sistema de campana. Tecnología. J. _ 27 : 58–82. doi :10.1002/j.1538-7305.1948.tb01331.x.
  24. ^ Caloz, C.; Chang, C.-C.; Itoh, T. (2001). "Verificación de onda completa de las propiedades fundamentales de materiales zurdos en configuraciones de guías de onda" (PDF) . J. Aplica. Física . 90 (11): 11. Código bibliográfico : 2001JAP....90.5483C. doi :10.1063/1.1408261. Archivado desde el original (PDF) el 16 de septiembre de 2021 . Consultado el 17 de mayo de 2009 .
  25. ^ Eleftheriades, GV; Iyer AK y Kremer, PC (2002). "Medios de índice de refracción negativo plano que utilizan líneas de transmisión cargadas periódicamente con LC". Transacciones IEEE sobre teoría y técnicas de microondas . 50 (12): 2702–12. Código Bib : 2002ITMTT..50.2702E. doi :10.1109/TMTT.2002.805197.
  26. ^ Caloz, C.; Itoh, T. (2002). "Aplicación de la teoría de líneas de transmisión de materiales zurdos (LH) a la realización de una microcinta "línea LH"". Simposio internacional de la Sociedad de Propagación y Antenas IEEE (IEEE Cat. No.02CH37313) . Vol. 2. p. 412. doi :10.1109/APS.2002.1016111. ISBN 978-0-7803-7330-3. S2CID  108405740.
  27. ^ ab Yang, FB; Zhang, ZR; Xu, LJ; Liu, ZF; Jin, P.; Zhuang, PF; Lei, M.; Liu, JR; Jiang, J.-H.; Ouyang, XP; Marchesoni, F.; Huang, JP (2024). "Control de la difusión de masa y energía con metamateriales". Mod. Rev. Física . 96 (1): 015002. arXiv : 2309.04711 . doi : 10.1103/RevModPhys.96.015002.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. ^ Yang, Facebook; Huang, JP Diffusionics: proceso de difusión controlado por metamateriales de difusión (que se publicará en 2024). Singapur: Springer.{{cite book}}: CS1 maint: multiple names: authors list (link)
  29. ^ Rybin, MV; et al. (2015). "Diagrama de fases para la transición de cristales fotónicos a metamateriales dieléctricos". Comunicaciones de la naturaleza . 6 : 10102. arXiv : 1507.08901 . Código Bib : 2015NatCo...610102R. doi : 10.1038/ncomms10102. PMC 4686770 . PMID  26626302. 
  30. ^ Sievenpiper, Dan; et al. (noviembre de 1999). "Superficies electromagnéticas de alta impedancia con banda de frecuencia prohibida" (PDF) . Transacciones IEEE sobre teoría y técnicas de microondas . 47 (11): 2059–74. Código Bib : 1999ITMTT..47.2059S. doi : 10.1109/22.798001. Archivado desde el original (PDF) el 19 de julio de 2011 . Consultado el 11 de noviembre de 2009 .
  31. ^ Pendry, John B .; David R. Smith (junio de 2004). "Luz de marcha atrás: refracción negativa" (PDF) . Física hoy . 57 (37 de junio): 2 de 9 (originalmente página 38 de págs. 37–45). Código bibliográfico : 2004PhT....57f..37P. doi : 10.1063/1.1784272 . Consultado el 27 de septiembre de 2009 .
  32. ^ Depine, Ricardo A.; Lakhtakia, Akhlesh (2004). "Una nueva condición para identificar materiales dieléctricos-magnéticos isotrópicos que muestran una velocidad de fase negativa". Cartas de Tecnología Óptica y Microondas . 41 (4): 315–16. arXiv : física/0311029 . doi : 10.1002/mop.20127. S2CID  6072651.
  33. ^ Voznesenskaya, A. y Kabanova, D. (2012) "Análisis del trazado de rayos a través de sistemas ópticos con elementos metamateriales", Revista científica y técnica de tecnologías de la información, mecánica y óptica , volumen 5, número 12, p. 5.
  34. ^ ab Ciruela, E.; Zhou, J.; Dong, J.; Fedotov, VA; Koschny, T.; Soukoulis, CM; Zheludev, NI (2009). «Metamaterial con índice negativo por quiralidad» (PDF) . Revisión física B. 79 (3): 035407. Código bibliográfico : 2009PhRvB..79c5407P. doi : 10.1103/PhysRevB.79.035407. S2CID  119259753.
  35. ^ ab Zhang, S.; Park, Y.-S.; Li, J.; Lu, X.; Zhang, W.; Zhang, X. (2009). "Índice de refracción negativo en metamateriales quirales". Cartas de revisión física . 102 (2): 023901. Código bibliográfico : 2009PhRvL.102b3901Z. doi : 10.1103/PhysRevLett.102.023901. PMID  19257274.
  36. ^ abcde Eleftheriades, George V.; Keith G. Balmain (2005). Metamateriales de refracción negativa: principios fundamentales y aplicaciones. Wiley. pag. 340. Código Bib : 2005nmfp.book.......E. ISBN 978-0-471-60146-3.
  37. ^ Alù, Andrea y; Nader Engheta (enero de 2004). "Modos guiados en una guía de ondas llena con un par de capas simple negativa (SNG), doble negativa (DNG) y/o doble positiva (DPS)" (PDF) . Transacciones IEEE sobre teoría y técnicas de microondas . 52 (1): 199–210. Código Bib : 2004ITMTT..52..199A. doi :10.1109/TMTT.2003.821274. S2CID  234001 . Consultado el 3 de enero de 2010 .
  38. ^ Alto, A.; et al. (2015). "Metasuperficie hiperbólica de frecuencia visible". Naturaleza . 522 (7555): 192–196. Código Bib :2015Natur.522..192H. doi : 10.1038/naturaleza14477. PMID  26062510. S2CID  205243865.
  39. ^ Pianelli, A., Kowerdziej, R., Dudek, M., Sielezin, K., Olifierczuk, M. y Parka, J. (2020). Metamaterial hiperbólico basado en grafeno como modulador de reflexión conmutable. Óptica Express, 28(5), 6708–6718.https://doi.org/10.1364/OE.387065
  40. ^ Takayama, O.; Lavrinenko, AV (2019). «Óptica con materiales hiperbólicos» (PDF) . Revista de la Sociedad Óptica de América B. 36 (8): F38–F48. doi :10.1364/JOSAB.36.000F38. S2CID  149698994.
  41. ^ Engheta, Nader; Richard W. Ziolkowski (2006). Metamateriales: exploraciones de física e ingeniería (se agregó esta referencia el 14 de diciembre de 2009) . Wiley e hijos. págs. 211-21. ISBN 978-0-471-76102-0.
  42. ^ Valentín, J.; Zhang, S.; Zentgraf, T.; Ulín-Ávila, E.; Genov, DA; Bartal, G.; Zhang, X. (2008). "Metamaterial óptico tridimensional con índice de refracción negativo". Naturaleza . 455 (7211): 376–79. Código Bib :2008Natur.455..376V. doi : 10.1038/naturaleza07247. PMID  18690249. S2CID  4314138.
  43. ^ Pendry, JB (11 de abril de 2009). "Los metamateriales generan nuevas propiedades electromagnéticas". Seminario de Física Atómica de UC Berkeley 290F . Archivado desde el original (Seminario - serie de conferencias) el 27 de junio de 2010 . Consultado el 14 de diciembre de 2009 .
  44. ^ Chappell, William dirige el laboratorio IDEA en la Universidad Purdue (2005). "Metamateriales". investigación en diversas tecnologías . Consultado el 23 de noviembre de 2009 .
  45. ^ ab Soukoulis, CM, ed. (mayo de 2001). Cristales fotónicos y localización de la luz en el siglo XXI (Actas del Instituto de estudios avanzados de la OTAN sobre cristales fotónicos y localización de la luz, Creta, Grecia, 18 al 30 de junio de 2000, ed.). Londres: Springer London, Limited. págs.xi. ISBN 978-0-7923-6948-6.
  46. ^ Marqués, Ricardo; Medina, Francisco; Rafii-El-Idrissi, Rachid (4 de abril de 2002). "Papel de la bianisotropía en la permeabilidad negativa y los metamateriales zurdos" (PDF) . Revisión física B. 65 (14): 144440–41. Código Bib : 2002PhRvB..65n4440M. doi : 10.1103/PhysRevB.65.144440. hdl :11441/59428. Archivado desde el original (PDF) el 20 de julio de 2011.
  47. ^ Rill, MS; et al. (22 de diciembre de 2008). "Metamaterial fotónico bianisotrópico de índice negativo fabricado mediante escritura láser directa y evaporación de sombra plateada". Letras de Óptica . 34 (1): 19-21. arXiv : 0809.2207 . Código Bib : 2009OptL...34...19R. doi :10.1364/OL.34.000019. PMID  19109626. S2CID  18596552.
  48. ^ Kriegler, CE; et al. (2010). "Metamateriales fotónicos bianisotrópicos" (PDF) . Revista IEEE de temas seleccionados en electrónica cuántica . 999 (2): 1–15. Código Bib : 2010IJSTQ..16..367K. doi :10.1109/JSTQE.2009.2020809. S2CID  13854440.
  49. ^ Fedotov, VA; Mladionov, PL; Prosvirnin, SL; Rogacheva, AV; Chen, Y.; Zheludev, NI (2006). "Propagación asimétrica de ondas electromagnéticas a través de una estructura quiral plana". Cartas de revisión física . 97 (16): 167401. arXiv : física/0604234 . Código bibliográfico : 2006PhRvL..97p7401F. doi :10.1103/PhysRevLett.97.167401. PMID  17155432. S2CID  119436346.
  50. ^ Ciruela, E.; Fedotov, Virginia; Zheludev, NI (2009). "Metamaterial plano con transmisión y reflexión que dependen de la dirección de incidencia". Letras de Física Aplicada . 94 (13): 131901. arXiv : 0812.0696 . Código Bib : 2009ApPhL..94m1901P. doi : 10.1063/1.3109780. S2CID  118558819.
  51. ^ Ciruela, E.; Liu, X.-X.; Fedotov, Virginia; Chen, Y.; Tsai, DP; Zheludev, NI (2009). "Metamateriales: actividad óptica sin quiralidad" (PDF) . Física. Rev. Lett . 102 (11): 113902. Código bibliográfico : 2009PhRvL.102k3902P. doi : 10.1103/physrevlett.102.113902. PMID  19392202.
  52. ^ Ren, M.; Ciruela, E.; Xu, J.; Zheludev, NI (2012). "Actividad óptica no lineal gigante en un metamaterial plasmónico". Comunicaciones de la naturaleza . 3 : 833. Código Bib : 2012NatCo...3..833R. doi : 10.1038/ncomms1805 . PMID  22588295.
  53. ^ Ciruela, E.; Fedotov, VA; Zheludev, NI (2016). "Actividad óptica especular de metasuperficies aquirales" (PDF) . Letras de Física Aplicada . 108 (14): 141905. Código bibliográfico : 2016ApPhL.108n1905P. doi : 10.1063/1.4944775. hdl :10220/40854.
  54. ^ Ciruela, E.; Fedotov, Virginia; Zheludev, NI (2009). "Quiralidad electromagnética extrínseca en metamateriales". Revista de Óptica A: Óptica Pura y Aplicada . 11 (7): 074009. Código bibliográfico : 2009JOptA..11g4009P. doi :10.1088/1464-4258/11/7/074009.
  55. ^ C. Rizza; Andrea Di Falcó; Michael Scalora y Alessandro Ciattoni (2015). "Quiralidad unidimensional: fuerte actividad óptica en metamateriales Epsilon-Near-Zero". Física. Rev. Lett . 115 (5): 057401. arXiv : 1503.00490 . Código bibliográfico : 2015PhRvL.115e7401R. doi : 10.1103/PhysRevLett.115.057401. PMID  26274441. S2CID  11708854.
  56. ^ Wang, Bingnan; et al. (noviembre de 2009). "Metamateriales quirales: simulaciones y experimentos". J. Optar. Soc. Soy. A . 11 (11): 114003. Código Bib : 2009JOptA..11k4003W. doi :10.1088/1464-4258/11/11/114003.
  57. ^ Tretiakov, S.; Sihvola, A.; Jylhä, L. (2005). "Régimen de onda invertida y refracción negativa en compuestos quirales". Fotónica y Nanoestructuras: Fundamentos y Aplicaciones . 3 (2–3): 107–15. arXiv : cond-mat/0509287 . Código bibliográfico : 2005PhNan...3..107T. doi :10.1016/j.photonics.2005.09.008. S2CID  118914130.
  58. ^ Capolino, Filippo (2009). "Capítulo 32". Teoría y Fenómenos de los Metamateriales . Taylor y Francisco. ISBN 978-1-4200-5425-5.
  59. ^ Página, John (2011). "Metamateriales: Ni sólidos ni líquidos". Materiales de la naturaleza . 10 (8): 565–66. Código Bib : 2011NatMa..10..565P. doi :10.1038/nmat3084. PMID  21778996.
  60. ^ Szondy, David (22 de junio de 2014). "Se desarrollaron nuevos materiales que son tan ligeros como el aerogel, pero 10.000 veces más resistentes". Gizmag .
  61. ^ Colmillo, Nicolás. «Microestereolitografía de proyección» (PDF) . Departamento de Ingeniería y Ciencias Mecánicas, Universidad de Illinois.
  62. ^ Fesenmaier, Kimm (23 de mayo de 2014). "Trabajo de armadura en miniatura". Caltech .
  63. ^ Ciattoni, A.; Rizza, C.; Palange, E. (2010). "Electrodinámica no lineal extrema en metamateriales con permitividad dieléctrica lineal muy pequeña". Física. Rev. A. 81 (4): 043839. arXiv : 1002.3321 . Código bibliográfico : 2010PhRvA..81d3839C. doi : 10.1103/PhysRevA.81.043839. S2CID  119182809.
  64. ^ Vincenti, MA; De Ceglia, D.; Ciattoni, A.; Escalara, M. (2011). "Generación de segundo y tercer armónico impulsada por la singularidad en puntos de cruce épsilon cercanos a cero". Física. Rev. A. 84 (6): 063826. arXiv : 1107.2354 . Código bibliográfico : 2011PhRvA..84f3826V. doi : 10.1103/PhysRevA.84.063826. S2CID  55294978.
  65. ^ Capretti, Antonio; Wang, Yu; Engheta, Nader; Dal Negro, Luca (2015). "Generación mejorada de tercer armónico en nanocapas de óxido de indio y estaño épsilon casi cero compatibles con Si". Optar. Lett . 40 (7): 1500–3. Código Bib : 2015OptL...40.1500C. doi :10.1364/OL.40.001500. PMID  25831369.
  66. ^ Briane, Marc; Milton, Graeme W. (28 de noviembre de 2008). «Homogeneización del Efecto Hall Tridimensional y Cambio de Signo del Coeficiente Hall» (PDF) . Archivo de Análisis y Mecánica Racional . 193 (3): 715–736. doi :10.1007/s00205-008-0200-y. S2CID  9367952.
  67. ^ Kadic, Muamer; Schittny, Robert; Bückmann, Tiemo; Kern, cristiano; Wegener, Martín (22 de junio de 2015). "Inversión de signos de efecto Hall en un metamaterial 3D realizable". Revisión física X. 5 (2): 021030. arXiv : 1503.06118 . Código Bib : 2015PhRvX...5b1030K. doi : 10.1103/PhysRevX.5.021030. S2CID  55414502.
  68. ^ Kern, cristiano; Kadic, Muamer; Wegener, Martín (2017). "Evidencia experimental de la inversión de signos del coeficiente de Hall en metamateriales tridimensionales". Cartas de revisión física . 118 (1): 016601. Código bibliográfico : 2017PhRvL.118a6601K. doi : 10.1103/PhysRevLett.118.016601. PMID  28106428.
  69. ^ Kern, cristiano; Kadic, Muamer; Wegener, Martin (28 de septiembre de 2015). "Efecto Hall paralelo a partir de metamateriales tridimensionales de un solo componente". Letras de Física Aplicada . 107 (13): 132103. arXiv : 1507.04128 . Código Bib : 2015ApPhL.107m2103K. doi : 10.1063/1.4932046. S2CID  119261088.
  70. ^ Paschotta, Rüdiger (2008–18). "Metamateriales fotónicos". Enciclopedia de Física y Tecnología Láser . vol. I y II. Wiley-VCH Verlag. pag. 1 . Consultado el 1 de octubre de 2009 .
  71. ^ Capolino, Filippo (2009). Aplicaciones de los Metamateriales. Taylor & Francis, Inc. págs. 29–1, 25–14, 22–1. ISBN 978-1-4200-5423-1. Consultado el 1 de octubre de 2009 .
  72. ^ Takayama, O.; Bogdanov, AA, Lavrinenko, AV (2017). "Ondas superficiales fotónicas en interfaces metamateriales". Revista de Física: Materia Condensada . 29 (46): 463001. Código bibliográfico : 2017JPCM...29T3001T. doi :10.1088/1361-648X/aa8bdd. PMID  29053474. S2CID  1528860.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. ^ Bormashenko, Eduardo; Legchenkova, Irina (enero de 2020). "Masa efectiva negativa en sistemas plasmónicos". Materiales . 13 (8): 1890. Bibcode : 2020Mate...13.1890B. doi : 10.3390/ma13081890 . PMC 7215794 . PMID  32316640. 
  74. ^ Bormashenko, Eduardo; Legchenkova, Irina; Frenkel, Mark (enero de 2020). "Masa efectiva negativa en sistemas plasmónicos II: dilucidar las ramas ópticas y acústicas de las vibraciones y la posibilidad de propagación antirresonancia". Materiales . 13 (16): 3512. Bibcode : 2020Mate...13.3512B. doi : 10.3390/ma13163512 . PMC 7476018 . PMID  32784869. 
  75. ^ Oliveri, G.; Werner, DH; Massa, A. (2015). "Emagnetismo reconfigurable a través de metamateriales - Una revisión". Actas del IEEE . 103 (7): 1034–56. doi :10.1109/JPROC.2015.2394292. S2CID  25179597.
  76. ^ Costas Soukoulis (4 de enero de 2007). "Se descubrió que los metamateriales funcionan con luz visible". Laboratorio DOE/ Ames . Consultado el 7 de noviembre de 2009 .
  77. ^ Enoc, Stefan; Tayeb, Gerard; Sabouroux, Pierre; Guérin, Nicolas; Vicente, Patricio (2002). "Un metamaterial para emisión directiva". Cartas de revisión física . 89 (21): 213902. Código bibliográfico : 2002PhRvL..89u3902E. doi : 10.1103/PhysRevLett.89.213902. PMID  12443413. S2CID  37505778.
  78. ^ Siddiqui, DE; Mo Mojahedi; Eleftheriades, GV (2003). "Línea de transmisión cargada periódicamente con índice de refracción negativo efectivo y velocidad de grupo negativa". Transacciones IEEE sobre antenas y propagación . 51 (10): 2619–25. Código Bib : 2003ITAP...51.2619S. doi :10.1109/TAP.2003.817556.
  79. ^ Wu, B.-I.; W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk y JA Kong; Pacheco, José; Chen, Xudong; Grzegorczyk, Tomasz M.; Kong, Jin Au (2005). "Un estudio sobre el uso de metamateriales como sustrato de antena para mejorar la ganancia". Avances en la Investigación Electromagnética . 51 : 295–28. doi : 10.2528/PIER04070701 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  80. ^ de Oliveira Neto, AM; Beccaro, W.; de Oliveira, AM; Justo, JF (2023). "Exploración de los patrones internos en el diseño de absorbentes de microondas de banda ultraancha". Antenas IEEE y Cartas de Propagación Inalámbrica . 22 (9): 2290-2294. doi :10.1109/LAWP.2023.3284650.
  81. ^ Li, W.; Valentín, J. (2014). "Fotodetección de electrones calientes basada en absorbente perfecto de metamaterial". Nano Letras . 14 (6): 3510–14. Código Bib : 2014NanoL..14.3510L. doi :10.1021/nl501090w. PMID  24837991.
  82. ^ Yu, Peng; Wu, Jiang; Ashley, Eric; Govorov, Alejandro; Wang, Zhiming (2016). "Absorbedor de doble banda para fotodetección infrarroja multiespectral mejorada con plasmones" (PDF) . Revista de Física D: Física Aplicada . 49 (36): 365101. Código bibliográfico : 2016JPhD...49J5101Y. doi :10.1088/0022-3727/49/36/365101. ISSN  0022-3727. S2CID  123927835.
  83. ^ Yu, Peng; Besteiro, Lucas V.; Huang, Yongjun; Wu, Jiang; Fu, Lan; Bronceado, Hark H.; Jagadish, Chennupati; Wiederrecht, Gary P.; Govorov, Alexander O. (2018). "Absorbedores de metamateriales de banda ancha". Materiales ópticos avanzados . 7 (3): 1800995. doi : 10.1002/adom.201800995 . hdl : 1885/213159 . ISSN  2195-1071.
  84. ^ Pendry, JB (2000). "La refracción negativa crea una lente perfecta". Cartas de revisión física . 85 (18): 3966–69. Código bibliográfico : 2000PhRvL..85.3966P. doi : 10.1103/PhysRevLett.85.3966 . PMID  11041972. S2CID  25803316.
  85. ^ Colmillo, N.; Lee, H; Sol, C; Zhang, X (2005). "Imágenes ópticas con subdifracción limitada con una superlente plateada". Ciencia . 308 (5721): 534–37. Código Bib : 2005 Ciencia... 308.. 534F. doi : 10.1126/ciencia.1108759. PMID  15845849. S2CID  1085807.
  86. ^ "Primera demostración de una capa de invisibilidad funcional". Oficina de Noticias y Comunicaciones de la Universidad de Duke. Archivado desde el original el 19 de julio de 2009 . Consultado el 5 de mayo de 2009 .
  87. ^ Schurig, D.; et al. (2006). "Capa electromagnética metamaterial en frecuencias de microondas". Ciencia . 314 (5801): 977–80. Código Bib : 2006 Ciencia... 314..977S. doi : 10.1126/ciencia.1133628 . PMID  17053110. S2CID  8387554.
  88. ^ "Los expertos prueban la tecnología de encubrimiento". Noticias de la BBC . 2006-10-19 . Consultado el 5 de agosto de 2008 .
  89. ^ "Los ingenieros ven avances en la creación de una 'capa de invisibilidad'". purdue.edu .
  90. ^ Alù, Andrea; Engheta, Nader (2005). "Lograr transparencia con recubrimientos plasmónicos y metamateriales". Física. Rev. E. 72 (1): 016623. arXiv : cond-mat/0502336 . Código bibliográfico : 2005PhRvE..72a6623A. doi : 10.1103/PhysRevE.72.016623. PMID  16090123. S2CID  6004609.
  91. ^ Merritt, Richard (enero de 2009) "Se demuestra el dispositivo de ocultación de próxima generación: el metamaterial hace que el objeto sea 'invisible'" Archivado el 20 de febrero de 2009 en Wayback Machine.
  92. ^ Modi, AY; Alyahya, MA; Balanis, California; Birtcher, CR (2019). "Método basado en metasuperficie para la reducción RCS de banda ancha de reflectores de esquina diédricos con múltiples rebotes". Transacciones IEEE sobre antenas y propagación . 67 (3): 1. doi :10.1109/TAP.2019.2940494. S2CID  212649480.
  93. ^ Modi, AY; Balanis, California; Birtcher, CR; Chamán, H. (2019). "Nueva clase de metasuperficies de reducción RCS basada en la cancelación de dispersión utilizando la teoría de matrices". Transacciones IEEE sobre antenas y propagación . 67 (1): 298–308. Código Bib : 2019ITAP...67..298M. doi :10.1109/TAP.2018.2878641. S2CID  58670543.
  94. ^ Modi, Anuj Y.; Balanis, Constantino A.; Birtcher, Craig R.; Chamán, Hussein N. (2017). "Nuevo diseño de superficies de reducción de sección transversal de radar de banda ultraancha utilizando conductores magnéticos artificiales". Transacciones IEEE sobre antenas y propagación . 65 (10): 5406–5417. Código Bib : 2017ITAP...65.5406M. doi :10.1109/TAP.2017.2734069. S2CID  20724998.
  95. ^ María; de Cos, Elena; Álvarez López, Yuri; Las-Heras, Fernando (2010). "Un enfoque novedoso para la reducción de RCS utilizando una combinación de conductores magnéticos artificiales". Avances en la Investigación Electromagnética . 107 : 147-159. doi : 10.2528/PIER10060402 .
  96. ^ Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Xu, Zhuo; Zhang, Anxue (2014). "Reducción de la sección transversal del radar de banda ancha utilizando metasuperficies de gradiente de fase bidimensional". Letras de Física Aplicada . 104 (22): 221110. Código bibliográfico : 2014ApPhL.104v1110L. doi : 10.1063/1.4881935.
  97. ^ Yu, Nanfang; Genevet, Patrice; Kats, Mijaíl A.; Aieta, Francisco; Tétienne, Jean-Philippe; Capasso, Federico; Gaburro, Zenón (octubre de 2011). "Propagación de la luz con discontinuidades de fase: leyes generalizadas de reflexión y refracción". Ciencia . 334 (6054): 333–7. Código Bib : 2011 Ciencia... 334.. 333Y. doi : 10.1126/ciencia.1210713 . PMID  21885733. S2CID  10156200.
  98. ^ Johnson, R. Colin (23 de julio de 2009). "Una capa de metamaterial podría hacer que los edificios sean 'invisibles' a los terremotos". EETimes.com . Consultado el 9 de septiembre de 2009 .
  99. ^ Barras, Colin (26 de junio de 2009). "La capa de invisibilidad podría ocultar los edificios de los terremotos". Científico nuevo . pag. 1 . Consultado el 20 de octubre de 2009 .
  100. ^ "Metamateriales arrugados para controlar la propagación de la luz y el sonido". KurzweilAI. 2014-01-28 . Consultado el 15 de abril de 2014 .
  101. ^ Rudykh, S.; Boyce, MC (2014). "Transformación de la propagación de ondas en medios en capas mediante arrugas interfaciales inducidas por inestabilidad". Cartas de revisión física . 112 (3): 034301. Código bibliográfico : 2014PhRvL.112c4301R. doi : 10.1103/PhysRevLett.112.034301. hdl : 1721.1/85082 . PMID  24484141.
  102. ^ ab Meng, Yuan; Chen, Yizhen; Lu, Longhui; Ding, Yimin; Cusano, Andrea; Fanático, Jonathan A.; Hu, Qiaomu; Wang, Kaiyuan; Xie, Zhenwei; Liu, Zhoutian; Yang, Yuanmu (22 de noviembre de 2021). "Metaguías de ondas ópticas para fotónica integrada y más". Luz: ciencia y aplicaciones . 10 (1): 235. Código Bib : 2021LSA....10..235M. doi :10.1038/s41377-021-00655-x. ISSN  2047-7538. PMC 8608813 . PMID  34811345. 
  103. ^ Halir, Robert; Cheben, Pavel; Luque-González, José Manuel; Sarmiento-Merenguel, José Darío; Schmid, Jens H.; Wangüemert-Pérez, Gonzalo; Xu, Dan-Xia; Wang, Shurui; Ortega-Moñux, Alejandro; Molina-Fernández, Íñigo (noviembre 2016). "Divisor de haz nanofotónico de banda ultraancha utilizando un metamaterial anisotrópico de longitud de onda inferior". Reseñas de láser y fotónica . 10 (6): 1039–1046. arXiv : 1606.03750 . Código Bib : 2016LPRv...10.1039H. doi :10.1002/lpor.201600213. ISSN  1863-8880. S2CID  126025926.
  104. ^ Meng, Yuan; Hu, Futai; Liu, Zhoutian; Xie, Peng; Shen, Yijie; Xiao, Qirong; Fu, Xing; Bae, Sang-Hoon; Gong, Malí (10 de junio de 2019). "Metasuperficie integrada en chip para un control versátil y de múltiples longitudes de onda de acoplamientos de luz con fase independiente y polarización arbitraria". Óptica Express . 27 (12): 16425–16439. Código Bib : 2019OExpr..2716425M. doi : 10.1364/OE.27.016425 . ISSN  1094-4087. PMID  31252868. S2CID  189958968.
  105. ^ Cheben, Pavel; Halir, Robert; Schmid, Jens H.; Atwater, Harry A.; Smith, David R. (agosto de 2018). "Fotónica integrada de sublongitud de onda". Naturaleza . 560 (7720): 565–572. Código Bib :2018Natur.560..565C. doi :10.1038/s41586-018-0421-7. ISSN  1476-4687. PMID  30158604. S2CID  52117964.
  106. ^ Li, Zhaoyi; Kim, Myoung-Hwan; Wang, Cheng; Han, Zhaohong; Shrestha, Sajan; Overvig, Adam Christopher; Lu, Ming; Stein, Aarón; Agarwal, Anuradha Murthy ; Lončar, Marko; Yu, Nanfang (julio de 2017). "Control de la propagación y acoplamiento de modos de guía de ondas utilizando metasuperficies de gradiente de fase". Nanotecnología de la naturaleza . 12 (7): 675–683. Código Bib : 2017NatNa..12..675L. doi :10.1038/nnano.2017.50. ISSN  1748-3395. OSTI  1412777. PMID  28416817.
  107. ^ Guo, Rui; Decker, Manuel; Setzpfandt, Frank; Gai, Xin; Choi, Duk-Yong; Kiselev, romano; Chipouline, Arkadi; Staude, Isabelle; Pertsch, Thomas; Neshev, Dragomir N.; Kivshar, Yuri S. (7 de julio de 2017). "Enrutamiento de luz ultracompacto de alta velocidad de bits con nanoantenas en chip de modo selectivo". Avances científicos . 3 (7): e1700007. Código Bib : 2017SciA....3E0007G. doi :10.1126/sciadv.1700007. ISSN  2375-2548. PMC 5517110 . PMID  28776027. 
  108. ^ Él, Tiantian; Meng, Yuan; Liu, Zhoutian; Hu, Futai; Wang, Rui; Li, Dan; Yan, Ping; Liu, Qiang; Gongo, Malí; Xiao, Qirong (22 de noviembre de 2021). "Metaóptica en modo guiado: guías de ondas revestidas en metasuperficie para acopladores de modo arbitrario y emisores OAM en chip con una carga topológica configurable". Óptica Express . 29 (24): 39406–39418. Código Bib : 2021OExpr..2939406H. doi : 10.1364/OE.443186 . ISSN  1094-4087. PMID  34809306 . Consultado el 22 de febrero de 2023 .
  109. ^ Flueckiger, Jonas; Schmidt, Shon; Donzella, Valentina; Sherwali, Ahmed; Ratner, Daniel M.; Chrostowski, Lucas; Cheung, Karen C. (11 de julio de 2016). "Rejilla de sublongitud de onda para biosensor de resonador de anillo mejorado". Óptica Express . 24 (14): 15672–15686. Código Bib : 2016OExpr..2415672F. doi : 10.1364/OE.24.015672 . ISSN  1094-4087. PMID  27410840.
  110. ^ Orilla, RA; Yaghjian, AD (2007). "Ondas viajeras en conjuntos periódicos bidimensionales y tridimensionales de dispersores sin pérdidas". Radiociencia . 42 (6): RS6S21. Código Bib : 2007RaSc...42.6S21S. doi : 10.1029/2007RS003647 .
  111. ^ Li, Y.; Jugador de bolos, N. (2012). "Ondas viajeras en conjuntos periódicos tridimensionales de dos esferas magnetodieléctricas diferentes dispuestas arbitrariamente en una red tetragonal simple". Transacciones IEEE sobre antenas y propagación . 60 (6): 2727–39. Código Bib : 2012ITAP...60.2727L. doi :10.1109/tap.2012.2194637. S2CID  21023639.
  112. ^ Metamateriales MURI, UC Berkeley (2009). "Metamateriales y dispositivos electromagnéticos escalables y reconfigurables". Archivado desde el original el 3 de diciembre de 2009 . Consultado el 8 de diciembre de 2009 .
  113. ^ Departamento de Defensa de EE. UU., Oficina del Subsecretario de Defensa (Asuntos Públicos) (8 de mayo de 2009). "El Departamento de Defensa otorga 260 millones de dólares en financiación para investigación universitaria". Departamento de Defensa. Archivado desde el original el 2 de marzo de 2010 . Consultado el 8 de diciembre de 2009 .
  114. ^ Tretyakov, profesor Sergei; Presidente de la Asociación; el Dr. Vladimir Podlozny; Secretario General (2009-12-13). "Metamorphose" (Consulte la sección "Acerca de" de este sitio web para obtener información sobre esta organización) . Investigación y desarrollo de metamateriales . Metamorfosis VI . Consultado el 13 de diciembre de 2009 .{{cite web}}: CS1 maint: multiple names: authors list (link)
  115. ^ de Baas, AF; JL Vallés (11-02-2007). "Casos de éxito en el dominio de Materiales" (PDF) . Metamorfosis . Redes de excelencia clave para el futuro de la investigación en la UE: 19 . Consultado el 13 de diciembre de 2009 .

enlaces externos