stringtranslate.com

Microbiología de la enfermedad de Lyme

Borrelia burgdorferi una de las especies causantes de la enfermedad de Lyme (borreliosis). Ampliada 400 veces.

La enfermedad de Lyme , o borreliosis, es causada por bacterias espiroquetas del género Borrelia , [1] que cuenta con 52 especies conocidas. Tres especies ( Borrelia garinii , Borrelia afzelii y Borrelia burgdorferi s.s. ) son los principales agentes causantes de la enfermedad en humanos, [2] mientras que otras han sido implicadas como posiblemente patógenas. [3] [4] Las especies de Borrelia en el complejo de especies que se sabe que causan la enfermedad de Lyme se denominan colectivamente Borrelia burgdorferi sensu lato ( sl ), y no deben confundirse con la especie única Borrelia burgdorferi sensu estricto , un miembro del complejo, que es responsable. para casi todos los casos de enfermedad de Lyme en América del Norte. [5]

Las Borrelia son microaerófilas y de crecimiento lento. La razón principal de los largos retrasos en el diagnóstico de la enfermedad de Lyme es su mayor diversidad de cepas de lo que se estimaba anteriormente. [6] Las cepas difieren en los síntomas clínicos y/o la presentación, así como en la distribución geográfica. [7]

A excepción de Borrelia recurrentis (que causa fiebre recurrente transmitida por piojos y se transmite por el piojo del cuerpo humano), se cree que todas las especies conocidas se transmiten por garrapatas . [8]

Especies y cepas

Hasta hace poco, se pensaba que sólo tres genoespecies causaban la enfermedad de Lyme (borreliosis): B. burgdorferi s.s. (la especie predominante en América del Norte , pero también presente en Europa ); B. afzelii ; y B. garinii (ambas predominantes en Eurasia ).

Se han identificado en todo el mundo trece clasificaciones genómicas distintas de las bacterias de la enfermedad de Lyme. Estos incluyen, entre otros, B. burgdorferi ss , B. afzelii , B. garinii , B. valaisana , B. lusitaniae , B. andersoni , 25015, DN127, CA55, 25015, HK501, B. miyamotoi y B. japonica. . [9] Muchos de estos grupos genómicos son específicos de un país o continente. Por ejemplo, sin migración, B. japonica sólo prevalece en el hemisferio oriental. [9]

Las variaciones genómicas tienen implicaciones directas sobre los síntomas clínicos de la enfermedad de Lyme transmitida por garrapatas. Por ejemplo, B. burgdorferi s.s. La enfermedad de Lyme transmitida por garrapatas puede manifestarse con síntomas similares a los de la artritis . [9] Por el contrario, la enfermedad de Lyme transmitida por garrapatas de B. garinii puede causar una infección del sistema nervioso central . [9]

Genoespecies emergentes

También se ha descubierto que genoespecies recientemente descubiertas causan enfermedades en humanos:

Otras genoespecies de B. burgdorferi sensu lato que se sospecha que causan enfermedades, pero que no se han confirmado mediante cultivo, incluyen B. japonica , B. tanukii y B. turdae (Japón); B. sínica (China); y B. andersonii (Estados Unidos). Algunas de estas especies son transportadas por garrapatas que actualmente no se reconocen como portadoras de la enfermedad de Lyme. [ cita necesaria ]

También se sospecha que la espiroqueta B. miyamotoi , relacionada con el grupo de espiroquetas de la fiebre recurrente , causa enfermedades en Japón. Recientemente se han encontrado espiroquetas similares a B. miyamotoi en las garrapatas Ixodes ricinus en Suecia y en I. scapularis en los EE. UU. [18] [19] [20]

Taxonomía

A partir de 2021, se sabe que el complejo de especies de B. burgdorferi sl incluye las siguientes especies : [21] (Supp. S1)

Como estas especies se diferencian principalmente por la genética, generalmente se las denomina genoespecies .

Epidemiología

La enfermedad de Lyme es más endémica en las regiones templadas del hemisferio norte , [22] [23] pero se han descrito casos esporádicos en otras áreas del mundo.

El número de casos notificados de borreliosis ha ido aumentando, al igual que las regiones endémicas de América del Norte. De los casos notificados a los Centros para el Control y la Prevención de Enfermedades (CDC) de los Estados Unidos , la tasa de infección por la enfermedad de Lyme es de 7,9 casos por cada 100.000 personas. En los 10 estados donde la enfermedad de Lyme es más común, el promedio fue de 31,6 casos por 100.000 personas en 2005. [24] Aunque ahora se ha informado de la enfermedad de Lyme en 49 de los 50 estados de EE. UU. (todos menos Hawaii), alrededor del 99% de Todos los casos reportados se limitan a solo cinco áreas geográficas ( Nueva Inglaterra , Atlántico Medio, Centro-Norte Este, Atlántico Sur y Centro-Noroeste). [25]

En Europa, los casos de B. burgdorferi s.l. Las garrapatas infectadas se encuentran predominantemente en Noruega, Países Bajos, Alemania, Francia, Italia, Eslovenia y Polonia, pero se han aislado en casi todos los países del continente. Las estadísticas sobre la enfermedad de Lyme en Europa se pueden encontrar en el sitio web de Eurosurveillance.

Borrelia burgdorferi s.l. -Las garrapatas infestadas se encuentran con mayor frecuencia en Japón, así como en el noroeste de China y el extremo oriental de Rusia. [26] [27] Borrelia también ha sido aislada en Mongolia. [28]

En América del Sur , el reconocimiento y la aparición de enfermedades transmitidas por garrapatas están aumentando. Garrapatas portadoras de B. burgdorferi s.l. , así como enfermedades transmitidas por garrapatas caninas y humanas, han sido ampliamente reportadas en Brasil, pero la subespecie de Borrelia aún no ha sido definida. [29] El primer caso reportado de enfermedad de Lyme en Brasil se realizó en 1993 en Sao Paulo . [30] Se han identificado antígenos sensu estricto de B. burgdorferi en pacientes en Colombia y Bolivia . B. burgorferi ha sido reportada en las Islas de la Bahía de Honduras. [ cita necesaria ]

En el norte de África , B. burgdorferi s.s. Se ha identificado en Marruecos , Argelia , Egipto y Túnez . [31] [32] [33]

En África occidental y subsahariana , la fiebre recurrente transmitida por garrapatas se reconoce desde hace más de un siglo, desde que fue aislada por primera vez por los médicos británicos Joseph Everett Dutton y John Lancelot Todd en 1905. Borrelia en la manifestación de la enfermedad de Lyme en esta región Actualmente se desconoce, pero la evidencia indica que la enfermedad puede ocurrir en humanos en el África subsahariana. La abundancia de huéspedes y vectores de garrapatas favorecería el establecimiento de la infección en África. [34] En África Oriental se han notificado dos casos de enfermedad de Lyme en Kenia . [35]

En Australia , no existe evidencia definitiva de la existencia de B. burgdorferi o de cualquier otra espiroqueta transmitida por garrapatas que pueda ser responsable de un síndrome local reportado como enfermedad de Lyme. [36] Se han documentado casos de neuroborreliosis en Australia, pero a menudo se atribuyen a viajes a otros continentes. La existencia de la enfermedad de Lyme en Australia es controvertida. [37]

Ciclo vital

El ciclo de vida de B. burgdorferi es complejo y requiere garrapatas y especies que sean reservorios competentes, a menudo pequeños roedores . Los ratones son el principal reservorio de la bacteria. [ cita necesaria ]

Las garrapatas duras tienen una variedad de historias de vida con respecto a optimizar sus posibilidades de contacto con un huésped apropiado para asegurar la supervivencia. Las etapas de vida de las garrapatas blandas no se distinguen fácilmente. La primera etapa que sale del huevo, una larva de seis patas, se alimenta de sangre de un huésped y muda a la primera etapa ninfal. A diferencia de las garrapatas duras, muchas garrapatas blandas pasan por múltiples etapas ninfales , aumentando gradualmente de tamaño hasta la muda final hasta la etapa adulta. [ cita necesaria ]

El ciclo de vida de la garrapata de patas negras, comúnmente llamada garrapata del venado ( Ixodes scapularis ) comprende tres etapas de crecimiento: larva , ninfa y adulto. [ cita necesaria ]

Mientras que B. burgdorferi está más asociada con las garrapatas de los ciervos y el ratón de patas blancas , [38] B. afzelli se detecta con mayor frecuencia en las garrapatas vectoras que se alimentan de roedores, y B. garinii y B. valaisiana parecen estar asociadas con las aves. Tanto los roedores como las aves son huéspedes reservorios competentes de B. burgdorferi en sentido estricto . La resistencia de una genoespecie de espiroquetas de la enfermedad de Lyme a las actividades bacteriolíticas del sistema inmunológico alternativo del complemento de varias especies hospedadoras puede determinar su asociación con el reservorio-hospedador.

Características genómicas

El genoma de B. burgdorferi (cepa B31) fue el tercer genoma microbiano jamás secuenciado, después de la secuenciación de H. influenzae y M. genitalium en 1995, y su cromosoma contiene 910.725 pares de bases y 853 genes. [39] Una de las características más llamativas de B. burgdorferi en comparación con otras bacterias es su genoma inusual , que es mucho más complejo que el de su prima espiroqueta Treponema pallidum , el agente de la sífilis . [40] Además de un cromosoma lineal, el genoma de la cepa B31 de B. burgdorferi incluye 21 plásmidos (12 lineales y 9 circulares), con diferencia el mayor número de plásmidos encontrados en cualquier bacteria conocida. [41] El intercambio genético, incluidas las transferencias de plásmidos, contribuye a la patogenicidad del organismo. [42] El cultivo a largo plazo de B. burgdorferi produce una pérdida de algunos plásmidos y cambios en los perfiles de proteínas expresadas. A la pérdida de plásmidos se asocia una pérdida de la capacidad del organismo para infectar animales de laboratorio, lo que sugiere que los plásmidos codifican genes clave implicados en la virulencia . [ cita necesaria ]

El análisis químico de la membrana externa de B. burgdorferi reveló la presencia de un 46% de proteínas, un 51% de lípidos y un 3% de carbohidratos. [43]

Estructura y crecimiento

B. burgdorferi es una espiroqueta de onda plana, de dos membranas, móvil y altamente especializada , que mide entre 9 y 32 μm de longitud. [44] Debido a su envoltura de doble membrana, a menudo se describe erróneamente como Gram negativo , [45] aunque se tiñe débilmente en la tinción de Gram . Las membranas bacterianas de al menos las cepas B31, NL303 y N40 de B. burgdorferi no contienen lipopolisacárido , lo cual es extremadamente atípico para las bacterias Gram negativas; en cambio, las membranas contienen glicolípidos . [46] Sin embargo, se ha descubierto que las membranas de la cepa B31 contienen un componente similar al lipopolisacárido. [47] B. burgdorferi es un organismo microaerofílico que requiere poco oxígeno para sobrevivir. A diferencia de la mayoría de las bacterias, B. burgdorferi no utiliza hierro, evitando así la dificultad de adquirir hierro durante la infección. [48] ​​Vive principalmente como un patógeno extracelular .

Al igual que otras espiroquetas, como Treponema pallidum (el agente de la sífilis ), B. burgdorferi tiene un filamento axial compuesto de flagelos que discurren longitudinalmente entre su pared celular y su membrana externa. Esta estructura permite que la espiroqueta se mueva eficientemente en forma de sacacorchos a través de medios viscosos , como el tejido conectivo . [ cita necesaria ]

B. burgdorferi tiene un crecimiento muy lento, con un tiempo de duplicación de 12 a 18 horas [49] (en contraste con patógenos como Streptococcus y Staphylococcus , que tienen un tiempo de duplicación de 20 a 30 minutos).

Variantes morfológicas

La bacteria B. burgdorferi ocasionalmente adopta formas aproximadamente esféricas u otras formas atípicas. A veces se les ha denominado "quistes" o " formas L ", pero no parecen ser verdaderos quistes microbianos y ahora se prefiere el término cauteloso "cuerpos redondos". Además de in vitro, ocasionalmente se han observado en muestras de tejido tomadas de erupciones de eritema migratorio . En algunos experimentos in vitro, los cuerpos redondos parecían formarse en respuesta a condiciones adversas, como un medio de cultivo que no contenía suero ni fármacos antimicrobianos. [50] [51] [52]

Los defensores de la teoría de la " enfermedad de Lyme crónica " a veces proponen la formación de cuerpos redondos como una forma en que B. burgdorferi podría sobrevivir a los protocolos de tratamiento con antibióticos estándar. Sin embargo, una revisión de 2014 encontró que actualmente no había evidencia clara de esto y señaló que las muestras de pacientes diagnosticados con enfermedad de Lyme crónica después de un tratamiento con antibióticos generalmente no mostraban cuerpos redondos (y, de hecho, a menudo tampoco espiroquetas), lo que sugiere que sus síntomas podrían ser debido a algo más que a la bacteria B. burgdorferi sobreviviente . [51] [52]

Proteínas de la superficie exterior

La membrana externa de B. burgdorferi está compuesta por varias proteínas de la superficie externa (Osp) únicas llamadas OspA a OspF. Las proteínas Osp son lipoproteínas ancladas por moléculas de ácidos grasos unidas en el extremo N-terminal a la membrana. [53] Se presume que desempeñan un papel en la virulencia, la transmisión o la supervivencia de la garrapata.

OspA, OspB y OspD son expresados ​​por B. burgdorferi que reside en el intestino de las garrapatas no alimentadas, lo que sugiere que promueven la persistencia de la espiroqueta en las garrapatas entre comidas de sangre. [54] [55] Durante la transmisión al huésped mamífero, cuando la garrapata ninfal comienza a alimentarse y las espiroquetas en el intestino medio comienzan a multiplicarse rápidamente, la mayoría de las espiroquetas dejan de expresar OspA en sus superficies. Simultáneamente con la desaparición de OspA, la población de espiroquetas en el intestino medio comienza a expresar un OspC y migra a la glándula salival. La regulación positiva de OspC comienza durante el primer día de alimentación y alcanza su punto máximo 48 horas después de la unión. [56]

Los genes OspA y OspB codifican las principales proteínas de la membrana externa de B. burgdorferi . Las dos proteínas Osp muestran un alto grado de similitud de secuencia, lo que indica un evento de duplicación reciente. [57] Prácticamente todas las espiroquetas en el intestino medio de una garrapata ninfa no alimentada expresan OspA. OspA promueve la unión de B. burgdorferi a la proteína de garrapata TROSPA, presente en las células epiteliales del intestino de las garrapatas. [58] OspB también tiene un papel esencial en la adherencia de B. burgdorferi al intestino de la garrapata. [59] Aunque se ha demostrado que OspD se une a extractos intestinales de garrapatas in vitro , así como a OspA y OspB, no es esencial para la unión y colonización del intestino de garrapatas, y no es necesario para las infecciones humanas. [55]

OspC es un antígeno fuerte ; la detección de su presencia por parte del organismo huésped estimula una respuesta inmune. Si bien cada célula bacteriana individual contiene solo una copia del gen ospC , la secuencia genética de ospC entre las diferentes cepas dentro de cada una de las tres principales especies de la enfermedad de Lyme es muy variable. [60] OspC desempeña un papel esencial durante la etapa inicial de la infección en mamíferos. [61] En las garrapatas infectadas que se alimentan de un huésped mamífero, OspC también puede ser necesaria para permitir que B. burgdorferi invada y se adhiera a la glándula salival después de salir del intestino, aunque no todos los estudios coinciden en ese papel de la proteína. [62] [63] OspC se adhiere a la proteína salival de la garrapata Salp15, que protege la espiroqueta del complemento y altera la función de las células dendríticas . [64] [65] [66]

OspE y OspF se identificaron inicialmente en la cepa N40 de B. burgdorferi . [67] Los genes ospE y ospF están dispuestos estructuralmente en conjunto como una unidad transcripcional bajo el control de un promotor común. [67] Las cepas individuales de B. burgdorferi portan múltiples copias relacionadas del locus ospEF , que ahora se denominan colectivamente genes Erp (proteína relacionada similar a OspE/F). En las cepas B31 y 297 de B. burgdoreri , la mayoría de los loci Erp ocupan la misma posición en las múltiples copias del plásmido cp32 presente en estas cepas. [68] Cada locus consta de uno o dos genes Erp . Cuando hay dos genes presentes, se transcriben como un operón , aunque en algunos casos, un promotor interno en el primer gen también puede transcribir el segundo gen. [69] Se propuso que la presencia de múltiples proteínas Erp era importante para permitir que B. burgdorferi evadiera la muerte mediante la vía alternativa del complemento de una amplia gama de huéspedes animales potenciales, ya que las proteínas Erp individuales exhibían diferentes patrones de unión al factor H regulador del complemento. de diferentes animales. [70] Sin embargo, recientemente se demostró que la presencia del factor H no es necesaria para permitir que B. burgdorferi infecte ratones, lo que sugiere que las proteínas Erp tienen una función adicional. [71]

Mecanismos de persistencia

B. burgdorferi es susceptible a varios antibióticos en humanos. Sin embargo, B. burgdorferi no tratada puede persistir en humanos durante meses o años. En América del Norte y Europa, la artritis de Lyme puede persistir, mientras que Europa también incluye una afección cutánea persistente llamada acrodermatitis crónica atrófica . [72]

Variación antigénica y expresión genética.

Al igual que la Borrelia que provoca la fiebre recurrente , B. burgdorferi tiene la capacidad de variar sus proteínas de superficie en respuesta al ataque inmunológico . [73] [74] Esta capacidad está relacionada con la complejidad genómica de B. burgdorferi y es otra forma en que B. burgdorferi evade el sistema inmunológico para establecer una infección crónica. [75]

Referencias

  1. ^ Radolf JD, Samuels DS, eds. (2021). Enfermedad de Lyme y espiroquetas de la fiebre recurrente: genómica, biología molecular, interacciones con el huésped y patogénesis de la enfermedad. Prensa académica Caister. ISBN 978-1-913652-61-6.
  2. ^ Stanek, Geroldo; Wormser, Gary P; Gris, Jeremy; Strle, Franc (7 de septiembre de 2011). "Borreliosis de Lyme". La Lanceta . 379 (9814): 461–73. doi :10.1016/S0140-6736(11)60103-7. PMID  21903253. S2CID  31461047.
  3. ^ Cutler SJ, Ruzic-Sabljic E, Potkonjak A (2016). "Borreliae emergentes: expansión más allá de la borreliosis de Lyme" (PDF) . Sondas Moleculares y Celulares . 31 : 22-27. doi :10.1016/j.mcp.2016.08.003. PMID  27523487.
  4. ^ Pritt, Bobbi S (5 de febrero de 2016). "Identificación de una nueva especie patógena de Borrelia que causa borreliosis de Lyme con espiroquetemia inusualmente alta: un estudio descriptivo". Enfermedades infecciosas de The Lancet . 16 (5): 556–564. doi :10.1016/S1473-3099(15)00464-8. PMC 4975683 . PMID  26856777. 
  5. ^ Tilly, equipo; Rosa, Patricia A.; Stewart, Philip E. (2008). "Biología de la infección por Borrelia burgdorferi". Clínicas de enfermedades infecciosas de América del Norte . 22 (2): 217–234. doi :10.1016/j.idc.2007.12.013. PMC 2440571 . PMID  18452798. 
  6. ^ Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG (2004). "La tipificación de secuencia revela una amplia diversidad de cepas de los agentes de la borreliosis de Lyme, Borrelia burgdorferi en América del Norte y Borrelia afzelii en Europa" (PDF) . Microbiología . 150 (parte 6): 1741–55. doi :10.1099/mic.0.26944-0. PMID  15184561.
  7. ^ Ryan KJ, Ray CG, eds. (2004). Microbiología médica Sherris (4ª ed.). McGraw-Hill. ISBN 978-0-8385-8529-0.
  8. ^ Felsenfeld O. (1971).Borrelia : cepas, vectores, borreliosis humana y animal . San Luis: Warren H. Green, Inc.
  9. ^ abcd Habálek, Z.; Halouzka, J. (1 de diciembre de 1997). "Distribución de grupos genómicos de Borrelia burgdorferi sensu lato en Europa, una revisión". Revista europea de epidemiología . 13 (8): 951–957. doi :10.1023/A:1007426304900. ISSN  0393-2990. PMID  9476827. S2CID  24388378.
  10. ^ Wang G, van Dam AP, Le Fleche A, et al. (1997). "Análisis genético y fenotípico de Borrelia valaisiana sp. nov. (grupos genómicos de Borrelia VS116 y M19)". Int. J. Sistema. Bacteriol . 47 (4): 926–932. doi : 10.1099/00207713-47-4-926 . PMID  9336888.
  11. ^ Diza E, Papa A, Vezyri E, Tsounis S, Milonas I, Antoniadis A (2004). "Borrelia valaisiana en líquido cefalorraquídeo". Infección emergente. Dis . 10 (9): 1692–3. doi : 10.3201/eid1009.030439. PMC 3320289 . PMID  15503409. 
  12. ^ Masuzawa T (2004). "Distribución terrestre del agente de la borreliosis de Lyme, Borrelia burgdorferi sensu lato, en el este de Asia". Japón. J. Infectar. Dis . 57 (6): 229–235. PMID  15623946.
  13. ^ Collares-Pereira M, Couceiro S, Franca I, Kurtenbach K, Schafer SM, Vitorino L, Goncalves L, Baptista S, Vieira ML, Cunha C (2004). "Primer aislamiento de Borrelia lusitaniae de un paciente humano". J Clin Microbiol . 42 (3): 1316–8. doi :10.1128/JCM.42.3.1316-1318.2004. PMC 356816 . PMID  15004107. 
  14. ^ Postic D, Ras NM, Lane RS, Hendson M, Baranton G (1998). "Diversidad ampliada entre los aislados de Borrelia de California y descripción de Borrelia bissettii sp. nov. (anteriormente grupo Borrelia DN127)". J Clin Microbiol . 36 (12): 3497–3504. doi :10.1128/JCM.36.12.3497-3504.1998. PMC 105228 . PMID  9817861. 
  15. ^ Maraspin V, Cimperman J, Lotric-Furlan S, Ruzic-Sabljic E, Jurca T, Picken RN, Strle F (2002). "Linfocitoma borrelial solitario en pacientes adultos". Wien Klin Wochenschr . 114 (13–14): 515–523. PMID  12422593.
  16. ^ Richter D, Postic D, Sertour N, Livey I, Matuschka FR, Baranton G (2006). "Delineación de especies de Borrelia burgdorferi sensu lato mediante análisis de secuencia multilocus y confirmación de la delimitación de Borrelia spielmanii sp. nov". Int J Syst Evol Microbiol . 56 (Parte 4): 873–881. doi : 10.1099/ijs.0.64050-0 . PMID  16585709.
  17. ^ Foldvari G, Farkas R, Lakos A (2005). "Borrelia spielmanii eritema migratorio, Hungría". Enfermedades infecciosas emergentes . 11 (11): 1794–5. doi : 10.3201/eid1111.050542. PMC 3367353 . PMID  16422006. 
  18. ^ Scoles GA, Papero M, Beati L, Fish D (2001). "Una espiroqueta del grupo de la fiebre recurrente transmitida por garrapatas Ixodes scapularis ". Enfermedades transmitidas por vectores y zoonóticas . 1 (1): 21–34. doi : 10.1089/153036601750137624. PMID  12653133.
  19. ^ Bunikis J, Tsao J, Garpmo U, Berglund J, Fish D, Barbour AG (2004). "Tipificación de cepas del grupo de fiebre recurrente de Borrelia". Enfermedades infecciosas emergentes . 10 (9): 1661–4. doi : 10.3201/eid1009.040236. PMC 3320305 . PMID  15498172. 
  20. ^ McNeil, Donald (19 de septiembre de 2011). "Se descubre una nueva enfermedad transmitida por garrapatas". Los New York Times . págs. D6 . Consultado el 20 de septiembre de 2011 .
  21. ^ Wolcott, Katherine A.; Margos, Gabriele; Fingerle, Volker; Becker, Noémie S. (1 de septiembre de 2021). "Asociación anfitriona de Borrelia burgdorferi sensu lato: una revisión". Garrapatas y enfermedades transmitidas por garrapatas . 12 (5): 101766. doi : 10.1016/j.ttbdis.2021.101766. ISSN  1877-959X. PMID  34161868.
  22. ^ Grubhoffer L, Golovchenko M, Vancova M, Zacharovova-Slavickova K, Rudenko N, Oliver JH Jr (noviembre de 2005). "Borreliosis de Lyme: conocimientos sobre las relaciones garrapata/hospedador-borrelia". Folia Parasitol (Praga) . 52 (4 (Revisión)): 279–294. doi : 10.14411/fp.2005.039 . PMID  16405291.
  23. ^ Higgins R (agosto de 2004). "Enfermedades zoonóticas bacterianas emergentes o reemergentes: bartonelosis, leptospirosis, borreliosis de Lyme, peste". Rev. Ciencia. Tecnología . 23 (2): 569–581. doi :10.20506/rst.23.2.1503. PMID  15702720.
  24. ^ "DVBID: ascenso de la enfermedad - enfermedad de Lyme de los CDC". 2006-10-02 . Consultado el 23 de agosto de 2007 .
  25. ^ "Estadísticas de la enfermedad de Lyme". Centros para el Control y la Prevención de Enfermedades (CDC). 2007-04-02 . Consultado el 23 de agosto de 2007 .
  26. ^ Li M, Masuzawa T, Takada N, Ishiguro F, Fujita H, Iwaki A, Wang H, Wang J, Kawabata M, Yanagihara Y (julio de 1998). "Las especies de Borrelia de la enfermedad de Lyme en el noreste de China se parecen a las aisladas del lejano oriente de Rusia y Japón". Appl Environ Microbiol . 64 (7): 2705–9. Código Bib : 1998ApEnM..64.2705L. doi :10.1128/AEM.64.7.2705-2709.1998. PMC 106449 . PMID  9647853. 
  27. ^ Masuzawa T (diciembre de 2004). "Distribución terrestre del agente de la borreliosis de Lyme, Borrelia burgdorferi sensu lato, en el este de Asia". Jpn J Infect Dis . 57 (6): 229–235. PMID  15623946.
  28. ^ Walder G, Lkhamsuren E, Shagdar A, Bataa J, Batmunkh T, Orth D, Heinz FX, Danichova GA, Khasnatinov MA, Wurzner R, Dierich MP (mayo de 2006). "Evidencia serológica de encefalitis transmitida por garrapatas, borreliosis y anaplasmosis granulocítica humana en Mongolia". Int J Med Microbiol . 296 (Suplemento 40): 69–75. doi :10.1016/j.ijmm.2006.01.031. PMID  16524782.
  29. ^ Mantovani E, Costa IP, Gauditano G, Bonoldi VL, Higuchi ML, Yoshinari NH (abril de 2007). "Descripción del síndrome similar a la enfermedad de Lyme en Brasil: ¿es una nueva enfermedad transmitida por garrapatas o una variación de la enfermedad de Lyme?". Braz J Med Biol Res . 40 (4): 443–456. doi : 10.1590/S0100-879X2006005000082 . PMID  17401487.
  30. ^ Yoshinari NH, Oyafuso LK, Monteiro FG, de Barros PJ, da Cruz FC, Ferreira LG, Bonasser F, Baggio D, Cossermelli W (julio-agosto de 1993). "Enfermedad de Lyme. Informe de un caso observado en Brasil". Rev Hosp Clin Fac Med Sao Paulo . 48 (4): 170–4. PMID  8284588.
  31. ^ Bouattour A, Ghorbel A, Chabchoub A, Postic D (2004). "Situación de la borreliosis de Lyme en el norte de África". Arco Inst Pasteur Túnez . 81 (1–4): 13–20. PMID  16929760.
  32. ^ Dsouli N, Younsi-Kabachii H, Postic D, Nouira S, Gern L, Bouattour A (julio de 2006). "Papel de reservorio del lagarto Psammodromus algirus en el ciclo de transmisión de Borrelia burgdorferi sensu lato (Spirochaetaceae) en Túnez" (PDF) . Revista de Entomología Médica . 43 (4): 737–742. doi :10.1603/0022-2585(2006)43[737:RROLPA]2.0.CO;2. ISSN  0022-2585. PMID  16892633. S2CID  24774778.
  33. ^ Helmy N (agosto de 2000). "Abundancia estacional de Ornithodoros (O.) savignyi y prevalencia de infección por espiroquetas de Borrelia en Egipto". J Egipto Soc Parasitol . 30 (2): 607–619. PMID  10946521.
  34. ^ Fivaz BH, Petney TN (septiembre de 1989). "La enfermedad de Lyme: ¿una nueva enfermedad en el sur de África?". JS Afr Vet Assoc . 60 (3): 155–8. PMID  2699499.
  35. ^ Jowi JO, Gathua SN (mayo de 2005). "Enfermedad de Lyme: informe de dos casos". East Afr Med J. 82 (5): 267–9. doi : 10.4314/eamj.v82i5.9318. PMID  16119758.
  36. ^ Piesman J, Stone BF (febrero de 1991). "Competencia vectorial de la garrapata parálisis australiana, Ixodes holocyclus , para la espiroqueta Borrelia burgdorferi de la enfermedad de Lyme ". Int J Parasitol . 21 (1): 109–111. doi :10.1016/0020-7519(91)90127-S. PMID  2040556.
  37. ^ "Lyme: una palabra de cuatro letras". Informe informativo nacional de ABC Radio . Corporación Australiana de Radiodifusión. 12 de mayo de 2013 . Consultado el 12 de mayo de 2013 .
  38. ^ Wallis RC, Brown SE, Kloter KO, Main AJ Jr (octubre de 1978). " Eritema crónico migratorio y artritis de Lyme: estudio de campo de garrapatas". Soy J Epidemiol . 108 (4): 322–7. doi : 10.1093/oxfordjournals.aje.a112626. PMID  727201.
  39. ^ Fraser, Claire M.; Casjens, S; Huang, WM; Sutton, GG; Clayton, R; Latigra, R; Blanco, O; Ketchum, KA; et al. (1997). "Secuencia genómica de una espiroqueta de la enfermedad de Lyme, Borrelia burgdorferi". Naturaleza . 390 (6660): 580–6. Código Bib :1997Natur.390..580F. doi : 10.1038/37551 . PMID  9403685. S2CID  4388492.
  40. ^ Porcella SF, Schwan TG (2001). "Borrelia burgdorferi y Treponema pallidum: una comparación de genómica funcional, adaptaciones ambientales y mecanismos patogénicos". J Clin invertir . 107 (6): 651–6. doi :10.1172/JCI12484. PMC 208952 . PMID  11254661. 
  41. ^ Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM (2000). "Un genoma bacteriano en proceso de cambio: los doce ADN extracromosómicos lineales y nueve circulares en un aislado infeccioso de la espiroqueta Borrelia burgdorferi de la enfermedad de Lyme ". Mol Microbiol . 35 (3): 490–516. doi :10.1046/j.1365-2958.2000.01698.x. PMID  10672174. S2CID  728832.
  42. ^ Qiu WG, Schutzer SE, Bruno JF, Attie O, Xu Y, Dunn JJ, Fraser CM, Casjens SR, Luft BJ (2004). "Intercambio genético y transferencias de plásmidos en Borrelia burgdorferi sensu estricto revelados mediante comparaciones de genomas de tres vías y tipificación de secuencias multilocus" (PDF) . Proc Natl Acad Sci Estados Unidos . 101 (39): 14150–5. Código Bib : 2004PNAS..10114150Q. doi : 10.1073/pnas.0402745101 . PMC 521097 . PMID  15375210. 
  43. ^ Schwarzová K (junio de 1993). "Borreliosis de Lyme: revisión de los conocimientos actuales". Cesk Epidemiol Mikrobiol Imunol . 42 (2): 87–92. PMID  8348630.
  44. ^ Goldstein SF, Charon NW, Kreiling JA (1994). "Borrelia burgdorferi nada con una forma de onda plana similar a la de los flagelos eucariotas". Proc. Nacional. Acad. Ciencia. EE.UU . 91 (8): 3433–7. Código bibliográfico : 1994PNAS...91.3433G. doi : 10.1073/pnas.91.8.3433 . PMC 43591 . PMID  8159765. 
  45. ^ Samuels DS, Radolf JD, eds. (2010). "Cap. 6: Estructura, función y biogénesis de la envoltura celular de Borrelia ". Borrelia: biología molecular, interacción con el huésped y patogénesis . Prensa académica Caister. ISBN 978-1-904455-58-5.
  46. ^ Ben-Menachem G, Kubler-Kielb J, Coxon B, Yergey A, Schneerson R (2003). "Un colesteril galactósido recién descubierto de Borrelia burgdorferi". Proc. Nacional. Acad. Ciencia. EE.UU . 100 (13): 7913–8. Código bibliográfico : 2003PNAS..100.7913B. doi : 10.1073/pnas.1232451100 . PMC 164687 . PMID  12799465. 
  47. ^ Schwarzová K, Čižnár I (2004). "Análisis inmunoquímico de un componente similar a lipopolisacárido extraído de Borrelia burgdorferi sensu lato" (PDF) . Folia Microbiol . 49 (5): 625–9. doi :10.1007/BF02931545. PMID  15702557. S2CID  5953984. Archivado desde el original (PDF) el 21 de julio de 2011 . Consultado el 26 de octubre de 2007 .
  48. ^ Posey JE, Gherardini FC (2000). "Falta de una función del hierro en el patógeno de la enfermedad de Lyme". Ciencia . 288 (5471): 1651–3. Código Bib : 2000 Ciencia... 288.1651P. doi : 10.1126/ciencia.288.5471.1651. PMID  10834845.
  49. ^ Kelly, RT (1984). "Género IV. Borrelia Swellengrebel 1907, 582AL". En Krieg NR, Holt JG (eds.). Manual de bacteriología sistemática de Bergey . vol. 1. Williams y Wilkins: Baltimore. págs. 57–62.
  50. ^ Kurtti, TJ; Munderloh, UG; Johnson, RC; Ahlstrand, GG (noviembre de 1987). "Formación de colonias y morfología en Borrelia burgdorferi". Revista de Microbiología Clínica . 25 (11): 2054-2058. doi :10.1128/jcm.25.11.2054-2058.1987. ISSN  0095-1137. PMC 269410 . PMID  3693538. 
  51. ^ ab Lantos, Paul M.; Auwaterter, Paul G.; Wormser, Gary P. (2014). "Una revisión sistemática de las variantes morfológicas de Borrelia burgdorferi no respalda un papel en la enfermedad de Lyme crónica". Enfermedades Infecciosas Clínicas . 58 (5): 663–671. doi : 10.1093/cid/cit810 . PMC 3922218 . PMID  24336823. 
  52. ^ ab Halperin, John J.; Panadero, Phillip; Wormser, Gary P. (2011). Enfermedad de Lyme: un enfoque basado en evidencia (PDF) . Centro Internacional de Agricultura y Biociencias. pag. 266.ISBN 9781845938925. Consultado el 12 de noviembre de 2022 .
  53. ^ Haake DA (2000). "Lipoproteínas espiroquetas y patogénesis". Microbiología . 146 (7): 1491-1504. doi :10.1099/00221287-146-7-1491. PMC 2664406 . PMID  10878114. 
  54. ^ Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA (1995). "Inducción de una proteína de la superficie exterior de Borrelia burgdorferi durante la alimentación de las garrapatas". Proc. Nacional. Acad. Ciencia. EE.UU . 92 (7): 2909–13. Código bibliográfico : 1995PNAS...92.2909S. doi : 10.1073/pnas.92.7.2909 . PMC 42328 . PMID  7708747. 
  55. ^ ab Li X, Neelakanta G, Liu X, Beck DS, Kantor FS, Fish D, Anderson JF, Fikrig E (2007). "Papel de la proteína D de la superficie exterior en el ciclo de vida de Borrelia burgdorferi". Infectar. Inmune . 75 (9): 4237–44. doi :10.1128/IAI.00632-07. PMC 1951184 . PMID  17620358. 
  56. ^ Schwan TG, Piesman J (2000). "Cambios temporales en las proteínas A y C de la superficie exterior de la espiroqueta asociada a la enfermedad de Lyme, Borrelia burgdorferi, durante la cadena de infección en garrapatas y ratones". J Clin Microbiol . 38 (1): 382–8. doi :10.1128/JCM.38.1.382-388.2000. PMC 88728 . PMID  10618120. 
  57. ^ Bergström S, Bundoc VG, Barbour AG (1989). "Análisis molecular de las principales proteínas de superficie codificadas por plásmidos lineales, OspA y OspB, de la espiroqueta Borrelia burgdorferi de la enfermedad de Lyme ". Mol. Microbiol . 3 (4): 479–486. doi :10.1111/j.1365-2958.1989.tb00194.x. PMID  2761388. S2CID  42924128.
  58. ^ Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E (2004). "TROSPA, un receptor de Ixodes scapularis para Borrelia burgdorferi". Celúla . 119 (4): 457–468. doi : 10.1016/j.cell.2004.10.027 . PMID  15537536. S2CID  3846937.
  59. ^ Neelakanta G, Li X, Pal U, Liu X, Beck DS, DePonte K, Fish D, Kantor FS, Fikrig E (2007). "La proteína B de la superficie exterior es fundamental para la adherencia y supervivencia de Borrelia burgdorferi dentro de las garrapatas Ixodes". PLOS Patog . 3 (3): e33. doi : 10.1371/journal.ppat.0030033 . PMC 1817655 . PMID  17352535. 
  60. ^ Baranton G, Seinost G, Theodore G, Postic D, Dykhuizen D (marzo de 2001). "Distintos niveles de diversidad genética de Borrelia burgdorferi están asociados con diferentes aspectos de patogenicidad". Res. Microbiol . 152 (2): 149–56. doi : 10.1016/S0923-2508(01)01186-X . PMID  11316368.
  61. ^ Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D, Byram R, Dorward D, Vanraden MJ, Stewart P, Rosa P (junio de 2006). "La proteína OspC de Borrelia burgdorferi se requiere exclusivamente en una etapa temprana crucial de la infección de los mamíferos". Infectar. Inmune . 74 (6): 3554–64. doi :10.1128/IAI.01950-05. PMC 1479285 . PMID  16714588. 
  62. ^ Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, Norgard MV, Fikrig E (enero de 2004). "OspC facilita la invasión de Borrelia burgdorferi de las glándulas salivales de Ixodes scapularis". J.Clin. Invertir . 113 (2): 220–30. doi :10.1172/JCI19894. PMC 311436 . PMID  14722614. 
  63. ^ Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, Schwan TG, Policastro PF, Elias AF, Rosa PA (marzo de 2004). "Proteína C de la superficie exterior de la espiroqueta de la enfermedad de Lyme: una proteína inducida en garrapatas para la infección de mamíferos". Proc. Nacional. Acad. Ciencia. EE.UU . 101 (9): 3142–7. Código Bib : 2004PNAS..101.3142G. doi : 10.1073/pnas.0306845101 . PMC 365757 . PMID  14970347. 
  64. ^ Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, Anguita J, Norgard MV, Kantor FS, Anderson JF, Koski RA, Fikrig E (julio de 2005). "El agente de la enfermedad de Lyme explota una proteína de garrapata para infectar al mamífero huésped". Naturaleza . 436 (7050): 573–7. Código Bib :2005Natur.436..573R. doi : 10.1038/naturaleza03812. PMC 4306560 . PMID  16049492. 
  65. ^ Schuijt TJ, Hovius JW, van Burgel ND, Ramamoorthi N, Fikrig E, van Dam AP (julio de 2008). "La proteína salival de garrapata Salp15 inhibe la muerte de aislados de Borrelia burgdorferi sensu lato sensibles al suero". Infectar. Inmune . 76 (7): 2888–94. doi :10.1128/IAI.00232-08. PMC 2446733 . PMID  18426890. 
  66. ^ Hovius JW, de Jong MA, den Dunnen J, Litjens M, Fikrig E, van der Poll T, Gringhuis SI, Geijtenbeek TB (febrero de 2008). "La unión de Salp15 a DC-SIGN inhibe la expresión de citoquinas al alterar tanto la remodelación del nucleosoma como la estabilización del ARNm". PLOS Patog . 4 (2): e31. doi : 10.1371/journal.ppat.0040031 . PMC 2242833 . PMID  18282094. 
  67. ^ ab Lam TT, Nguyen TP, Montgomery RR, Kantor FS, Fikrig E, Flavell RA (1994). "Proteínas de la superficie exterior E y F de Borrelia burgdorferi, el agente de la enfermedad de Lyme". Infectar. Inmune . 62 (1): 290–8. doi :10.1128/IAI.62.1.290-298.1994. PMC 186099 . PMID  8262642. 
  68. ^ Stevenson B, Zückert WR, Akins DR (2000). "Repetición, conservación y variación: los múltiples plásmidos cp32 de las especies de Borrelia ". J. Mol. Microbiol. Biotecnología . 2 (4): 411–422. PMID  11075913.
  69. ^ Stevenson B, Bono JL, Schwan TG, Rosa P (1998). "Las proteínas Erp de Borrelia burgdorferi son inmunogénicas en mamíferos infectados por picadura de garrapata y su síntesis es inducible en bacterias cultivadas". Infectar. Inmune . 66 (6): 2648–54. doi :10.1128/IAI.66.6.2648-2654.1998. PMC 108251 . PMID  9596729. 
  70. ^ Stevenson B, El-Hage N, Hines MA, Miller JC, Babb K (2002). "Unión diferencial del factor H inhibidor del complemento del huésped por las proteínas de superficie Erp de Borrelia burgdorferi: un posible mecanismo subyacente a la amplia gama de huéspedes de espiroquetas de la enfermedad de Lyme". Infectar. Inmune . 70 (2): 491–7. doi :10.1128/IAI.70.2.491-497.2002. PMC 127719 . PMID  11796574. 
  71. ^ Woodman ME, Cooley AE, Miller JC, Lazarus JJ, Tucker K, Bykowski T, Botto M, Hellwage J, Wooten RM, Stevenson B (2007). "La unión de Borrelia burgdorferi al factor H regulador del complemento del huésped no es necesaria para una infección eficiente de los mamíferos". Infectar. Inmune . 75 (6): 3131–9. doi :10.1128/IAI.01923-06. PMC 1932899 . PMID  17420242. 
  72. ^ Kullberg, Bart Jan; Vrijmoeth, Hedwig D; van de Schoor, Freek; Hovius, Joppe W (26 de mayo de 2020). "Borreliosis de Lyme: diagnóstico y tratamiento". BMJ . 369 : m1041. doi :10.1136/bmj.m1041. PMID  32457042. S2CID  218911807.
  73. ^ Ascuas ME, Ramamoorthy R, Philipp MT (2004). "Estrategias de supervivencia de Borrelia burgdorferi, el agente etiológico de la enfermedad de Lyme". Los microbios infectan . 6 (3): 312–318. doi : 10.1016/j.micinf.2003.11.014 . PMID  15065567.
  74. ^ Liang FT, Yan J, Mbow ML y col. (2004). "Borrelia burgdorferi cambia su expresión antigénica de superficie en respuesta a las respuestas inmunes del huésped". Infectar inmune . 72 (10): 5759–5767. doi :10.1128/IAI.72.10.5759-5767.2004. PMC 517580 . PMID  15385475. 
  75. ^ Gilmore RD, Howison RR, Schmit VL y col. (2007). "Análisis de la expresión temporal de los genes BBA64, BBA65 y BBA66 de la familia de genes parálogos de Borrelia burgdorferi 54 durante la infección persistente en ratones". Infectar. Inmune . 75 (6): 2753–2764. doi :10.1128/IAI.00037-07. PMC 1932849 . PMID  17371862. 

Enlaces externos