stringtranslate.com

Artin–Tits group

In the mathematical area of group theory, Artin groups, also known as Artin–Tits groups or generalized braid groups, are a family of infinite discrete groups defined by simple presentations. They are closely related with Coxeter groups. Examples are free groups, free abelian groups, braid groups, and right-angled Artin–Tits groups, among others.

The groups are named after Emil Artin, due to his early work on braid groups in the 1920s to 1940s,[1] and Jacques Tits who developed the theory of a more general class of groups in the 1960s.[2]

Definition

An Artin–Tits presentation is a group presentation where is a (usually finite) set of generators and is a set of Artin–Tits relations, namely relations of the form for distinct in , where both sides have equal lengths, and there exists at most one relation for each pair of distinct generators . An Artin–Tits group is a group that admits an Artin–Tits presentation. Likewise, an Artin–Tits monoid is a monoid that, as a monoid, admits an Artin–Tits presentation.

Alternatively, an Artin–Tits group can be specified by the set of generators and, for every in , the natural number that is the length of the words and such that is the relation connecting and , if any. By convention, one puts when there is no relation . Formally, if we define to denote an alternating product of and of length , beginning with — so that , , etc. — the Artin–Tits relations take the form

The integers can be organized into a symmetric matrix, known as the Coxeter matrix of the group.

If is an Artin–Tits presentation of an Artin–Tits group , the quotient of obtained by adding the relation for each of is a Coxeter group. Conversely, if is a Coxeter group presented by reflections and the relations are removed, the extension thus obtained is an Artin–Tits group. For instance, the Coxeter group associated with the -strand braid group is the symmetric group of all permutations of .

Examples

General properties

Artin–Tits monoids are eligible for Garside methods based on the investigation of their divisibility relations, and are well understood:

Very few results are known for general Artin–Tits groups. In particular, the following basic questions remain open in the general case:

– solving the word and conjugacy problems — which are conjectured to be decidable,
– determining torsion — which is conjectured to be trivial,
– determining the center — which is conjectured to be trivial or monogenic in the case when the group is not a direct product ("irreducible case"),
– determining the cohomology — in particular solving the conjecture, i.e., finding an acyclic complex whose fundamental group is the considered group.

Partial results involving particular subfamilies are gathered below. Among the few known general results, one can mention:

Particular classes of Artin–Tits groups

Several important classes of Artin groups can be defined in terms of the properties of the Coxeter matrix.

Artin–Tits groups of spherical type

Right-angled Artin groups

Artin–Tits groups of large type

Other types

Many other families of Artin–Tits groups have been identified and investigated. Here we mention two of them.

See also

References

  1. ^ Artin, Emil (1947). "Theory of Braids". Annals of Mathematics. 48 (1): 101–126. doi:10.2307/1969218. JSTOR 1969218. S2CID 30514042.
  2. ^ Tits, Jacques (1966), "Normalisateurs de tores. I. Groupes de Coxeter étendus", Journal of Algebra, 4: 96–116, doi:10.1016/0021-8693(66)90053-6, MR 0206117
  3. ^ Crisp, John; Paris, Luis (2001), "The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group", Inventiones Mathematicae, 145 (1): 19–36, arXiv:math/0003133, Bibcode:2001InMat.145...19C, doi:10.1007/s002220100138, MR 1839284
  4. ^ Paris, Luis (2002), "Artin monoids inject in their groups", Commentarii Mathematici Helvetici, 77 (3): 609–637, arXiv:math/0102002, doi:10.1007/s00014-002-8353-z, MR 1933791
  5. ^ Dyer, Matthew; Hohlweg, Christophe (2016), "Small roots, low elements, and the weak order in Coxeter groups", Advances in Mathematics, 301: 739–784, arXiv:1505.02058, doi:10.1016/j.aim.2016.06.022, MR 1839284
  6. ^ Deligne, Pierre (1972), "Les immeubles des groupes de tresses généralisés", Inventiones Mathematicae, 17: 273–302, Bibcode:1972InMat..17..273D, doi:10.1007/BF01406236, MR 0422673
  7. ^ Brieskorn, Egbert; Saito, Kyoji (1972), "Artin-Gruppen und Coxeter-Gruppen", Inventiones Mathematicae, 17 (4): 245–271, Bibcode:1972InMat..17..245B, doi:10.1007/BF01406235, MR 0323910
  8. ^ Charney, Ruth (1992), "Artin groups of finite type are biautomatic", Mathematische Annalen, 292 (4): 671–683, doi:10.1007/BF01444642, MR 1157320
  9. ^ Crisp, John; Godelle, Eddy; Wiest, Bert (2009), "The conjugacy problem in subgroups of right-angled Artin groups", Journal of Topology, 2 (3): 442–460, doi:10.1112/jtopol/jtp018, MR 2546582
  10. ^ Bestvina, Mladen; Brady, Noel (1997), "Morse theory and finiteness properties of groups", Inventiones Mathematicae, 129 (3): 445–470, Bibcode:1997InMat.129..445B, doi:10.1007/s002220050168, MR 1465330
  11. ^ Leary, Ian (2018), "Uncountably many groups of type FP", Proceedings of the London Mathematical Society, 117 (2): 246–276, arXiv:1512.06609, doi:10.1112/plms.12135, MR 3851323
  12. ^ Appel, Kenneth I.; Schupp, Paul E. (1983), "Artin Groups and Infinite Coxeter Groups", Inventiones Mathematicae, 72 (2): 201–220, Bibcode:1983InMat..72..201A, doi:10.1007/BF01389320, MR 0700768
  13. ^ Peifer, David (1996), "Artin groups of extra-large type are biautomatic", Journal of Pure and Applied Algebra, 110 (1): 15–56, doi:10.1016/0022-4049(95)00094-1, MR 1390670
  14. ^ Holt, Derek; Rees, Sarah (2012). "Artin groups of large type are shortlex automatic with regular geodesics". Proceedings of the London Mathematical Society. 104 (3): 486–512. arXiv:1003.6007. doi:10.1112/plms/pdr035. MR 2900234.
  15. ^ Altobelli, Joe; Charney, Ruth (2000), "A geometric rational form for Artin groups of FC type", Geometriae Dedicata, 79 (3): 277–289, doi:10.1023/A:1005216814166, MR 1755729
  16. ^ Dehornoy, Patrick (2017), "Multifraction reduction I: The 3-Ore case and Artin–Tits groups of type FC", Journal of Combinatorial Algebra, 1 (2): 185–228, arXiv:1606.08991, doi:10.4171/JCA/1-2-3, MR 3634782
  17. ^ McCammond, Jon; Sulway, Robert (2017), "Artin groups of Euclidean type", Inventiones Mathematicae, 210 (1): 231–282, arXiv:1312.7770, Bibcode:2017InMat.210..231M, doi:10.1007/s00222-017-0728-2, MR 3698343
  18. ^ Paolini, Giovanni; Salvetti, Mario (2019), Proof of the conjecture for affine Artin groups, arXiv:1907.11795

Further reading