stringtranslate.com

Kernel (álgebra lineal)

En matemáticas , el núcleo de una aplicación lineal , también conocido como espacio nulo o espacio nulo , es el subespacio lineal del dominio de la aplicación que se asigna al vector cero. [1] Es decir, dado un mapa lineal L  : VW entre dos espacios vectoriales V y W , el núcleo de L es el espacio vectorial de todos los elementos v de V tales que L ( v ) = 0 , donde 0 denota el vector cero en W , [2] o más simbólicamente:

Propiedades

Núcleo e imagen de un mapa lineal L de V a W

El núcleo de L es un subespacio lineal del dominio V. [3] [2] En el mapa lineal dos elementos de V tienen la misma imagen en W si y sólo si su diferencia radica en el núcleo de L , es decir,

De esto se deduce que la imagen de L es isomorfa al cociente de V por el núcleo:

Vde dimensión finitateorema de nulidad de rango
rangoLla nulidadL[4]

Cuando V es un espacio producto interno , el cociente se puede identificar con el complemento ortogonal en V de. Esta es la generalización a operadores lineales del espacio de filas , o coimagen, de una matriz.

Aplicación a módulos

La noción de núcleo también tiene sentido para homomorfismos de módulos , que son generalizaciones de espacios vectoriales donde los escalares son elementos de un anillo , en lugar de un campo . El dominio del mapeo es un módulo, y el núcleo constituye un submódulo . Aquí los conceptos de rango y nulidad no necesariamente se aplican.

En análisis funcional

If V and W are topological vector spaces such that W is finite-dimensional, then a linear operator LV → W is continuous if and only if the kernel of L is a closed subspace of V.

Representation as matrix multiplication

Consider a linear map represented as a m × n matrix A with coefficients in a field K (typically or ), that is operating on column vectors x with n components over K. The kernel of this linear map is the set of solutions to the equation Ax = 0, where 0 is understood as the zero vector. The dimension of the kernel of A is called the nullity of A. In set-builder notation,

The matrix equation is equivalent to a homogeneous system of linear equations:

Thus the kernel of A is the same as the solution set to the above homogeneous equations.

Subspace properties

The kernel of a m × n matrix A over a field K is a linear subspace of Kn. That is, the kernel of A, the set Null(A), has the following three properties:

  1. Null(A) always contains the zero vector, since A0 = 0.
  2. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.
  3. If x ∈ Null(A) and c is a scalar cK, then cx ∈ Null(A), since A(cx) = c(Ax) = c0 = 0.

The row space of a matrix

El producto A x se puede escribir en términos del producto escalar de vectores de la siguiente manera:

Aquí, a 1 , ... , am denotan las filas de la matriz A . De ello se deduce que x está en el núcleo de A , si y sólo si x es ortogonal (o perpendicular) a cada uno de los vectores fila de A (ya que la ortogonalidad se define como un producto escalar de 0).

El espacio de filas , o coimagen, de una matriz A es el intervalo de los vectores de filas de A. Según el razonamiento anterior, el núcleo de A es el complemento ortogonal del espacio de filas. Es decir, un vector x se encuentra en el núcleo de A , si y sólo si es perpendicular a cada vector en el espacio de filas de A.

La dimensión del espacio de filas de A se llama rango de A , y la dimensión del núcleo de A se llama nulidad de A. Estas cantidades están relacionadas por el teorema de rango-nulidad [4]

Espacio nulo izquierdo

El espacio nulo izquierdo , o cokernel , de una matriz A consta de todos los vectores columna x tales que x T A  =  0 T , donde T denota la transpuesta de una matriz. El espacio nulo izquierdo de A es el mismo que el núcleo de A T. El espacio nulo izquierdo de A es el complemento ortogonal del espacio columna de A y es dual al cokernel de la transformación lineal asociada. El núcleo, el espacio de filas, el espacio de columnas y el espacio nulo izquierdo de A son los cuatro subespacios fundamentales asociados a la matriz A.

Sistemas no homogéneos de ecuaciones lineales.

El núcleo también juega un papel en la solución de un sistema no homogéneo de ecuaciones lineales:

Si u y v son dos posibles soluciones a la ecuación anterior, entonces

Por tanto, la diferencia de dos soluciones cualesquiera de la ecuación A x =  b  reside en el núcleo de A.

De ello se deduce que cualquier solución de la ecuación A x  =  b puede expresarse como la suma de una solución fija v y un elemento arbitrario del núcleo. Es decir, la solución establecida para la ecuación A x  =  b es

Geométricamente, esto dice que la solución establecida en A x  =  b es la traslación del núcleo de A por el vector v . Véase también alternativa de Fredholm y plano (geometría) .

Ilustración

La siguiente es una ilustración sencilla del cálculo del núcleo de una matriz (consulte § Cálculo mediante eliminación gaussiana, más adelante para conocer métodos más adecuados para cálculos más complejos). La ilustración también aborda el espacio de las filas y su relación con el núcleo.

Considere la matriz

El núcleo de esta matriz consta de todos los vectores ( x , y , z ) ∈ R 3 para los cuales

que se puede expresar como un sistema homogéneo de ecuaciones lineales que involucran x , y y z :

Las mismas ecuaciones lineales también se pueden escribir en forma matricial como:

Mediante la eliminación de Gauss-Jordan , la matriz se puede reducir a:

Reescribir la matriz en forma de ecuación produce:

Los elementos del núcleo se pueden expresar además en forma de vector paramétrico , de la siguiente manera:

Dado que c es una variable libre que abarca todos los números reales, esto se puede expresar igualmente bien como:

El núcleo de A es precisamente el conjunto de soluciones de estas ecuaciones (en este caso, una recta que pasa por el origen en R 3 ). Aquí, dado que el vector (−1,−26,16) T constituye una base del núcleo de A . La nulidad de A es 1.

Los siguientes productos escalares son cero:

lo que ilustra que los vectores en el núcleo de A son ortogonales a cada uno de los vectores fila de A.

Estos dos vectores fila ( linealmente independientes) abarcan el espacio fila de A , un plano ortogonal al vector (−1,−26,16) T.

Con el rango 2 de A , la nulidad 1 de A y la dimensión 3 de A , tenemos una ilustración del teorema de nulidad de rango.

Ejemplos

Cálculo por eliminación gaussiana

La base del núcleo de una matriz se puede calcular mediante eliminación gaussiana .

Para este propósito, dada una matriz A de m × n , construimos primero la matriz aumentada por filas donde I es la matriz identidad de n × n .

Calculando su forma escalonada de columnas mediante eliminación gaussiana (o cualquier otro método adecuado), obtenemos una matriz A base del núcleo de A que consiste en las columnas distintas de cero de C , de modo que la columna correspondiente de B es una columna cero .

De hecho, el cálculo puede detenerse tan pronto como la matriz superior esté en forma escalonada de columnas: el resto del cálculo consiste en cambiar la base del espacio vectorial generado por las columnas cuya parte superior es cero.

Por ejemplo, supongamos que

Entonces

Poner la parte superior en forma escalonada de columnas mediante operaciones de columna en toda la matriz da

Las últimas tres columnas de B son columnas cero. Por tanto, los tres últimos vectores de C ,

son una base del núcleo de A .

Prueba de que el método calcula el núcleo: dado que las operaciones de columna corresponden a la posmultiplicación por matrices invertibles, el hecho de que se reduzca a significa que existe una matriz invertible tal que en forma escalonada de columnas. Por lo tanto , y Un vector de columna pertenece al núcleo de (es decir , ) si y sólo si donde As está en forma escalonada de columnas, si y sólo si las entradas distintas de cero de corresponden a las columnas cero de Al multiplicar por , se puede deducir que esto es el caso si y sólo si es una combinación lineal de las columnas correspondientes de

Computación numérica

El problema de calcular el núcleo en una computadora depende de la naturaleza de los coeficientes.

Coeficientes exactos

Si los coeficientes de la matriz son números exactamente dados, la forma escalonada de columnas de la matriz puede calcularse mediante el algoritmo de Bareiss de manera más eficiente que con la eliminación gaussiana. Es aún más eficiente utilizar la aritmética modular y el teorema del resto chino , lo que reduce el problema a varios problemas similares en campos finitos (esto evita la sobrecarga inducida por la no linealidad de la complejidad computacional de la multiplicación de enteros). [ cita necesaria ]

Para los coeficientes en un campo finito, la eliminación gaussiana funciona bien, pero para las matrices grandes que ocurren en la criptografía y el cálculo de base de Gröbner , se conocen mejores algoritmos, que tienen aproximadamente la misma complejidad computacional , pero son más rápidos y se comportan mejor con el hardware informático moderno . [ cita necesaria ]

Cálculo de punto flotante

Para matrices cuyas entradas son números de punto flotante , el problema de calcular el núcleo sólo tiene sentido para matrices en las que el número de filas es igual a su rango: debido a los errores de redondeo , una matriz de punto flotante casi siempre tiene un rango completo , incluso cuando se trata de una aproximación de una matriz de rango mucho menor. Incluso para una matriz de rango completo, es posible calcular su núcleo sólo si está bien condicionado , es decir, tiene un número de condición bajo . [5] [ cita necesaria ]

Incluso para una matriz de rango completo bien condicionada, la eliminación gaussiana no se comporta correctamente: introduce errores de redondeo que son demasiado grandes para obtener un resultado significativo. Como el cálculo del núcleo de una matriz es un caso especial de resolución de un sistema homogéneo de ecuaciones lineales, el núcleo puede calcularse mediante cualquiera de los diversos algoritmos diseñados para resolver sistemas homogéneos. Un software de última generación para este propósito es la biblioteca Lapack . [ cita necesaria ]

Ver también

notas y referencias

  1. ^ Weisstein, Eric W. "Núcleo". mathworld.wolfram.com . Consultado el 9 de diciembre de 2019 .
  2. ^ ab "Kernel (espacio nulo) | Wiki brillante de matemáticas y ciencias". brillante.org . Consultado el 9 de diciembre de 2019 .
  3. ^ El álgebra lineal, como se analiza en este artículo, es una disciplina matemática muy bien establecida para la cual existen muchas fuentes. Casi todo el material de este artículo se puede encontrar en Lay 2005, Meyer 2001 y las conferencias de Strang.
  4. ^ ab Weisstein, Eric W. "Teorema de nulidad de rangos". mathworld.wolfram.com . Consultado el 9 de diciembre de 2019 .
  5. ^ "Copia archivada" (PDF) . Archivado desde el original (PDF) el 29 de agosto de 2017 . Consultado el 14 de abril de 2015 .{{cite web}}: CS1 maint: archived copy as title (link)

Bibliografía

enlaces externos