stringtranslate.com

Estrella neutrón

Estrella de neutrones central en el corazón de la Nebulosa del Cangrejo
La radiación del púlsar PSR B1509-58, que gira rápidamente, hace que el gas cercano emita rayos X (oro) e ilumine el resto de la nebulosa , vista aquí en infrarrojos (azul y rojo).

Una estrella de neutrones es el núcleo colapsado de una estrella supergigante masiva , que tenía una masa total de entre 10 y 25 masas solares ( M ), posiblemente más si la estrella era especialmente rica en metales . [1] A excepción de los agujeros negros , las estrellas de neutrones son la clase de objetos estelares más pequeña y densa conocida. [2] Las estrellas de neutrones tienen un radio del orden de 10 kilómetros (6 millas) y una masa de aproximadamente 1,4  M . [3] Resultan de la explosión de supernova de una estrella masiva , combinada con el colapso gravitacional , que comprime el núcleo más allá de la densidad de una estrella enana blanca hasta alcanzar la de los núcleos atómicos .

Una vez formadas, las estrellas de neutrones ya no generan activamente calor ni se enfrían con el tiempo, pero aún pueden evolucionar aún más mediante colisiones o acreción . La mayoría de los modelos básicos para estos objetos implican que están compuestos casi en su totalidad por neutrones, ya que la presión extrema hace que los electrones y protones presentes en la materia normal se combinen produciendo neutrones. Estas estrellas están parcialmente protegidas contra un mayor colapso por la presión de degeneración de neutrones , del mismo modo que las enanas blancas están protegidas contra un colapso por la presión de degeneración de electrones . Sin embargo, esto no es suficiente por sí solo para sostener un objeto más allá de 0,7  M ☉ [4] [5] y las fuerzas nucleares repulsivas desempeñan un papel más importante en el soporte de estrellas de neutrones más masivas. [6] [7] Si la estrella remanente tiene una masa que excede el límite de Tolman-Oppenheimer-Volkoff , que oscila entre 2,2 y 2,9 M , la combinación de presión de degeneración y fuerzas nucleares es insuficiente para sostener la estrella de neutrones, lo que hace que se colapsar y formar un agujero negro . Se estima que la estrella de neutrones más masiva detectada hasta ahora, PSR J0952–0607 , es2,35 ± 0,17  M . [8]

Las estrellas de neutrones recién formadas pueden tener temperaturas superficiales de diez millones de K o más. Sin embargo, dado que las estrellas de neutrones no generan calor nuevo mediante la fusión, inexorablemente se enfrían después de su formación. En consecuencia, una determinada estrella de neutrones alcanza una temperatura superficial de un millón de grados K ​​cuando tiene entre mil y un millón de años. [9] Las estrellas de neutrones más antiguas e incluso más frías todavía son fáciles de descubrir. Por ejemplo, la estrella de neutrones RX J1856.5−3754 , bien estudiada , tiene una temperatura superficial promedio de aproximadamente 434.000 K. [10] A modo de comparación, el Sol tiene una temperatura superficial efectiva de 5.780 K. [11]

El material de las estrellas de neutrones es notablemente denso : una caja de cerillas de tamaño normal que contuviera material de estrellas de neutrones tendría un peso de aproximadamente 3.000 millones de toneladas, el mismo peso que un trozo de Tierra de 0,5 kilómetros cúbicos (un cubo con aristas de unos 800 metros). ) desde la superficie de la Tierra. [12] [13]

A medida que el núcleo de una estrella colapsa, su velocidad de rotación aumenta debido a la conservación del momento angular , y las estrellas de neutrones recién formadas giran hasta varios cientos de veces por segundo. Algunas estrellas de neutrones emiten haces de radiación electromagnética que las hacen detectables como púlsares, y el descubrimiento de los púlsares por Jocelyn Bell Burnell y Antony Hewish en 1967 fue la primera sugerencia observacional de que existen estrellas de neutrones. La estrella de neutrones que gira más rápido conocida es PSR J1748-2446ad , que gira a una velocidad de 716 veces por segundo [14] [15] o 43.000 revoluciones por minuto , lo que da una velocidad lineal (tangencial) en la superficie del orden de 0,24 c. (es decir, casi un cuarto de la velocidad de la luz ).

Se cree que hay alrededor de mil millones de estrellas de neutrones en la Vía Láctea , [16] y como mínimo varios cientos de millones, cifra que se obtiene estimando el número de estrellas que han sufrido explosiones de supernova. [17] Sin embargo, muchos de ellos han existido durante un largo período de tiempo y se han enfriado considerablemente. Estas estrellas irradian muy poca radiación electromagnética; la mayoría de las estrellas de neutrones que se han detectado ocurren sólo en ciertas situaciones en las que irradian, como si son un púlsar o parte de un sistema binario. Las estrellas de neutrones de rotación lenta y que no están en acreción son difíciles de detectar debido a la ausencia de radiación electromagnética; sin embargo, desde la detección de RX J1856.5-3754 por el Telescopio Espacial Hubble en la década de 1990, se han detectado algunas estrellas de neutrones cercanas que parecen emitir sólo radiación térmica.

Las estrellas de neutrones en sistemas binarios pueden sufrir acreción, en cuyo caso emiten grandes cantidades de rayos X. Durante este proceso, la materia se deposita en la superficie de las estrellas, formando "puntos calientes" que pueden identificarse esporádicamente como sistemas de púlsares de rayos X. Además, dichas acreciones son capaces de "reciclar" púlsares viejos, lo que hace que ganen masa y giren extremadamente rápido, formando púlsares de milisegundos . Además, los sistemas binarios como estos continúan evolucionando , y muchos compañeros eventualmente se convierten en objetos compactos como enanas blancas o estrellas de neutrones, aunque otras posibilidades incluyen una destrucción completa del compañero mediante ablación o colisión. La fusión de estrellas de neutrones binarias puede ser la fuente de estallidos de rayos gamma de corta duración y probablemente sean fuentes fuertes de ondas gravitacionales . En 2017, se observó una detección directa ( GW170817 ) de las ondas gravitacionales de tal evento, [18] junto con una observación indirecta de las ondas gravitacionales del púlsar Hulse-Taylor .

Formación

Representación simplificada de la formación de estrellas de neutrones.

Cualquier estrella de la secuencia principal con una masa inicial superior a 8  M ☉ (ocho veces la masa del Sol ) tiene potencial para convertirse en una estrella de neutrones. A medida que la estrella se aleja de la secuencia principal, la nucleosíntesis estelar produce un núcleo rico en hierro. Cuando se haya agotado todo el combustible nuclear del núcleo, el núcleo deberá mantenerse únicamente mediante la presión de degeneración. Otros depósitos de masa procedentes de la quema de proyectiles hacen que el núcleo supere el límite de Chandrasekhar . Se supera la presión de degeneración electrónica y el núcleo colapsa aún más, lo que hace que las temperaturas aumenten a más de5 × 10 9  K (5 mil millones de K). A estas temperaturas se produce la fotodesintegración (la descomposición de los núcleos de hierro en partículas alfa debido a los rayos gamma de alta energía). A medida que la temperatura del núcleo continúa aumentando, los electrones y protones se combinan para formar neutrones mediante la captura de electrones , liberando una avalancha de neutrinos . Cuando las densidades alcanzan una densidad nuclear de4 × 10 17  kg/m 3 , una combinación de fuerte fuerza de repulsión y presión de degeneración de neutrones detiene la contracción. [19] La contracción de la envoltura exterior de la estrella se detiene y rápidamente es lanzada hacia afuera por un flujo de neutrinos producido en la creación de los neutrones, lo que da como resultado una supernova y deja atrás una estrella de neutrones. Sin embargo, si el remanente tiene una masa mayor que aproximadamente 3  M , se convierte en un agujero negro. [20]

A medida que el núcleo de una estrella masiva se comprime durante una supernova de Tipo II o una supernova de Tipo Ib o Tipo Ic , y colapsa en una estrella de neutrones, conserva la mayor parte de su momento angular . Debido a que sólo tiene una pequeña fracción del radio de su madre (lo que reduce drásticamente su momento de inercia ), una estrella de neutrones se forma con una velocidad de rotación muy alta y luego, durante un período muy largo, se desacelera. Se conocen estrellas de neutrones que tienen períodos de rotación de aproximadamente 1,4 ms a 30 s. La densidad de la estrella de neutrones también le confiere una gravedad superficial muy alta , con valores típicos que oscilan entre10 12 a10 13  m/s 2 (más de10 11 veces la de la Tierra ). [21] Una medida de una gravedad tan inmensa es el hecho de que las estrellas de neutrones tienen una velocidad de escape de más de la mitad de la velocidad de la luz . [22] La gravedad de la estrella de neutrones acelera la materia que cae a una velocidad tremenda, y las fuerzas de marea cerca de la superficie pueden causar espaguetificación . [22]

Propiedades

Masa y temperatura

Una estrella de neutrones tiene una masa de al menos 1,1  masas solares ( M ). [23] El límite superior de masa de una estrella de neutrones se llama límite de Tolman-Oppenheimer-Volkoff y generalmente se considera alrededor de 2,1  M , [24] [25] pero una estimación reciente sitúa el límite superior en 2,16  M . [26] La masa máxima observada de estrellas de neutrones es de aproximadamente 2,14  M para PSR J0740+6620 descubierta en septiembre de 2019. [27] Las estrellas compactas por debajo del límite de Chandrasekhar de 1,39  M son generalmente enanas blancas , mientras que las estrellas compactas con una masa entre Se espera que 1,4  M y 2,16  M sean estrellas de neutrones, pero hay un intervalo de unas pocas décimas de masa solar donde las masas de las estrellas de neutrones de baja masa y las enanas blancas de gran masa pueden superponerse. Se cree que más allá de 2,16  M el remanente estelar superará la fuerte fuerza de repulsión y la presión de degeneración de neutrones, de modo que se producirá un colapso gravitacional para producir un agujero negro, pero la masa más pequeña observada de un agujero negro estelar es de aproximadamente 5  M . [a] Entre 2,16  M y 5  M , se han propuesto estrellas hipotéticas de masa intermedia, como las estrellas de quarks y las estrellas electrodébiles , pero no se ha demostrado que exista ninguna. [a]

La temperatura dentro de una estrella de neutrones recién formada es de aproximadamente10 11 a10 12  kelvin . [29] Sin embargo, la enorme cantidad de neutrinos que emite transporta tanta energía que la temperatura de una estrella de neutrones aislada desciende en unos pocos años a aproximadamente10 6  grados Kelvin . [29] A esta temperatura más baja, la mayor parte de la luz generada por una estrella de neutrones está en rayos X.

Algunos investigadores han propuesto un sistema de clasificación de estrellas de neutrones utilizando números romanos (que no deben confundirse con las clases de luminosidad de Yerkes para estrellas no degeneradas) para clasificar las estrellas de neutrones por su masa y velocidades de enfriamiento: tipo I para estrellas de neutrones con masa y velocidades de enfriamiento bajas. , tipo II para estrellas de neutrones con mayor masa y velocidades de enfriamiento, y un tipo III propuesto para estrellas de neutrones con masa aún mayor, acercándose a 2  M , y con velocidades de enfriamiento más altas y posiblemente candidatas a estrellas exóticas . [30]

Densidad y presión

Las estrellas de neutrones tienen densidades generales de3,7 × 10 17 a5,9 × 10 17  kg/m 3 (2,6 × 10 14 a4,1 × 10 14 veces la densidad del Sol), [b] que es comparable a la densidad aproximada de un núcleo atómico de3 × 10 17  kg/m 3 . [31] La densidad de la estrella de neutrones varía de aproximadamente1 × 10 9  kg/m 3 en la corteza (aumentando con la profundidad) hasta aproximadamente6 × 10 17 o8 × 10 17  kg/m 3 (más denso que un núcleo atómico) más profundo en su interior. [29] Una estrella de neutrones es tan densa que una cucharadita (5 mililitros ) de su material tendría una masa de más de5,5 × 10 12  kg , unas 900 veces la masa de la Gran Pirámide de Giza . [c] Toda la masa de la Tierra con densidad de estrella de neutrones cabría en una esfera de 305 m de diámetro (el tamaño del Telescopio de Arecibo ). La presión aumenta de3,2 × 10 31 a1,6 × 10 34  Pa desde la corteza interna hasta el centro. [32]

La ecuación de estado de la materia a densidades tan altas no se conoce con precisión debido a las dificultades teóricas asociadas con la extrapolación del comportamiento probable de la cromodinámica cuántica , la superconductividad y la superfluidez de la materia en tales estados. El problema se ve exacerbado por las dificultades empíricas de observar las características de cualquier objeto que se encuentre a cientos de pársecs de distancia o más. [33] Se cree que las estrellas de neutrones tienen una alta rigidez en la corteza y, por lo tanto, un número de Love bajo . [34] [35]

Una estrella de neutrones tiene algunas de las propiedades de un núcleo atómico , incluida la densidad (dentro de un orden de magnitud) y estar compuesta por nucleones . Por lo tanto, en los escritos científicos populares, las estrellas de neutrones a veces se describen como "núcleos gigantes". Sin embargo, en otros aspectos, las estrellas de neutrones y los núcleos atómicos son bastante diferentes. Un núcleo se mantiene unido gracias a la interacción fuerte , mientras que una estrella de neutrones se mantiene unida gracias a la gravedad . La densidad de un núcleo es uniforme, mientras que se predice que las estrellas de neutrones constan de múltiples capas con diferentes composiciones y densidades. [36]

Campo magnético

La intensidad del campo magnético en la superficie de las estrellas de neutrones oscila entre c.10 4 a10 11  teslas (T). [37] Se trata de órdenes de magnitud superiores a las de cualquier otro objeto: a modo de comparación, se ha conseguido en el laboratorio un campo continuo de 16 T que, gracias a la levitación diamagnética , es suficiente para hacer levitar una rana viva . Las variaciones en la intensidad del campo magnético son probablemente el factor principal que permite distinguir los diferentes tipos de estrellas de neutrones por sus espectros y explica la periodicidad de los púlsares. [37]

Las estrellas de neutrones conocidas como magnetares tienen los campos magnéticos más fuertes, en el rango de10 8 a10 11  T , [38] y se han convertido en la hipótesis ampliamente aceptada para los tipos de estrellas de neutrones, repetidores gamma blandos (SGR) [39] y púlsares anómalos de rayos X (AXP). [40] La densidad de energía magnética de un10 8  T es extremo y excede con creces la densidad de masa-energía de la materia ordinaria. [d] Los campos de esta intensidad son capaces de polarizar el vacío hasta el punto de que el vacío se vuelve birrefringente . Los fotones pueden fusionarse o dividirse en dos y se producen pares virtuales partícula-antipartícula. El campo cambia los niveles de energía de los electrones y los átomos se ven obligados a formar cilindros delgados. A diferencia de un púlsar ordinario, la reducción del giro del magnetar puede ser impulsada directamente por su campo magnético, y el campo magnético es lo suficientemente fuerte como para estresar la corteza hasta el punto de fracturarse. Las fracturas de la corteza provocan terremotos estelares , que se observan como estallidos extremadamente luminosos de rayos gamma de milisegundos de duración. La bola de fuego queda atrapada por el campo magnético y aparece y desaparece de la vista cuando la estrella gira, lo que se observa como una emisión periódica de repetidor gamma suave (SGR) con un período de 5 a 8 segundos y que dura unos minutos. [42]

Los orígenes del fuerte campo magnético aún no están claros. [37] Una hipótesis es la de la "congelación del flujo", o conservación del flujo magnético original durante la formación de la estrella de neutrones. [37] Si un objeto tiene un cierto flujo magnético sobre su superficie, y esa área se reduce a un área más pequeña, pero el flujo magnético se conserva, entonces el campo magnético aumentaría correspondientemente. Del mismo modo, una estrella que colapsa comienza con una superficie mucho mayor que la estrella de neutrones resultante, y la conservación del flujo magnético daría como resultado un campo magnético mucho más fuerte. Sin embargo, esta simple explicación no explica completamente la intensidad del campo magnético de las estrellas de neutrones. [37]

Gravedad y ecuación de estado.

Deflexión de la luz gravitacional en una estrella de neutrones. Debido a la desviación relativista de la luz, más de la mitad de la superficie es visible (cada parche de cuadrícula representa 30 por 30 grados). [43] En unidades naturales , la masa de esta estrella es 1 y su radio es 4, o el doble de su radio de Schwarzschild . [43]

El campo gravitacional en la superficie de una estrella de neutrones es aproximadamente2 × 10 11 veces más fuerte que en la Tierra , aproximadamente2,0 × 10 12  m/s 2 . [44] Un campo gravitacional tan fuerte actúa como una lente gravitacional y desvía la radiación emitida por la estrella de neutrones de modo que partes de la superficie trasera normalmente invisible se vuelven visibles. [43] Si el radio de la estrella de neutrones es 3 GM / c 2 o menos, entonces los fotones pueden quedar atrapados en una órbita , haciendo así visible toda la superficie de esa estrella de neutrones desde un único punto de vista , junto con órbitas de fotones desestabilizadoras. en o por debajo de la distancia de 1 radio de la estrella.

Una fracción de la masa de una estrella que colapsa para formar una estrella de neutrones se libera en la explosión de supernova a partir de la cual se forma (según la ley de equivalencia masa-energía, E = mc 2 ). La energía proviene de la energía de enlace gravitacional de una estrella de neutrones.

Por tanto, la fuerza gravitacional de una estrella de neutrones típica es enorme. Si un objeto cayera desde una altura de un metro sobre una estrella de neutrones de 12 kilómetros de radio, alcanzaría el suelo a unos 1.400 kilómetros por segundo. [45] Sin embargo, incluso antes del impacto, la fuerza de la marea causaría espaguetificación , rompiendo cualquier tipo de objeto ordinario en una corriente de material.

Debido a la enorme gravedad, la dilatación del tiempo entre una estrella de neutrones y la Tierra es significativa. Por ejemplo, podrían pasar ocho años en la superficie de una estrella de neutrones, pero habrían pasado diez años en la Tierra, sin incluir el efecto de dilatación del tiempo debido a la rotación muy rápida de la estrella. [46]

Las ecuaciones de estado relativistas de las estrellas de neutrones describen la relación entre radio y masa para varios modelos. [47] Los radios más probables para una determinada masa de estrella de neutrones están agrupados por los modelos AP4 (radio más pequeño) y MS2 (radio más grande). E B es la relación entre la masa de energía de enlace gravitacional equivalente a la masa gravitacional observada de la estrella de neutrones de M kilogramos con radio R metros, [48]

y masas estelares "M" comúnmente reportadas como múltiplos de una masa solar,

Una estrella de neutrones de 2  M no sería más compacta que un radio de 10.970 metros (modelo AP4). Su energía de enlace gravitacional de fracción de masa sería entonces 0,187, −18,7% (exotérmica). Esto no está cerca de 0,6/2 = 0,3, −30%.

Aún no se conoce la ecuación de estado de una estrella de neutrones. Se supone que difiere significativamente de la de una enana blanca, cuya ecuación de estado es la de un gas degenerado que puede describirse en estrecha concordancia con la relatividad especial . Sin embargo, con una estrella de neutrones ya no se pueden ignorar los efectos intensificados de la relatividad general. Se han propuesto varias ecuaciones de estado (FPS, UU, APR, L, SLy y otras) y la investigación actual todavía intenta limitar las teorías para hacer predicciones de la materia de las estrellas de neutrones. [21] [50] Esto significa que la relación entre densidad y masa no se conoce completamente, y esto causa incertidumbres en las estimaciones del radio. Por ejemplo, una estrella de neutrones de 1,5  M podría tener un radio de 10,7, 11,1, 12,1 o 15,1 kilómetros (para EOS FPS, UU, APR o L respectivamente). [50]

Estructura

Sección transversal de una estrella de neutrones. Las densidades están en términos de ρ 0, la densidad de materia nuclear de saturación , donde los nucleones comienzan a tocarse.

La comprensión actual de la estructura de las estrellas de neutrones está definida por los modelos matemáticos existentes, pero podría ser posible inferir algunos detalles a través de estudios de las oscilaciones de las estrellas de neutrones . La astrosismología , un estudio aplicado a las estrellas ordinarias, puede revelar la estructura interna de las estrellas de neutrones analizando los espectros observados de las oscilaciones estelares. [21]

Los modelos actuales indican que la materia en la superficie de una estrella de neutrones está compuesta de núcleos atómicos ordinarios triturados en una red sólida con un mar de electrones que fluye a través de los espacios entre ellos. Es posible que los núcleos de la superficie sean de hierro , debido a la alta energía de unión del hierro por nucleón. [51] También es posible que elementos pesados, como el hierro, simplemente se hundan debajo de la superficie, dejando solo núcleos ligeros como el helio y el hidrógeno . [51] Si la temperatura de la superficie excede10 6  kelvin (como en el caso de un púlsar joven), la superficie debería ser fluida en lugar de la fase sólida que podría existir en las estrellas de neutrones más frías (temperatura <10 6  kelvin ). [51]

Se supone que la "atmósfera" de una estrella de neutrones tiene como máximo varios micrómetros de espesor, y su dinámica está totalmente controlada por el campo magnético de la estrella de neutrones. Debajo de la atmósfera se encuentra una "corteza" sólida. Esta corteza es extremadamente dura y muy lisa (con máximas irregularidades superficiales del orden de milímetros o menos), debido al campo gravitacional extremo. [52] [53]

Si avanzamos hacia el interior, encontramos núcleos con un número cada vez mayor de neutrones; tales núcleos se desintegrarían rápidamente en la Tierra, pero se mantienen estables gracias a presiones tremendas. A medida que este proceso continúa a profundidades cada vez mayores, el goteo de neutrones se vuelve abrumador y la concentración de neutrones libres aumenta rápidamente. En esa región hay núcleos, electrones libres y neutrones libres. Los núcleos se vuelven cada vez más pequeños (la gravedad y la presión superan a la fuerza fuerte ) hasta que se alcanza el núcleo, por definición el punto donde existen principalmente neutrones. La jerarquía esperada de fases de la materia nuclear en la corteza interna se ha caracterizado como " pasta nuclear ", con menos huecos y estructuras más grandes hacia presiones más altas. [54] La composición de la materia superdensa en el núcleo sigue siendo incierta. Un modelo describe el núcleo como materia superfluida degenerada por neutrones (principalmente neutrones, con algunos protones y electrones). Son posibles formas más exóticas de materia, incluida la materia extraña degenerada (que contiene quarks extraños además de los quarks arriba y abajo ), la materia que contiene piones y kaones de alta energía además de neutrones, [21] o la materia degenerada de quarks ultradensa .

Radiación

Animación de un púlsar en rotación. La esfera del centro representa la estrella de neutrones, las curvas indican las líneas del campo magnético y los conos que sobresalen representan las zonas de emisión.

Púlsares

Las estrellas de neutrones se detectan a partir de su radiación electromagnética . Por lo general, se observa que las estrellas de neutrones pulsan ondas de radio y otras radiaciones electromagnéticas, y las estrellas de neutrones que se observan con pulsos se denominan púlsares.

Se cree que la radiación de los púlsares es causada por la aceleración de partículas cerca de sus polos magnéticos , que no necesitan estar alineados con el eje de rotación de la estrella de neutrones. Se cree que se forma un gran campo electrostático cerca de los polos magnéticos, lo que provoca la emisión de electrones . [55] Estos electrones son acelerados magnéticamente a lo largo de las líneas de campo, lo que genera radiación de curvatura , estando la radiación fuertemente polarizada hacia el plano de curvatura. [55] Además, los fotones de alta energía pueden interactuar con fotones de menor energía y el campo magnético para la producción de pares electrón-positrón , lo que a través de la aniquilación electrón-positrón conduce a más fotones de alta energía. [55]

La radiación que emana de los polos magnéticos de las estrellas de neutrones puede describirse como radiación magnetosférica , en referencia a la magnetosfera de la estrella de neutrones. [56] No debe confundirse con la radiación dipolo magnética , que se emite porque el eje magnético no está alineado con el eje de rotación, con una frecuencia de radiación igual a la frecuencia de rotación de la estrella de neutrones. [55]

Si el eje de rotación de la estrella de neutrones es diferente del eje magnético, los espectadores externos sólo verán estos haces de radiación siempre que el eje magnético apunte hacia ellos durante la rotación de la estrella de neutrones. Por tanto, se observan pulsos periódicos , al mismo ritmo que la rotación de la estrella de neutrones.

En mayo de 2022, los astrónomos informaron de una estrella de neutrones emisora ​​de radio de período ultralargo PSR J0901-4046 , con propiedades de giro distintas de las estrellas de neutrones conocidas. [57] No está claro cómo se genera su emisión de radio y desafía la comprensión actual de cómo evolucionan los púlsares. [58]

Estrellas de neutrones no pulsantes

Además de los púlsares, también se han identificado estrellas de neutrones no pulsantes, aunque pueden tener variaciones periódicas menores en su luminosidad. [59] [60] Esto parece ser una característica de las fuentes de rayos X conocidas como Objetos Compactos Centrales en remanentes de supernovas (CCO en SNR), que se cree que son estrellas de neutrones aisladas, jóvenes y radio silenciosas. [59]

Espectros

Además de las emisiones de radio , también se han identificado estrellas de neutrones en otras partes del espectro electromagnético . Esto incluye la luz visible , el infrarrojo cercano , el ultravioleta , los rayos X y los rayos gamma . [56] Los púlsares observados en rayos X se conocen como púlsares de rayos X si están impulsados ​​por acreción , mientras que los identificados en luz visible se conocen como púlsares ópticos . La mayoría de las estrellas de neutrones detectadas, incluidas las identificadas en rayos ópticos, rayos X y gamma, también emiten ondas de radio; [61] el Crab Pulsar produce emisiones electromagnéticas en todo el espectro. [61] Sin embargo, existen estrellas de neutrones llamadas estrellas de neutrones radio silenciosas , sin que se detecten emisiones de radio. [62]

Rotación

Las estrellas de neutrones giran extremadamente rápido después de su formación debido a la conservación del momento angular; En analogía con los patinadores sobre hielo que giran y tiran de sus brazos, la lenta rotación del núcleo de la estrella original se acelera a medida que se encoge. Una estrella de neutrones recién nacida puede girar muchas veces por segundo.

Centrifugar

P - Diagrama de puntos P para púlsares conocidos impulsados ​​por rotación (rojo), púlsares anómalos de rayos X (verde), púlsares de emisión de alta energía (azul) y púlsares binarios (rosa)

Con el tiempo, las estrellas de neutrones se ralentizan, ya que sus campos magnéticos giratorios irradian energía asociada con la rotación; Las estrellas de neutrones más antiguas pueden tardar varios segundos en cada revolución. Esto se llama giro hacia abajo . La velocidad a la que una estrella de neutrones frena su rotación suele ser constante y muy pequeña.

El tiempo periódico ( P ) es el período de rotación , el tiempo que tarda una rotación de una estrella de neutrones. La tasa de desaceleración de la rotación recibe entonces el símbolo ( P -punto), la derivada de P con respecto al tiempo. Se define como incremento periódico del tiempo por unidad de tiempo; es una cantidad adimensional , pero se le pueden dar las unidades de s⋅s −1 (segundos por segundo). [55]

La velocidad de rotación ( P -punto) de las estrellas de neutrones generalmente cae dentro del rango de10 −22 a10 −9  s⋅s −1 , y las estrellas de neutrones observables de período más corto (o de rotación más rápida) suelen tener un punto P más pequeño . A medida que una estrella de neutrones envejece, su rotación se ralentiza (a medida que P aumenta); eventualmente, la velocidad de rotación será demasiado lenta para alimentar el mecanismo de emisión de radio y la estrella de neutrones ya no podrá ser detectada. [55]

P y P -punto permiten estimar los campos magnéticos mínimos de las estrellas de neutrones. [55] P y P -punto también se pueden utilizar para calcular la edad característica de un púlsar, pero da una estimación que es algo mayor que la edad real cuando se aplica a púlsares jóvenes. [55]

P y P -punto también se pueden combinar con el momento de inercia de la estrella de neutrones para estimar una cantidad llamada luminosidad de rotación , a la que se le asigna el símbolo ( E -punto). No es la luminosidad medida, sino la tasa de pérdida calculada de energía rotacional la que se manifestaría como radiación. Para las estrellas de neutrones donde la luminosidad de rotación es comparable a la luminosidad real , se dice que las estrellas de neutrones están " impulsadas por rotación ". [55] [56] La luminosidad observada del Pulsar del Cangrejo es comparable a la luminosidad del giro hacia abajo, lo que respalda el modelo de que la energía cinética rotacional impulsa la radiación del mismo. [55] Con estrellas de neutrones como los magnetares, donde la luminosidad real excede la luminosidad de rotación en aproximadamente un factor de cien, se supone que la luminosidad es impulsada por la disipación magnética, en lugar de ser impulsada por la rotación. [63]

P y P -punto también se pueden trazar para estrellas de neutrones para crear un diagrama PP -punto. Codifica una enorme cantidad de información sobre la población de púlsares y sus propiedades, y se ha comparado con el diagrama de Hertzsprung-Russell por su importancia para las estrellas de neutrones. [55]

Girar

Una simulación por computadora que representa una estrella de neutrones con un disco de acreción que emite rayos X a través del eje magnético.

Las velocidades de rotación de las estrellas de neutrones pueden aumentar, un proceso conocido como giro. A veces, las estrellas de neutrones absorben materia en órbita de estrellas compañeras, lo que aumenta la velocidad de rotación y transforma la estrella de neutrones en un esferoide achatado . Esto provoca un aumento de la velocidad de rotación de la estrella de neutrones de más de cien veces por segundo en el caso de púlsares de milisegundos.

La estrella de neutrones que gira más rápidamente conocida actualmente, PSR J1748-2446ad , gira a 716 revoluciones por segundo. [64] Un artículo de 2007 informó sobre la detección de una oscilación de ráfaga de rayos X, que proporciona una medida indirecta del giro, de 1122  Hz de la estrella de neutrones XTE J1739-285 , [65] sugiriendo 1122 rotaciones por segundo. Sin embargo, en la actualidad, esta señal sólo se ha visto una vez y debe considerarse provisional hasta que se confirme en otra explosión de esa estrella.

Fallos y terremotos

La concepción artística de la NASA de un " starquake " o "terremoto estelar"

A veces, una estrella de neutrones sufre una falla , un pequeño aumento repentino de su velocidad de rotación o un giro. [66] Se cree que los fallos son el efecto de un terremoto estelar : a medida que la rotación de la estrella de neutrones se ralentiza, su forma se vuelve más esférica. Debido a la rigidez de la corteza de "neutrones", esto ocurre como eventos discretos cuando la corteza se rompe, creando un terremoto similar a los terremotos. Después del terremoto, la estrella tendrá un radio ecuatorial más pequeño y, debido a que se conserva el momento angular, su velocidad de rotación aumentará.

Los terremotos estelares que se producen en los magnetares , con el consiguiente fallo técnico, son la principal hipótesis sobre las fuentes de rayos gamma conocidas como repetidores gamma blandos. [39]

Sin embargo, trabajos recientes sugieren que un terremoto estelar no liberaría suficiente energía para provocar la falla de una estrella de neutrones; En cambio, se ha sugerido que las fallas pueden ser causadas por transiciones de vórtices en el núcleo superfluido teórico de la estrella de neutrones de un estado de energía metaestable a uno más bajo, liberando así energía que aparece como un aumento en la velocidad de rotación. [67] [66]

Anti-fallos

También se ha informado de un anti-glitch, una pequeña disminución repentina en la velocidad de rotación de una estrella de neutrones. [68] Ocurrió en el magnetar 1E 2259+586, que en un caso produjo un aumento de la luminosidad de los rayos X de un factor de 20 y un cambio significativo en la velocidad de rotación. Los modelos actuales de estrellas de neutrones no predicen este comportamiento. Si la causa fuera interna, esto sugiere una rotación diferencial de la corteza exterior sólida y el componente superfluido de la estructura interna del magnetar. [68] [66]

Población y distancias

Actualmente se conocen unas 3.200 estrellas de neutrones en la Vía Láctea y en las Nubes de Magallanes , la mayoría de las cuales han sido detectadas como radiopúlsares. Las estrellas de neutrones se concentran principalmente a lo largo del disco de la Vía Láctea, aunque la dispersión perpendicular al disco es grande porque el proceso de explosión de la supernova puede impartir altas velocidades de traslación (400 km/s) a la estrella de neutrones recién formada.

Algunas de las estrellas de neutrones más cercanas conocidas son RX J1856.5-3754, que está a unos 400 años luz de la Tierra, y PSR J0108-1431, a unos 424 años luz. [69] RX J1856.5-3754 es miembro de un grupo cercano de estrellas de neutrones llamado Las Siete Magníficas . Otra estrella de neutrones cercana que fue detectada transitando en el fondo de la constelación de la Osa Menor ha sido apodada Calvera por sus descubridores canadienses y estadounidenses, en honor al villano de la película de 1960 Los siete magníficos . Este objeto que se mueve rápidamente fue descubierto utilizando el catálogo ROSAT Bright Source.

Las estrellas de neutrones sólo son detectables con tecnología moderna durante las primeras etapas de su vida (casi siempre menos de 1 millón de años) y son ampliamente superadas en número por las estrellas de neutrones más antiguas que sólo serían detectables a través de su radiación de cuerpo negro y sus efectos gravitacionales sobre otras estrellas.

Sistemas binarios de estrellas de neutrones

Circinus X-1 : anillos de luz de rayos X de una estrella de neutrones binaria (24 de junio de 2015; Observatorio de rayos X Chandra )

Aproximadamente el 5% de todas las estrellas de neutrones conocidas son miembros de un sistema binario . La formación y evolución de estrellas de neutrones binarias [70] y estrellas de neutrones dobles [71] puede ser un proceso complejo. Se han observado estrellas de neutrones en sistemas binarios con estrellas ordinarias de la secuencia principal , gigantes rojas , enanas blancas u otras estrellas de neutrones. Según las teorías modernas de la evolución binaria, se espera que también existan estrellas de neutrones en sistemas binarios con compañeros de agujeros negros. La fusión de binarias que contienen dos estrellas de neutrones, o una estrella de neutrones y un agujero negro, se ha observado mediante la emisión de ondas gravitacionales . [72] [73]

binarios de rayos x

Los sistemas binarios que contienen estrellas de neutrones a menudo emiten rayos X, que son emitidos por el gas caliente que cae hacia la superficie de la estrella de neutrones. La fuente del gas es la estrella compañera, cuyas capas exteriores pueden ser arrancadas por la fuerza gravitacional de la estrella de neutrones si las dos estrellas están lo suficientemente cerca. A medida que la estrella de neutrones acumula este gas, su masa puede aumentar; Si se acumula suficiente masa, la estrella de neutrones puede colapsar y convertirse en un agujero negro. [74]

Fusiones binarias de estrellas de neutrones y nucleosíntesis.

Se observa que la distancia entre dos estrellas de neutrones en un sistema binario cercano se reduce a medida que se emiten ondas gravitacionales . [75] En última instancia, las estrellas de neutrones entrarán en contacto y se fusionarán. La coalescencia de estrellas de neutrones binarias es uno de los principales modelos para el origen de estallidos cortos de rayos gamma . Una fuerte evidencia de este modelo provino de la observación de una kilonova asociada con el estallido de rayos gamma de corta duración GRB 130603B, [76] y finalmente fue confirmada por la detección de la onda gravitacional GW170817 y la corta GRB 170817A por LIGO , Virgo y 70 observatorios. cubriendo el espectro electromagnético observando el evento. [77] [78] [79] [80] Se cree que la luz emitida en la kilonova proviene de la desintegración radiactiva del material expulsado en la fusión de las dos estrellas de neutrones. Este material puede ser responsable de la producción de muchos de los elementos químicos además del hierro , [81] a diferencia de la nucleosíntesis de supernovas .

Planetas

Impresión artística de la fusión de dos estrellas de neutrones, que produce un evento notablemente breve (de 1 a 2 segundos), pero intensamente poderoso, conocido como breve estallido de rayos gamma [82]

Las estrellas de neutrones pueden albergar exoplanetas . Estos pueden ser originales, circumbinarios , capturados o el resultado de una segunda ronda de formación de planetas. Los púlsares también pueden quitarle la atmósfera a una estrella, dejando un remanente de masa planetaria, que puede entenderse como un planeta ctónico o un objeto estelar según la interpretación. En el caso de los púlsares, estos planetas púlsares se pueden detectar con el método de sincronización del púlsar , que permite una alta precisión y la detección de planetas mucho más pequeños que con otros métodos. Se han confirmado definitivamente dos sistemas. Los primeros exoplanetas detectados fueron los tres planetas Draugr, Poltergeist y Phobetor alrededor de PSR B1257+12 , descubiertos en 1992-1994. De ellos, Draugr es el exoplaneta más pequeño jamás detectado, con una masa del doble que la de la Luna. Otro sistema es PSR B1620-26 , donde un planeta circumbinario orbita un sistema binario estrella de neutrones y enana blanca. Además, hay varios candidatos sin confirmar. Los planetas púlsar reciben poca luz visible, pero cantidades masivas de radiación ionizante y viento estelar de alta energía, lo que los convierte en entornos bastante hostiles para la vida tal como se entiende actualmente.

Historia de los descubrimientos

La primera observación directa de una estrella de neutrones aislada en luz visible. La estrella de neutrones es RX J1856.5−3754.

En la reunión de la Sociedad Americana de Física de diciembre de 1933 (las actas se publicaron en enero de 1934), Walter Baade y Fritz Zwicky propusieron la existencia de estrellas de neutrones, [83] [e] menos de dos años después del descubrimiento del neutrón por James Chadwick . [86] Al buscar una explicación para el origen de una supernova , propusieron tentativamente que en las explosiones de supernova las estrellas ordinarias se convierten en estrellas que consisten en neutrones extremadamente compactos a los que llamaron estrellas de neutrones. Baade y Zwicky propusieron correctamente en aquel momento que la liberación de la energía gravitacional de las estrellas de neutrones alimenta la supernova: "En el proceso de supernova, la masa en masa es aniquilada". Se pensaba que las estrellas de neutrones eran demasiado débiles para ser detectables y se trabajó poco con ellas hasta noviembre de 1967, cuando Franco Pacini señaló que si las estrellas de neutrones giraban y tenían grandes campos magnéticos, entonces se emitirían ondas electromagnéticas. Sin que él lo supiera, el radioastrónomo Antony Hewish y su estudiante de posgrado Jocelyn Bell en Cambridge pronto detectarían pulsos de radio de estrellas que ahora se cree que son estrellas de neutrones altamente magnetizadas y que giran rápidamente, conocidas como púlsares.

En 1965, Antony Hewish y Samuel Okoye descubrieron "una fuente inusual de temperatura de alto brillo de radio en la Nebulosa del Cangrejo ". [87] Esta fuente resultó ser el Pulsar del Cangrejo que resultó de la gran supernova de 1054 .

En 1967, Iosif Shklovsky examinó las observaciones ópticas y de rayos X de Scorpius X-1 y concluyó correctamente que la radiación proviene de una estrella de neutrones en etapa de acreción . [88]

En 1967, Jocelyn Bell Burnell y Antony Hewish descubrieron pulsos de radio regulares del PSR B1919+21 . Este púlsar fue interpretado más tarde como una estrella de neutrones aislada y en rotación. La fuente de energía del púlsar es la energía de rotación de la estrella de neutrones. La mayoría de las estrellas de neutrones conocidas (alrededor de 2000, en 2010) han sido descubiertas como púlsares, que emiten pulsos de radio regulares.

En 1968, Richard VE Lovelace y sus colaboradores descubrieron el período más del púlsar del Cangrejo utilizando el Observatorio de Arecibo . [89] [90] Después de este descubrimiento, los científicos concluyeron que los púlsares eran estrellas de neutrones en rotación . [91] Antes de eso, muchos científicos creían que los púlsares eran enanas blancas pulsantes .

En 1971, Riccardo Giacconi , Herbert Gursky, Ed Kellogg, R. Levinson, E. Schreier y H. Tananbaum descubrieron pulsaciones de 4,8 segundos en una fuente de rayos X en la constelación de Centauro , Cen X-3 . [92] Interpretaron que esto era el resultado de una estrella de neutrones caliente en rotación. La fuente de energía es gravitacional y resulta de una lluvia de gas que cae sobre la superficie de la estrella de neutrones desde una estrella compañera o el medio interestelar .

En 1974, Antony Hewish recibió el Premio Nobel de Física "por su papel decisivo en el descubrimiento de los púlsares" sin que Jocelyn Bell participara en el descubrimiento. [93]

En 1974, Joseph Taylor y Russell Hulse descubrieron el primer púlsar binario, PSR B1913+16 , que consta de dos estrellas de neutrones (una de ellas vista como un púlsar) que orbitan alrededor de su centro de masa. La teoría general de la relatividad de Albert Einstein predice que los objetos masivos en órbitas binarias cortas deberían emitir ondas gravitacionales y, por tanto, que su órbita debería decaer con el tiempo. De hecho, esto se observó, exactamente como predice la relatividad general, y en 1993, Taylor y Hulse recibieron el Premio Nobel de Física por este descubrimiento. [94]

En 1982, Don Backer y sus colegas descubrieron el primer púlsar de milisegundos, PSR B1937+21 . [95] Este objeto gira 642 veces por segundo, un valor que impone limitaciones fundamentales a la masa y el radio de las estrellas de neutrones. Posteriormente se descubrieron muchos púlsares de milisegundos, pero el PSR B1937+21 siguió siendo el púlsar conocido de giro más rápido durante 24 años, hasta que se descubrió el PSR J1748-2446ad (que gira ~716 veces por segundo).

En 2003, Marta Burgay y sus colegas descubrieron el primer sistema de estrellas de neutrones dobles en el que ambos componentes son detectables como púlsares, PSR J0737−3039 . [96] El descubrimiento de este sistema permite realizar un total de 5 pruebas diferentes de la relatividad general, algunas de ellas con una precisión sin precedentes.

En 2010, Paul Demorest y sus colegas midieron la masa del púlsar de milisegundos PSR J1614-2230 como1,97 ± 0,04  M , utilizando el retardo de Shapiro . [97] Esto fue sustancialmente mayor que cualquier masa de estrella de neutrones medida previamente (1,67  M , ver PSR J1903+0327 ), y impone fuertes restricciones a la composición interior de las estrellas de neutrones.

En 2013, John Antoniadis y sus colegas midieron la masa de PSR J0348+0432 como2,01 ± 0,04  M , utilizando espectroscopia de enana blanca. [98] Esto confirmó la existencia de estrellas tan masivas utilizando un método diferente. Además, esto permitió, por primera vez, una prueba de la relatividad general utilizando una estrella de neutrones tan masiva.

En agosto de 2017, LIGO y Virgo detectaron por primera vez ondas gravitacionales producidas por la colisión de estrellas de neutrones ( GW170817 ), [99] lo que llevó a nuevos descubrimientos sobre las estrellas de neutrones.

En octubre de 2018, los astrónomos informaron que GRB 150101B , un evento de explosión de rayos gamma detectado en 2015, puede estar directamente relacionado con el histórico GW170817 y asociado con la fusión de dos estrellas de neutrones . Las similitudes entre los dos eventos, en términos de emisiones de rayos gamma , ópticos y de rayos X, así como en la naturaleza de las galaxias anfitrionas asociadas , son "sorprendentes", lo que sugiere que los dos eventos separados pueden ser ambos el resultado de la fusión. de estrellas de neutrones, y ambas pueden ser una kilonova , que puede ser más común en el universo de lo que se pensaba anteriormente, según los investigadores. [100] [101] [102] [103]

En julio de 2019, los astrónomos informaron que se había propuesto un nuevo método para determinar la constante de Hubble y resolver la discrepancia de métodos anteriores basado en las fusiones de pares de estrellas de neutrones, tras la detección de la fusión de estrellas de neutrones de GW170817. [104] [105] Su medida de la constante de Hubble es70.3+5,3
−5,0
(km/s)/Mpc. [106]

Un estudio de 2020 realizado por el estudiante de doctorado de la Universidad de Southampton, Fabian Gittins, sugirió que las irregularidades de la superficie ("montañas") pueden tener solo fracciones de milímetro de altura (aproximadamente el 0,000003% del diámetro de la estrella de neutrones), cientos de veces más pequeñas de lo predicho anteriormente, un resultado que conlleva Implicaciones para la no detección de ondas gravitacionales de estrellas de neutrones en rotación. [53] [107] [108]

Utilizando el JWST , los astrónomos han identificado una estrella de neutrones dentro de los restos de la explosión estelar de la Supernova 1987, después de intentar hacerlo durante 37 años, según un artículo de Science del 23 de febrero de 2024. En un cambio de paradigma, los nuevos datos del JWST proporcionan la elusiva confirmación directa de la existencia de estrellas de neutrones dentro de los remanentes de supernova, así como una comprensión más profunda de los procesos en juego dentro de los remanentes de SN 1987A. [109]

Subtipos

Diferentes tipos de estrellas de neutrones
Representaciones por computadora de una estrella de neutrones con disco de acreción , con líneas de campo magnético proyectadas, que muestran ráfagas de potentes rayos X. Las simulaciones se toman de datos de 2017 de los observatorios NuSTAR y Swift de la NASA y XMM-Newton de la ESA.

Hay varios tipos de objetos que consisten en o contienen una estrella de neutrones:

También hay una serie de estrellas compactas teorizadas con propiedades similares que en realidad no son estrellas de neutrones.

Ejemplos de estrellas de neutrones

Concepción artística del planeta púlsar PSR B1257+12 C , con auroras brillantes

Galería

Ver también

Notas

  1. ^ ab Una estrella de 10  M colapsará en un agujero negro. [28]
  2. ^ 3,7 × 10 17  kg/m 3 se deriva de la masa2,68 × 10 30  kg / volumen de estrella de radio 12 km;5,9 × 10 17  kg/m 3 se deriva de la masa4,2 × 10 30  kg por volumen de estrella con un radio de 11,9 km
  3. ^ La densidad media del material en una estrella de neutrones de 10 km de radio es1,1 × 10 12  kg/cm 3 . Por lo tanto, 5 ml de dicho material son5,5 × 10 12  kg , o 5.500.000.000 de toneladas métricas . Esto es aproximadamente 15 veces la masa total de la población humana mundial. Alternativamente, 5 ml de una estrella de neutrones de 20 km de radio (densidad promedio8,35 × 10 10  kg/cm 3 ) tiene una masa de unos 400 millones de toneladas métricas, o aproximadamente la masa de todos los humanos. El campo gravitacional es ca.2 × 10 11 g o ca.2 × 10 12 N/kg. El peso de la luna se calcula en 1 g .
  4. ^ La densidad de energía magnética para un campo B es U = μ B 22 . [41] Sustituyendo B =10 8  T , obtenga U =4 × 10 21  J/m 3 . Dividiendo por c 2 se obtiene la densidad de masa equivalente de44 500  kg/m 3 , lo que supera la temperatura y la densidad de presión estándar de todos los materiales conocidos. Comparar con22 590  kg/m 3 para el osmio , el elemento estable más denso.
  5. ^ Incluso antes del descubrimiento de los neutrones, en 1931, Lev Landau anticipó las estrellas de neutrones , quien escribió sobre estrellas donde "los núcleos atómicos entran en estrecho contacto, formando un núcleo gigantesco". [84] Sin embargo, la opinión generalizada de que Landau predijo las estrellas de neutrones resulta ser errónea. [85]

Referencias

  1. ^ Heger, A.; Freidora, CL; Woosley, SE; Langer, N.; Hartmann, DH (2003). "Cómo terminan sus vidas las estrellas solteras masivas". Revista Astrofísica . 591 (1): 288–300. arXiv : astro-ph/0212469 . Código Bib : 2003ApJ...591..288H. doi :10.1086/375341. S2CID  59065632.
  2. ^ Glendenning, Norman K. (2012). Estrellas compactas: física nuclear, física de partículas y relatividad general (edición ilustrada). Medios de ciencia y negocios de Springer. pag. 1.ISBN 978-1-4684-0491-3. Archivado desde el original el 31 de enero de 2017 . Consultado el 21 de marzo de 2016 .
  3. ^ Semillas, Michael; Backman, Dana (2009). Astronomía: el sistema solar y más allá (6ª ed.). Aprendizaje Cengage. pag. 339.ISBN 978-0-495-56203-0. Archivado desde el original el 6 de febrero de 2021 . Consultado el 22 de febrero de 2018 .
  4. ^ Tolman, RC (1939). "Soluciones estáticas de las ecuaciones de campo de Einstein para esferas de fluido" (PDF) . Revisión física . 55 (4): 364–373. Código bibliográfico : 1939PhRv...55..364T. doi : 10.1103/PhysRev.55.364. Archivado (PDF) desde el original el 22 de julio de 2018 . Consultado el 30 de junio de 2019 .
  5. ^ Oppenheimer, JR; Volkoff, GM (1939). "Sobre núcleos de neutrones masivos". Revisión física . 55 (4): 374–381. Código bibliográfico : 1939PhRv...55..374O. doi : 10.1103/PhysRev.55.374.
  6. ^ "Estrellas de neutrones" (PDF) . www.astro.princeton.edu . Archivado (PDF) desde el original el 9 de septiembre de 2021 . Consultado el 14 de diciembre de 2018 .
  7. ^ Douchin, F.; Haensel, P. (diciembre de 2001). "Una ecuación unificada de estado de materia densa y estructura de estrella de neutrones". Astronomía y Astrofísica . 380 (1): 151–167. arXiv : astro-ph/0111092 . Código Bib : 2001A y A...380..151D. doi :10.1051/0004-6361:20011402. ISSN  0004-6361. S2CID  17516814.
  8. ^ ab Croswell, Ken (22 de julio de 2022). "La estrella de neutrones más pesada jamás registrada tiene 2,35 veces la masa del sol". Noticias de ciencia . Consultado el 25 de julio de 2022 .
  9. ^ "Preguntas y respuestas: restos de supernovas y estrellas de neutrones", Chandra.harvard.edu (5 de septiembre de 2008)
  10. ^ "Modelos de atmósfera de hidrógeno magnético y la estrella de neutrones RX J1856.5−3754" (PDF), Wynn CG Ho et al. , Monthly Notices of the Royal Astronomical Society , 375 , págs. 821-830 (2007), presentado el 6 de diciembre de 2006, ArXiv:astro-ph/0612145. Los autores calcularon lo que consideraron "un modelo más realista, que tiene en cuenta el campo magnético y las variaciones de temperatura sobre la superficie de la estrella de neutrones, así como los efectos relativistas generales", lo que arrojó una temperatura superficial promedio de4.34+0,02
    −0,06
    × 10 5  K
    con un nivel de confianza de 2𝜎 (95%); consulte §4, Fig. 6 en su artículo para más detalles.
  11. ^ "El Sol es menos activo que otras estrellas similares al solar" (PDF), Timo Reinhold et al ., ArXiv:astro-ph.SR (4 de mayo de 2020) ArXiv:2005.01401
  12. ^ "Recorre el cielo ASM". heasarc.gsfc.nasa.gov . Archivado desde el original el 1 de octubre de 2021 . Consultado el 23 de mayo de 2016 .
  13. ^ "Densidad de la Tierra". 2009-03-10. Archivado desde el original el 12 de noviembre de 2013 . Consultado el 23 de mayo de 2016 .
  14. ^ Hessels, Jason; Rescate, Scott M.; Escaleras, Ingrid H.; Freire, Paulo CC; et al. (2006). "Un Radio Pulsar girando a 716 Hz". Ciencia . 311 (5769): 1901-1904. arXiv : astro-ph/0601337 . Código Bib : 2006 Ciencia... 311.1901H. CiteSeerX 10.1.1.257.5174 . doi : 10.1126/ciencia.1123430. PMID  16410486. S2CID  14945340. 
  15. ^ Naeye, Robert (13 de enero de 2006). "Pulsar giratorio bate récord". Cielo y telescopio . Archivado desde el original el 29 de diciembre de 2007 . Consultado el 18 de enero de 2008 .
  16. ^ "NASA.gov". Archivado desde el original el 8 de septiembre de 2018 . Consultado el 5 de agosto de 2020 .
  17. ^ Camenzind, Max (24 de febrero de 2007). Objetos compactos en astrofísica: enanas blancas, estrellas de neutrones y agujeros negros. Medios de ciencia y negocios de Springer. pag. 269. Bibcode : 2007coaw.book......C. ISBN 978-3-540-49912-1. Archivado desde el original el 29 de abril de 2021 . Consultado el 6 de septiembre de 2017 .
  18. ^ Abbott, BP; Abbott, R.; Abbott, TD; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Ricardo; Howard; Adhikari, RX; Huang Wei (2017). "Observaciones de múltiples mensajes de una fusión de estrellas de neutrones binarias". Las cartas del diario astrofísico . 848 (2): L12. arXiv : 1710.05833 . Código Bib : 2017ApJ...848L..12A. doi : 10.3847/2041-8213/aa91c9 . S2CID  217162243.
  19. ^ Bombaci, I. (1996). "La masa máxima de una estrella de neutrones". Astronomía y Astrofísica . 305 : 871–877. Código Bib : 1996A y A...305..871B.
  20. ^ Bally, John; Reipurth, Bo (2006). El nacimiento de las estrellas y los planetas (edición ilustrada). Prensa de la Universidad de Cambridge. pag. 207.ISBN 978-0-521-80105-8. Archivado desde el original el 31 de enero de 2017 . Consultado el 30 de junio de 2016 .
  21. ^ abcd Haensel, Paweł; Potekhin, Alexander Y.; Yakovlev, Dmitry G. (2007). Estrellas de neutrones . Saltador. ISBN 978-0-387-33543-8.
  22. ^ ab "Las notables propiedades de las estrellas de neutrones - Fresh Chandra News". ChandraBlog . 28 de marzo de 2013 . Consultado el 16 de mayo de 2022 .
  23. ^ Suwa, Yudai; Yoshida, Takashi; Shibata, Masaru; Umeda, Hideyuki; Takahashi, Koh (2018). "Sobre la distribución masiva y las masas de nacimiento de las estrellas de neutrones". Avisos mensuales de la Real Sociedad Astronómica . 481 (3): 3305–3312. arXiv : 1808.02328 . doi :10.1093/mnras/sty2460.
  24. ^ Özel, Feryal; Saltis, Dimitrios; Narayan, Ramesh; Santos Villarreal, Antonio (septiembre de 2012). "Sobre la distribución masiva y las masas de nacimiento de las estrellas de neutrones". La revista astrofísica . 757 (1): 13. arXiv : 1201.1006 . Código Bib : 2012ApJ...757...55O. doi :10.1088/0004-637X/757/1/55. S2CID  119120778.
  25. ^ Chamel, N.; Haensel, Pawel; Zdunik, JL; Fantina, AF (19 de noviembre de 2013). "Sobre la masa máxima de las estrellas de neutrones". Revista Internacional de Física Moderna . 1 (28): 1330018. arXiv : 1307.3995 . Código Bib : 2013IJMPE..2230018C. doi :10.1142/S021830131330018X. S2CID  52026378.
  26. ^ Rezzolla, Luciano; Most, Elías R.; Weih, Lukas R. (2018). "Uso de observaciones de ondas gravitacionales y relaciones cuasi universales para limitar la masa máxima de estrellas de neutrones". La revista astrofísica . 852 (2): L25. arXiv : 1711.00314 . Código Bib : 2018ApJ...852L..25R. doi : 10.3847/2041-8213/aaa401 . S2CID  119359694.
  27. ^ Cromartie, HT; Fonseca, E.; Rescate, SM; Demorest, PB; Arzoumanian, Z.; Blumer, H.; Brook, relaciones públicas; DeCesar, ME; Dolch, T. (16 de septiembre de 2019). "Medidas relativistas de retardo de Shapiro de un púlsar de milisegundos extremadamente masivo". Astronomía de la Naturaleza . 4 : 72–76. arXiv : 1904.06759 . Código Bib : 2020NatAs...4...72C. doi :10.1038/s41550-019-0880-2. ISSN  2397-3366. S2CID  118647384.
  28. ^ "Agujeros negros". Centro de vuelos espaciales Goddard (GSFC). Administración Nacional Aeronáutica y Espacial - NASA). Archivado desde el original el 29 de octubre de 2014 . Consultado el 23 de junio de 2010 .
  29. ^ abc Lattimer, James M. (2015). "Introducción a las estrellas de neutrones". Serie de conferencias del Instituto Americano de Física . Actas de la conferencia AIP. 1645 (1): 61–78. Código Bib : 2015AIPC.1645...61L. doi : 10.1063/1.4909560 .
  30. ^ Yakovlev, director general; Kaminker, AD; Haensel, P.; Gnedin, OY (2002). "La estrella de neutrones enfriándose en 3C 58". Astronomía y Astrofísica . 389 : L24–L27. arXiv : astro-ph/0204233 . Código Bib : 2002A&A...389L..24Y. doi :10.1051/0004-6361:20020699. S2CID  6247160.
  31. ^ "Cálculo de la densidad de una estrella de neutrones". Archivado desde el original el 24 de febrero de 2006 . Consultado el 11 de marzo de 2006 .NÓTESE BIEN3 × 10 17  kg/m 3 es3 × 10 14  g/cm 3
  32. ^ Ozel, Feryal; Freire, Paulo (2016). "Masas, radios y ecuación de estado de las estrellas de neutrones". Año. Rev. Astron. Astrofia . 54 (1): 401–440. arXiv : 1603.02698 . Código Bib : 2016ARA&A..54..401O. doi : 10.1146/annurev-astro-081915-023322. S2CID  119226325.
  33. ^ "dualidad onda-partícula cuántica: temas de Science.gov". www.ciencia.gov . Consultado el 10 de junio de 2023 .
  34. ^ Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D. (octubre de 2018). "Números de Tidal Love de estrellas de neutrones en gravedad f (R)". La revista física europea C. 78 (10): 818. arXiv : 1803.09534 . Código Bib : 2018EPJC...78..818Y. doi :10.1140/epjc/s10052-018-6285-z. PMC 6244867 . PMID  30524193. 
  35. ^ Obstaculizador, Tanja; Lackey, Benjamín D.; Lang, Ryan N.; Leer, Jocelyn S. (2010). "Deformabilidad de marea de estrellas de neutrones con ecuaciones de estado realistas y sus firmas de ondas gravitacionales en espiral binaria". Revisión física D. 81 (12): 123016. arXiv : 0911.3535 . Código Bib : 2010PhRvD..81l3016H. doi : 10.1103/PhysRevD.81.123016. S2CID  14819350.
  36. ^ Baym, G; Pethick, C (diciembre de 1975). "Estrellas de neutrones". Revisión anual de la ciencia nuclear . 25 (1): 27–77. Código Bib : 1975ARNPS..25...27B. doi : 10.1146/annurev.ns.25.120175.000331 . ISSN  0066-4243.
  37. ^ ABCDE Reisenegger, A. (2003). "Origen y evolución de los campos magnéticos de estrellas de neutrones". arXiv : astro-ph/0307133 .
  38. ^ "Catálogo en línea McGill SGR/AXP". Archivado desde el original el 23 de julio de 2020 . Consultado el 2 de enero de 2014 .
  39. ^ ab Kouveliotou, Chryssa; Duncan, Robert C.; Thompson, Christopher (febrero de 2003). "Magnetares". Científico americano . 288 (2): 34–41. Código Bib : 2003SciAm.288b..34K. doi : 10.1038/scientificamerican0203-34. PMID  12561456.
  40. ^ Kaspi, VM; Gavriil, FP (2004). "Púlsares de rayos X (anómalos)". Física Nuclear B. Suplementos de Actas. 132 : 456–465. arXiv : astro-ph/0402176 . Código Bib : 2004NuPhS.132..456K. doi :10.1016/j.nuclphysbps.2004.04.080. S2CID  15906305.
  41. ^ "El mundo de la física de Eric Weisstein". scienceworld.wolfram.com . Archivado desde el original el 23 de abril de 2019.
  42. ^ Duncan, Robert C. (marzo de 2003). "'Magnetares, repetidores gamma suaves y campos magnéticos muy fuertes ". Archivado desde el original el 19 de enero de 2020 . Consultado el 17 de abril de 2018 .
  43. ^ abc Zahn, Corvin (9 de octubre de 1990). "Tempolimit Lichtgeschwindigkeit" (en alemán). Archivado desde el original el 26 de enero de 2021 . Consultado el 9 de octubre de 2009 . Durch die gravitative Lichtablenkung ist mehr als die Hälfte der Oberfläche sichtbar. Masa de neutrones: 1, Radio de neutrones: 4, ... dimensiones reducidas Einheiten ( c , G = 1)
  44. ^ Verde, Simón F.; Jones, Mark H.; Burnell, S. Jocelyn (2004). Introducción al sol y las estrellas (edición ilustrada). Prensa de la Universidad de Cambridge. pag. 322.ISBN 978-0-521-54622-5. Archivado desde el original el 31 de enero de 2017 . Consultado el 9 de junio de 2016 .
  45. ^ "Peligroso lugar para jugar tenis". Datos Freak (en español). Archivado desde el original el 11 de junio de 2016 . Consultado el 3 de junio de 2016 .
  46. ^ Marcia Bartusiak (2015). Agujero negro: cómo una idea abandonada por los newtonianos, odiada por Einstein y apostada por Hawking se volvió amada . Prensa de la Universidad de Yale. pag. 130.ISBN 978-0-300-21363-8.
  47. ^ Masas y radios de estrellas de neutrones Archivado el 17 de diciembre de 2011 en Wayback Machine , p. 9/20, abajo
  48. ^ Hessels, Jason WT; Rescate, Scott M; Escaleras, Ingrid H; Freire, Paulo C. C; Kaspi, Victoria M; Camilo, Fernando (2001). "Estructura de la estrella de neutrones y ecuación de estado". La revista astrofísica . 550 (426): 426–442. arXiv : astro-ph/0002232 . Código Bib : 2001ApJ...550..426L. doi :10.1086/319702. S2CID  14782250.
  49. ^ ab CODATA 2014
  50. ^ ab NASA. Ecuación de la estrella de neutrones de la ciencia estatal. Consultado el 26 de septiembre de 2011.
  51. ^ abc Beskin, Vasilii S. (1999). "Radio púlsares". Física-Uspekhi . 42 (11): 1173-1174. Código bibliográfico : 1999PhyU...42.1071B. doi :10.1070/pu1999v042n11ABEH000665. S2CID  250831196.
  52. ^ Cariño, David. "estrella neutrón". www.daviddarling.info . Archivado desde el original el 24 de enero de 2009 . Consultado el 12 de enero de 2009 .
  53. ^ ab Baker, Harry (21 de julio de 2021). "Las 'montañas' de estrellas de neutrones son en realidad protuberancias microscópicas de menos de un milímetro de altura". Ciencia Viva . Archivado desde el original el 25 de julio de 2021 . Consultado el 25 de julio de 2021 .
  54. ^ Pons, José A.; Viganò, Daniele; Rea, Nanda (2013). "Demasiada" pasta "para que los púlsares dejen de girar". Física de la Naturaleza . 9 (7): 431–434. arXiv : 1304.6546 . Código bibliográfico : 2013NatPh...9..431P. doi :10.1038/nphys2640. S2CID  119253979.
  55. ^ abcdefghijk Condon, JJ & Ransom, SM "Propiedades de Pulsar (radioastronomía esencial)". Observatorio Nacional de Radioastronomía. Archivado desde el original el 10 de abril de 2016 . Consultado el 24 de marzo de 2016 .
  56. ^ abcdef Pavlov, George. "Propiedades de rayos X de púlsares impulsados ​​por rotación y estrellas de neutrones con emisión térmica" (PDF) . pulsarastronomy.net. Archivado (PDF) desde el original el 6 de diciembre de 2015 . Consultado el 6 de abril de 2016 .
  57. ^ Caleb, Manisha; Heywood, Ian; Rajwade, Kaustubh; Malenta, Mateusz; Willem Stappers, Benjamín; Barr, Ewan; Chen, Weiwei; Morello, Vicente; Sanidas, Sotiris; van den Eijnden, Jakob; Kramer, Michael (30 de mayo de 2022). "Descubrimiento de una estrella de neutrones emisora ​​de radio con un período de giro ultralargo de 76 s". Astronomía de la Naturaleza . 6 (7): 828–836. arXiv : 2206.01346 . Código Bib : 2022NatAs...6..828C. doi :10.1038/s41550-022-01688-x. ISSN  2397-3366. PMC 7613111 . PMID  35880202. S2CID  249212424. 
  58. ^ "Estrella de neutrones inusual descubierta en un cementerio estelar". La Universidad de Sídney . Consultado el 1 de junio de 2022 .
  59. ^ abcdefg De Luca, Andrea (2008). "Objetos compactos centrales en restos de supernova". Actas de la conferencia AIP . 983 : 311–319. arXiv : 0712.2209 . Código Bib : 2008AIPC..983..311D. CiteSeerX 10.1.1.769.699 . doi :10.1063/1.2900173. S2CID  118470472. 
  60. ^ Klochkov, D.; Puehlhofer, G.; Suleimanov, V.; Simón, S.; Werner, K.; Santangelo, A. (2013). "Una estrella de neutrones no pulsante en el remanente de supernova HESS J1731-347 / G353.6–0.7 con una atmósfera de carbono". Astronomía y Astrofísica . 556 : A41. arXiv : 1307.1230 . Código Bib : 2013A y A...556A..41K. doi :10.1051/0004-6361/201321740. S2CID  119184617.
  61. ^ ab "7. Púlsares en otras longitudes de onda". Fronteras de la astronomía moderna . Centro de Astrofísica Jodrell Bank. Archivado desde el original el 10 de abril de 2016 . Consultado el 6 de abril de 2016 .
  62. ^ Brazier, KTS y Johnston, S. (agosto de 2013). "Las implicaciones de las estrellas de neutrones radio silenciosas". Avisos mensuales de la Real Sociedad Astronómica . 305 (3): 671. arXiv : astro-ph/9803176 . Código bibliográfico : 1999MNRAS.305..671B. doi :10.1046/j.1365-8711.1999.02490.x. S2CID  6777734.
  63. ^ Zhang, B. "Poder de rotación de los magnetares" (PDF) . Universidad Federal de Rio Grande do Sul. Archivado (PDF) desde el original el 6 de febrero de 2021 . Consultado el 24 de marzo de 2016 .
  64. ^ Hessels, Jason WT; Rescate, Scott M; Escaleras, Ingrid H; Freire, Paulo C. C; Kaspi, Victoria M; Camilo, Fernando (2006). "Un Radio Pulsar girando a 716 Hz". Ciencia . 311 (5769): 1901-1904. arXiv : astro-ph/0601337 . Código Bib : 2006 Ciencia... 311.1901H. CiteSeerX 10.1.1.257.5174 . doi : 10.1126/ciencia.1123430. PMID  16410486. S2CID  14945340. 
  65. ^ Kaaret, P.; Prieskorn, Z.; Zand, JJM en 't; Brandt, S.; Lund, N.; Mereghetti, S.; Götz, D.; Kuulkers, E.; Tomsick, JA (2007). "Evidencia de oscilaciones de ráfaga de rayos X de 1122 Hz del transitorio de rayos X de estrella de neutrones XTE J1739-285". La revista astrofísica . 657 (2): L97-L100. arXiv : astro-ph/0611716 . Código Bib : 2007ApJ...657L..97K. doi :10.1086/513270. ISSN  0004-637X. S2CID  119405361.
  66. ^ abc Antonelli, Marco; Montoli, Alejandro; Pizzochero, Pierre (noviembre de 2022), "Perspectivas sobre la física de los interiores de estrellas de neutrones a partir de fallas de Pulsar", Astrofísica en el siglo XXI con estrellas compactas , págs. 978-981-12-2093-7
  67. ^ Alpar, M. Ali (1 de enero de 1998). "Pulsares, fallos y superfluidos". Físicaworld.com. Archivado desde el original el 6 de diciembre de 2008 . Consultado el 12 de enero de 2009 .
  68. ^ ab Archibald, RF; Kaspi, VM; Ng, CY; Gourgouliatos, KN; Tsang, D.; Scholz, P.; Beardmore, AP; Gehrels, N.; Kennea, JA (2013). "Un anti-fallo en un magnetar". Naturaleza . 497 (7451): 591–593. arXiv : 1305.6894 . Código Bib :2013Natur.497..591A. doi : 10.1038/naturaleza12159. hdl :10722/186148. PMID  23719460. S2CID  4382559.
  69. ^ Posselt, B.; Neuhauser, R.; Haberl, F. (marzo de 2009). "Búsqueda de compañeras subestelares de estrellas de neutrones jóvenes aisladas". Astronomía y Astrofísica . 496 (2): 533–545. arXiv : 0811.0398 . Código Bib : 2009A&A...496..533P. doi :10.1051/0004-6361/200810156. S2CID  10639250.
  70. ^ Tauris, TM; Van Den Heuvel, EPJ (2006). Formación y evolución de fuentes compactas de rayos X estelares . Código Bib : 2006csxs.book..623T. Figura 16.4. Ilustración de la distribución relativa de los ~ 1500 púlsares de radio observados. Alrededor del 4% son miembros de un sistema binario.
  71. ^ Tauris, TM; Kramer, M.; Freire, PCC; Wex, N.; Janka, H.-T.; Langer, N.; Podsiadlowski, Ph.; Bozzo, E.; Chaty, S.; Kruckow, MU; Heuvel, EPJ van den; Antoniadis, J.; Bretón, RP; Campeón, DJ (13 de septiembre de 2017). "Formación de sistemas de estrellas de neutrones dobles". La revista astrofísica . 846 (2): 170. arXiv : 1706.09438 . Código Bib : 2017ApJ...846..170T. doi : 10.3847/1538-4357/aa7e89 . eISSN  1538-4357. S2CID  119471204.
  72. ^ Abbott, BP; Abbott, R.; Abbott, TD; Acernese, F.; Ackley, K.; et al. (Colaboración científica LIGO y Colaboración Virgo) (2017-10-16). "GW170817: Observación de ondas gravitacionales desde la espiral de una estrella de neutrones binaria". Cartas de revisión física . 119 (16). Sociedad Estadounidense de Física (APS): 161101. arXiv : 1710.05832 . Código bibliográfico : 2017PhRvL.119p1101A. doi : 10.1103/physrevlett.119.161101 . ISSN  0031-9007. PMID  29099225.
  73. ^ Abbott, BP; Abbott, R.; Abbott, TD; Abernathy, señor; Acernese, F.; et al. (Colaboración científica LIGO y Colaboración Virgo) (11 de febrero de 2016). "Observación de ondas gravitacionales de una fusión de agujeros negros binarios". Cartas de revisión física . 116 (6): 1161102. arXiv : 1602.03837 . Código bibliográfico : 2016PhRvL.116f1102A. doi : 10.1103/physrevlett.116.061102 . ISSN  0031-9007. PMID  26918975.
  74. ^ Lewin, Walter; Van Der Klis, Michiel (2010). Fuentes compactas de rayos X estelares . Código Bib : 2010csxs.book.....L.
  75. ^ Taylor, JH; Weisberg, JM (15 de febrero de 1982). "Una nueva prueba de la relatividad general: la radiación gravitacional y el púlsar binario PSR 1913+16". La revista astrofísica . 253 : 908. Código bibliográfico : 1982ApJ...253..908T. doi :10.1086/159690.
  76. ^ Tanvir, N.; Levan, AJ; Fruchter, AS; Hjorth, J.; Hounsell, RA; Wiersema, K.; Tunnicliffe, RL (2013). "Una 'kilonova' asociada con el estallido de rayos gamma de corta duración GRB 130603B". Naturaleza . 500 (7464): 547–549. arXiv : 1306.4971 . Código Bib :2013Natur.500..547T. doi : 10.1038/naturaleza12505. PMID  23912055. S2CID  205235329.
  77. ^ Cho, Adrian (16 de octubre de 2017). "La fusión de estrellas de neutrones genera ondas gravitacionales y un espectáculo de luces celestiales". Ciencia . Archivado desde el original el 18 de octubre de 2017 . Consultado el 16 de octubre de 2017 .
  78. ^ Adiós, Dennis (16 de octubre de 2017). "LIGO detecta una feroz colisión de estrellas de neutrones por primera vez". Los New York Times . Archivado desde el original el 16 de octubre de 2017 . Consultado el 16 de octubre de 2017 .
  79. ^ Casttelvecchi, Davide (2017). "Los rumores aumentan sobre un nuevo tipo de avistamiento de ondas gravitacionales". Noticias de la naturaleza . doi :10.1038/naturaleza.2017.22482.
  80. ^ Abbott, BP; et al. ( Colaboración científica LIGO y colaboración Virgo ) (16 de octubre de 2017). "GW170817: Observación de ondas gravitacionales desde la espiral de una estrella de neutrones binaria". Cartas de revisión física . 119 (16): 161101. arXiv : 1710.05832 . Código bibliográfico : 2017PhRvL.119p1101A. doi : 10.1103/PhysRevLett.119.161101. PMID  29099225. S2CID  217163611.
  81. ^ Urry, Meg (20 de julio de 2013). "El oro viene de las estrellas". CNN. Archivado desde el original el 22 de julio de 2017 . Consultado el 20 de julio de 2013 .
  82. ^ "Los telescopios Gemini ayudan a descubrir los orígenes de las explosiones de rayos gamma Castaway" . Consultado el 16 de diciembre de 2022 .
  83. ^ Baade, Walter y Zwicky, Fritz (1934). "Observaciones sobre supernovas y rayos cósmicos" (PDF) . Revisión física . 46 (1): 76–77. Código bibliográfico : 1934PhRv...46...76B. doi :10.1103/PhysRev.46.76.2. Archivado (PDF) desde el original el 24 de febrero de 2021 . Consultado el 16 de septiembre de 2019 .
  84. ^ Landau, Lev D. (1932). "Sobre la teoría de las estrellas". Física. Z. Sowjetunion . 1 : 285–288.
  85. ^ Haensel, P; Potekhin, A. Y; Yakovlev, DG, eds. (2007). Estrellas de neutrones 1: Ecuación de estado y estructura . Biblioteca de Astrofísica y Ciencias Espaciales. vol. 326. Saltador. Código Bib : 2007ASSL..326.....H. ISBN 978-0387335438.
  86. ^ Chadwick, James (1932). "Sobre la posible existencia de un neutrón". Naturaleza . 129 (3252): 312. Bibcode :1932Natur.129Q.312C. doi : 10.1038/129312a0 . S2CID  4076465.
  87. ^ Hewish, A. y Okoye, SE (1965). "Evidencia de una fuente inusual de temperatura de alto brillo de radio en la Nebulosa del Cangrejo". Naturaleza . 207 (4992): 59–60. Código Bib :1965Natur.207...59H. doi :10.1038/207059a0. S2CID  123416790.
  88. ^ Shklovsky, IS (abril de 1967). "Sobre la naturaleza de la fuente de emisión de rayos X de SCO XR-1". Revista Astrofísica . 148 (1): L1–L4. Código bibliográfico : 1967ApJ...148L...1S. doi :10.1086/180001.
  89. ^ Comella, JM; Artesanía, alta definición; Lovelace, RVE; Sutton, JM (1969). "Nebulosa del Cangrejo Pulsar NP 0532". Naturaleza . 221 (5179): 453. Bibcode :1969Natur.221..453C. doi :10.1038/221453a0. S2CID  4213758.
  90. ^ Lovelace, RVE; Sutton, JM (1969). "Métodos de búsqueda digital de púlsares". Naturaleza . 222 (5190): 231. Bibcode :1969Natur.222..231L. doi :10.1038/222231a0. S2CID  4294389.
  91. ^ Lovelace, RVE; Tyler, GL (2012). "Sobre el descubrimiento del período del púlsar de la Nebular del Cangrejo". El Observatorio . 132 (3): 186. Código bibliográfico : 2012Obs...132..186L.
  92. ^ Ghosh, Pranab (2007). Púlsares impulsados ​​por rotación y acreción (edición ilustrada). Científico mundial. pag. 8.ISBN 978-981-02-4744-7. Archivado desde el original el 6 de febrero de 2021 . Consultado el 29 de noviembre de 2016 .
  93. ^ Lang, Kenneth (2007). Un compañero de la astronomía y la astrofísica: cronología y glosario con tablas de datos (edición ilustrada). Medios de ciencia y negocios de Springer. pag. 82.ISBN 978-0-387-33367-0. Archivado desde el original el 6 de febrero de 2021 . Consultado el 29 de noviembre de 2016 .
  94. ^ Haensel, Paweł; Potekhin, Alexander Y.; Yakovlev, Dmitry G. (2007). Estrellas de neutrones 1: ecuación de estado y estructura (edición ilustrada). Medios de ciencia y negocios de Springer. pag. 474.ISBN 978-0-387-47301-7. Archivado desde el original el 6 de febrero de 2021 . Consultado el 29 de noviembre de 2016 .
  95. ^ Graham-Smith, Francis (2006). Pulsar Astronomy (edición ilustrada). Prensa de la Universidad de Cambridge. pag. 11.ISBN 978-0-521-83954-9. Archivado desde el original el 6 de febrero de 2021 . Consultado el 29 de noviembre de 2016 .
  96. ^ Ghosh, Pranab (2007). Púlsares impulsados ​​por rotación y acreción (edición ilustrada). Científico mundial. pag. 281.ISBN 978-981-02-4744-7. Archivado desde el original el 6 de febrero de 2021 . Consultado el 29 de noviembre de 2016 .
  97. ^ Demorest, Paul B.; Pennucci, T.; Rescate, SM; Roberts, MS; Hessels, JW (2010). "Una estrella de neutrones de dos masas solares medida utilizando el retardo de Shapiro". Naturaleza . 467 (7319): 1081–1083. arXiv : 1010.5788 . Código Bib : 2010Natur.467.1081D. doi : 10.1038/naturaleza09466. PMID  20981094. S2CID  205222609.
  98. ^ Antoniadis, John (2012). "Un púlsar masivo en un binario relativista compacto". Ciencia . 340 (6131): 1233232. arXiv : 1304.6875 . Código Bib : 2013 Ciencia... 340.. 448A. CiteSeerX 10.1.1.769.4180 . doi : 10.1126/ciencia.1233232. PMID  23620056. S2CID  15221098. 
  99. ^ Burtnyk, Kimberly M. (16 de octubre de 2017). "La detección LIGO de estrellas de neutrones en colisión genera un esfuerzo global para estudiar este evento poco común". Archivado desde el original el 23 de octubre de 2017 . Consultado el 17 de noviembre de 2017 .
  100. ^ Universidad de Maryland (16 de octubre de 2018). "Todo en la familia: Se descubren parientes de fuente de ondas gravitacionales. Nuevas observaciones sugieren que las kilonovas (inmensas explosiones cósmicas que producen plata, oro y platino) pueden ser más comunes de lo que se pensaba". Eurek¡Alerta! . Archivado desde el original el 16 de octubre de 2018 . Consultado el 17 de octubre de 2018 .
  101. ^ Troja, E.; et al. (16 de octubre de 2018). "Una kilonova azul luminosa y un chorro fuera del eje de una fusión binaria compacta en z = 0,1341". Comunicaciones de la naturaleza . 9 (4089 (2018)): 4089. arXiv : 1806.10624 . Código Bib : 2018NatCo...9.4089T. doi :10.1038/s41467-018-06558-7. PMC 6191439 . PMID  30327476. 
  102. ^ Mohon, Lee (16 de octubre de 2018). "GRB 150101B: un primo lejano de GW170817". NASA . Archivado desde el original el 22 de marzo de 2019 . Consultado el 17 de octubre de 2018 .
  103. ^ Wall, Mike (17 de octubre de 2018). "Un poderoso destello cósmico es probablemente otra fusión de estrellas de neutrones". Espacio.com . Archivado desde el original el 17 de octubre de 2018 . Consultado el 17 de octubre de 2018 .
  104. ^ Observatorio Nacional de Radioastronomía (8 de julio de 2019). "Un nuevo método puede resolver la dificultad para medir la expansión del universo: las fusiones de estrellas de neutrones pueden proporcionar un nuevo 'regente cósmico'". Eurek¡Alerta! . Archivado desde el original el 8 de julio de 2019 . Consultado el 8 de julio de 2019 .
  105. ^ Finley, Dave (8 de julio de 2019). "Un nuevo método puede resolver la dificultad para medir la expansión del universo". Observatorio Nacional de Radioastronomía . Archivado desde el original el 8 de julio de 2019 . Consultado el 8 de julio de 2019 .
  106. ^ Hotokezaka, K.; et al. (8 de julio de 2019). "Una medición de la constante de Hubble a partir del movimiento superluminal del chorro en GW170817". Astronomía de la Naturaleza . 3 (10): 940–944. arXiv : 1806.10596 . Código Bib : 2019NatAs...3..940H. doi :10.1038/s41550-019-0820-1. S2CID  119547153.
  107. ^ Trenza, Phil (23 de julio de 2021). "La montaña más alta de una estrella de neutrones puede tener una altura de una fracción de milímetro". Syfy . Archivado desde el original el 25 de julio de 2021 . Consultado el 25 de julio de 2021 .
  108. ^ Gittins, Fabián; Andersson, Nils (2021). "Modelado de montañas de estrellas de neutrones en relatividad". Avisos mensuales de la Real Sociedad Astronómica . 507 (puñalada2048): 116-128. arXiv : 2105.06493 . doi : 10.1093/mnras/stab2048.
  109. ^ MJ Barlow; PJ Kavanagh; J. Larsson; OC Jones; B. Sargento; M. Meixner; P. Bouchet; T. Temim (22 de febrero de 2024). "Líneas de emisión por radiación ionizante de un objeto compacto en el remanente de Supernova 1987A". Ciencia . 383 (6685): 898–903. doi :10.1126/CIENCIA.ADJ5796. ISSN  0036-8075. Wikidata  Q124719867.
  110. ^ Mereghetti, Sandro (abril de 2010). "Emisión de rayos X de estrellas de neutrones aisladas". Emisión de alta energía de los púlsares y sus sistemas . Actas de astrofísica y ciencias espaciales. vol. 21. págs. 345–363. arXiv : 1008.2891 . Código Bib : 2011ASSP...21..345M. doi :10.1007/978-3-642-17251-9_29. ISBN 978-3-642-17250-2. S2CID  117102095.
  111. ^ Pavlov, GG; Zavlin, VE (2000). "Radiación térmica de estrellas de neutrones aisladas". Procesos físicos altamente energéticos y mecanismos de emisión de plasmas astrofísicos . 195 : 103. Código Bib : 2000IAUS..195..103P.
  112. ^ Padre, E.; Kaspi, VM; Rescate, SM; Freire, PCC; Brasero, A.; Camilo, F.; Chatterjee, S.; Cordés, JM; Crawford, F.; Deneva, JS; Ferdman, RD; Hessels, JWT; Van Leeuwen, J.; Lyne, AG; Madsen, CE; McLaughlin, MA; Patel, C.; Scholz, P.; Escaleras, IH; Grapadoras, BW; Zhu, WW (2019). "Ocho púlsares de milisegundos descubiertos en la encuesta PALFA de Arecibo". La revista astrofísica . 886 (2): 148. arXiv : 1908.09926 . Código Bib : 2019ApJ...886..148P. doi : 10.3847/1538-4357/ab4f85 . S2CID  201646167.
  113. ^ Nakamura, T. (1989). "Modelo binario de colapso del núcleo giratorio y púlsar submilisegundo para SN1987A". Progresos de la Física Teórica . 81 (5): 1006-1020. Código bibliográfico : 1989PThPh..81.1006N. doi :10.1143/PTP.81.1006.
  114. ^ Di Stéfano, Rosanne (2020). "El lóbulo dinámico de Roche en ternas jerárquicas". Avisos mensuales de la Real Sociedad Astronómica . 491 (1): 495. arXiv : 1903.11618 . Código Bib : 2020MNRAS.491..495D. doi :10.1093/mnras/stz2572.
  115. ^ Thompson, Todd A.; Madrigueras, Adán; Meyer, Bradley S. (2001). "La física de los vientos de estrellas de protoneutrones: implicaciones para la nucleosíntesis del proceso r". La revista astrofísica . 562 (2): 887. arXiv : astro-ph/0105004 . Código Bib : 2001ApJ...562..887T. doi :10.1086/323861. S2CID  117093903.
  116. ^ Romaní, Roger W.; Kandel, D.; Filippenko, Alexei V.; Brink, Thomas G.; Zheng, WeiKang (11 de julio de 2022). "PSR J0952-0607: la estrella de neutrones galáctica más rápida y pesada conocida". Las cartas del diario astrofísico . 934 (2): L17. arXiv : 2207.05124 . Código Bib : 2022ApJ...934L..17R. doi : 10.3847/2041-8213/ac8007 . S2CID  250451299.

Fuentes

enlaces externos