stringtranslate.com

Gran Colisionador de Hadrones

El Gran Colisionador de Hadrones ( LHC ) es el colisionador de partículas más grande y de mayor energía del mundo . [1] [2] Fue construido por la Organización Europea para la Investigación Nuclear (CERN) entre 1998 y 2008 en colaboración con más de 10.000 científicos y cientos de universidades y laboratorios en más de 100 países. [3] Se encuentra en un túnel de 27 kilómetros (17 millas) de circunferencia y una profundidad de hasta 175 metros (574 pies) debajo de la frontera entre Francia y Suiza, cerca de Ginebra .

Las primeras colisiones se lograron en 2010 con una energía de 3,5  teraelectronvoltios (TeV) por haz, aproximadamente cuatro veces el récord mundial anterior. [4] [5] El descubrimiento del bosón de Higgs en el LHC se anunció en 2012. Entre 2013 y 2015, el LHC fue cerrado y mejorado; después de esas actualizaciones alcanzó 6,5 TeV por haz (13,0 TeV de energía de colisión total). [6] [7] [8] [9] A finales de 2018, se cerró por mantenimiento y mejoras adicionales, y se reabrió más de tres años después, en abril de 2022. [10]

El colisionador tiene cuatro puntos de cruce donde chocan las partículas aceleradas. Nueve detectores [11] , cada uno de ellos diseñado para detectar diferentes fenómenos, están colocados alrededor de los puntos de cruce. El LHC colisiona principalmente haces de protones, pero también puede acelerar haces de iones pesados , como en las colisiones plomo -plomo y protones -plomo. [12]

El objetivo del LHC es permitir a los físicos probar las predicciones de diferentes teorías de la física de partículas , incluida la medición de las propiedades del bosón de Higgs , [13] la búsqueda de la gran familia de nuevas partículas predichas por las teorías supersimétricas , [14] y el estudio de otras no resueltas. Cuestiones de física de partículas .

Fondo

El término hadrón se refiere a partículas compuestas subatómicas compuestas de quarks unidos por la fuerza fuerte (análoga a la forma en que los átomos y las moléculas se mantienen unidos por la fuerza electromagnética ). [15] Los hadrones más conocidos son los bariones como los protones y los neutrones ; Los hadrones también incluyen mesones como el pion y el kaon , que fueron descubiertos durante experimentos con rayos cósmicos a finales de los años 1940 y principios de los 1950. [dieciséis]

Un colisionador es un tipo de acelerador de partículas que junta dos haces de partículas opuestos de modo que las partículas colisionan. En física de partículas , los colisionadores, aunque más difíciles de construir, son una poderosa herramienta de investigación porque alcanzan un centro de energía de masa mucho más alto que los objetivos fijos . [1] El análisis de los subproductos de estas colisiones proporciona a los científicos buena evidencia de la estructura del mundo subatómico y las leyes de la naturaleza que lo gobiernan. Muchos de estos subproductos se producen únicamente por colisiones de alta energía y se desintegran después de períodos de tiempo muy cortos. Por lo tanto, muchos de ellos son difíciles o casi imposibles de estudiar de otras maneras. [17]

Objetivo

Muchos físicos esperan que el Gran Colisionador de Hadrones ayude a responder algunas de las cuestiones fundamentales abiertas en física, que se refieren a las leyes básicas que gobiernan las interacciones y fuerzas entre partículas elementales y la estructura profunda del espacio y el tiempo, en particular la interrelación entre la mecánica cuántica y la mecánica general. relatividad . [18]

Estos experimentos con partículas de alta energía pueden proporcionar datos que respalden diferentes modelos científicos. Por ejemplo, el modelo estándar y el modelo sin Higgs requirieron datos experimentales de partículas de alta energía para validar sus predicciones y permitir un mayor desarrollo teórico. El modelo estándar se completó con la detección del bosón de Higgs por parte del LHC en 2012. [19]

Las colisiones del LHC han explorado otras cuestiones, entre ellas: [20] [21]

Otras cuestiones abiertas que pueden explorarse mediante colisiones de partículas de alta energía incluyen:

Diseño

El colisionador está contenido en un túnel circular, con una circunferencia de 26,7 kilómetros (16,6 millas), a una profundidad que oscila entre 50 y 175 metros (164 a 574 pies) bajo tierra. La variación de profundidad fue deliberada para reducir la cantidad de túneles que se encuentran bajo las montañas del Jura y evitar tener que excavar un pozo de acceso vertical allí. Se eligió un túnel para evitar tener que comprar costosos terrenos en la superficie y aprovechar el blindaje contra la radiación de fondo que proporciona la corteza terrestre . [30]

Mapa del Gran Colisionador de Hadrones del CERN

El túnel revestido de hormigón de 3,8 metros (12 pies) de ancho, construido entre 1983 y 1988, se utilizó anteriormente para albergar el Gran Colisionador de Electrones y Positrones . [31] El túnel cruza la frontera entre Suiza y Francia en cuatro puntos, la mayor parte en Francia. Los edificios de superficie albergan equipos auxiliares como compresores, equipos de ventilación, sistemas electrónicos de control y plantas de refrigeración.

Se utilizan electroimanes cuadrupolares superconductores para dirigir los haces a cuatro puntos de intersección, donde tienen lugar las interacciones entre protones acelerados.

El túnel del colisionador contiene dos líneas de luz paralelas adyacentes (o tubos de vigas ), cada una de las cuales contiene un haz, que viajan en direcciones opuestas alrededor del anillo. Los rayos se cruzan en cuatro puntos alrededor del anillo, que es donde tienen lugar las colisiones de partículas. Unos 1232 imanes dipolares mantienen los haces en su trayectoria circular (ver imagen [32] ), mientras que se utilizan 392 imanes cuadrupolo adicionales para mantener los haces enfocados, con imanes cuadrupolo más fuertes cerca de los puntos de intersección para maximizar las posibilidades de interacción. donde se cruzan las dos vigas. Se utilizan imanes de órdenes multipolares superiores para corregir imperfecciones más pequeñas en la geometría del campo. En total están instalados unos 10.000 imanes superconductores ; los imanes dipolares tienen una masa de más de 27 toneladas. [33] Se necesitan alrededor de 96 toneladas de helio-4 superfluido para mantener los imanes, hechos de niobio-titanio revestido de cobre , a su temperatura de funcionamiento de 1,9 K (-271,25 °C), lo que convierte al LHC en la instalación criogénica más grande del mundo. mundo a la temperatura del helio líquido. El LHC utiliza 470 toneladas de superconductor de Nb-Ti. [34]

Durante las operaciones del LHC, el sitio del CERN extrae aproximadamente 200  MW de energía eléctrica de la red eléctrica francesa , que, en comparación, es aproximadamente un tercio del consumo de energía de la ciudad de Ginebra; el acelerador y los detectores del LHC consumen alrededor de 120 MW. [35] Cada día de su funcionamiento genera 140 terabytes de datos. [36]

Cuando se ejecuta una energía de 6,5 TeV por protón, [37] una o dos veces al día, a medida que los protones se aceleran de 450  GeV a 6,5  ​​TeV , el campo de los imanes dipolo superconductores aumenta de 0,54 a 7,7 teslas (T) . Cada uno de los protones tiene una energía de 6,5 TeV, lo que da una energía de colisión total de 13 TeV. Con esta energía, los protones tienen un factor de Lorentz de aproximadamente 6.930 y se mueven a aproximadamente 0,999 999 990  c , o aproximadamente 3,1 m/s (11 km/h) más lento que la velocidad de la luz ( c ). Un protón tarda menos de 90 microsegundos (μs) en recorrer 26,7 km alrededor del anillo principal. Esto da como resultado 11.245 revoluciones por segundo para los protones, ya sea que las partículas tengan baja o alta energía en el anillo principal, ya que la diferencia de velocidad entre estas energías supera el quinto decimal. [38]

En lugar de tener haces continuos, los protones se agrupan en hasta 2808 grupos , con 115 mil millones de protones en cada grupo, de modo que las interacciones entre los dos haces se producen a intervalos discretos, principalmente con 25 nanosegundos (ns) de diferencia, lo que proporciona una colisión de grupos. velocidad de 40 MHz. Se operó con menos racimos en los primeros años. La luminosidad de diseño del LHC es 10 34 cm −2 s −1 , [39] que se alcanzó por primera vez en junio de 2016. [40] Para 2017, se alcanzó el doble de este valor. [41]

Los protones del LHC se originan en el pequeño tanque de hidrógeno rojo.

Antes de ser inyectadas en el acelerador principal, las partículas son preparadas por una serie de sistemas que aumentan sucesivamente su energía. El primer sistema es el acelerador lineal de partículas Linac4 que genera iones de hidrógeno negativos (iones H ) de 160 MeV, que alimenta el protón sincrotrón Booster (PSB). Allí, ambos electrones son despojados de los iones de hidrógeno, dejando solo el núcleo que contiene un protón. Luego, los protones se aceleran a 2 GeV y se inyectan en el sincrotrón de protones (PS), donde se aceleran a 26 GeV. Finalmente, el Súper Sincrotrón de Protones (SPS) se utiliza para aumentar su energía aún más hasta 450 GeV antes de que finalmente sean inyectados (durante un período de varios minutos) en el anillo principal. Aquí, los haces de protones se acumulan, se aceleran (durante un período de 20 minutos ) hasta su energía máxima y finalmente circulan durante 5 a 24 horas mientras se producen colisiones en los cuatro puntos de intersección. [42]

El programa de física del LHC se basa principalmente en colisiones protón-protón. Sin embargo, durante períodos de funcionamiento más cortos, normalmente un mes al año, se incluyen en el programa las colisiones de iones pesados. Si bien también se consideran los iones más ligeros, el esquema de referencia se ocupa de los iones de plomo [43] (consulte Un experimento de gran colisionador de iones ). Los iones de plomo son acelerados primero por el acelerador lineal LINAC 3 , y el anillo de iones de baja energía (LEIR) se utiliza como unidad enfriadora y de almacenamiento de iones. Luego, los iones son acelerados aún más por el PS y el SPS antes de ser inyectados en el anillo del LHC, donde alcanzan una energía de 2,3 TeV por nucleón (o 522 TeV por ion), [44] superior a las energías alcanzadas por el Colisionador Relativista de Iones Pesados. . El objetivo del programa de iones pesados ​​es investigar el plasma de quarks y gluones que existía en el universo primitivo . [45]

Detectores

Se han construido nueve detectores en grandes cavernas excavadas en los puntos de intersección del LHC. Dos de ellos, el experimento ATLAS y el Compact Muon Solenoid (CMS), son grandes detectores de partículas de uso general . [2] ALICE y LHCb tienen funciones más especializadas, mientras que los otros cinco ( TOTEM , MoEDAL , LHCf , SND y FASER ) son mucho más pequeños y están destinados a investigaciones muy especializadas. Los experimentos ATLAS y CMS descubrieron el bosón de Higgs, lo que es una fuerte evidencia de que el modelo estándar tiene el mecanismo correcto para dar masa a las partículas elementales. [46]

Detector CMS para el LHC

Instalaciones de computación y análisis.

Los datos producidos por el LHC, así como las simulaciones relacionadas con el LHC, se estimaron en 200 petabytes por año. [47]

La red informática del LHC [48] se construyó como parte del diseño del LHC, para manejar las enormes cantidades de datos esperados durante sus colisiones. Es un proyecto colaborativo internacional que consiste en una infraestructura de red informática basada en grid que conecta inicialmente 140 centros informáticos en 35 países (más de 170 en más de 40 países en 2012 ). Fue diseñado por el CERN para manejar el importante volumen de datos producidos por los experimentos del LHC, [49] incorporando enlaces de cable de fibra óptica privados y porciones de alta velocidad existentes de la Internet pública para permitir la transferencia de datos desde el CERN a instituciones académicas de todo el mundo. El LHC Computing Grid está formado por federaciones globales en Europa, Asia Pacífico y América. [47]

El proyecto de computación distribuida LHC@home se inició para apoyar la construcción y calibración del LHC. El proyecto utiliza la plataforma BOINC , que permite a cualquier persona con una conexión a Internet y un ordenador con Mac OS X , Windows o Linux utilizar el tiempo de inactividad de su ordenador para simular cómo viajarán las partículas en los tubos del haz. Con esta información, los científicos pueden determinar cómo se deben calibrar los imanes para obtener la "órbita" más estable de los haces en el anillo. [50] En agosto de 2011, se puso en marcha una segunda aplicación (Test4Theory) que realiza simulaciones con las que comparar datos de pruebas reales para determinar los niveles de confianza de los resultados.

Para 2012, datos de más de 6 mil billones (6 × 10 15 ) Se analizaron las colisiones protón-protón del LHC. [51] El LHC Computing Grid se había convertido en la red informática más grande del mundo en 2012, y comprendía más de 170 instalaciones informáticas en una red mundial en más de 40 países. [52] [53] [54]

Historia operativa

Lyn Evans , líder del proyecto del Gran Colisionador de Hadrones

El LHC entró en funcionamiento por primera vez el 10 de septiembre de 2008, [55] pero las pruebas iniciales se retrasaron 14 meses, del 19 de septiembre de 2008 al 20 de noviembre de 2009, tras un incidente de extinción de imanes que causó grandes daños a más de 50 imanes superconductores , sus soportes y el tubo de vacío . [56] [57] [58] [59]

Durante su primera ejecución (2010-2013), el LHC colisionó dos haces de partículas opuestos de protones a hasta 4  teraelectronvoltios (4 TeV o 0,64 microjulios ) o núcleos de plomo (574 TeV por núcleo, o 2,76 TeV por nucleón ). [60] [61] Sus primeros descubrimientos incluyeron el tan buscado bosón de Higgs, varias partículas compuestas ( hadrones ) como el estado de fondo χ b (3P) , la primera creación de un plasma de quarks-gluones y las primeras observaciones del muy rara desintegración del mesón B s en dos muones (B s 0 → μ + μ ), lo que cuestionó la validez de los modelos de supersimetría existentes. [62]

Construcción

Desafíos operativos

El tamaño del LHC constituye un desafío de ingeniería excepcional con problemas operativos únicos debido a la cantidad de energía almacenada en los imanes y los haces. [42] [63] Mientras están en funcionamiento, la energía total almacenada en los imanes es de 10 GJ (2400 kilogramos de TNT) y la energía total transportada por los dos haces alcanza 724 MJ (173 kilogramos de TNT). [64]

La pérdida de sólo una diezmillonésima parte (10 −7 ) del haz es suficiente para apagar un imán superconductor, mientras que cada uno de los dos descargadores del haz debe absorber 362 MJ (87 kilogramos de TNT). Estas energías son transportadas por muy poca materia: en condiciones nominales de funcionamiento (2.808 haces por haz, 1,15×10 11 protones por haz), los tubos del haz contienen 1,0×10 −9 gramos de hidrógeno, que, en condiciones estándar de temperatura y presión , llenaría el volumen de un grano de arena fina.

Costo

Con un presupuesto de 7.500 millones de euros (alrededor de 9.000 millones de dólares o 6.190 millones de libras esterlinas en junio de 2010 ), el LHC es uno de los instrumentos científicos más caros [1] jamás construidos. [65] Se espera que el coste total del proyecto sea del orden de 4.600 millones de francos suizos (FSr) (alrededor de 4.400 millones de dólares, 3.100 millones de euros o 2.800 millones de libras esterlinas en enero de 2010 ) para el acelerador y 1.160 millones (SFr ) (alrededor de 1.100 millones de dólares, 800 millones de euros o 700 millones de libras esterlinas en enero de 2010 ) por la contribución del CERN a los experimentos. [66]

La construcción del LHC fue aprobada en 1995 con un presupuesto de 2.600 millones de francos, más 210 millones de francos más para los experimentos. Sin embargo, los sobrecostes, estimados en una importante revisión realizada en 2001 en unos 480 millones de francos para el acelerador y 50 millones de francos para los experimentos, junto con una reducción del presupuesto del CERN, retrasaron la fecha de finalización de 2005 a abril de 2007. [ 67] Los imanes fueron responsables de 180 millones de francos del aumento de costes. También hubo más costos y retrasos debido a las dificultades de ingeniería encontradas durante la construcción de la caverna para el solenoide de muón compacto , [68] y también debido a soportes magnéticos que no estaban diseñados con la fuerza suficiente y no pasaron las pruebas iniciales (2007) y daños por un apagado magnético. y escape de helio líquido (prueba inaugural, 2008). [69] Debido a que los costos de electricidad son más bajos durante el verano, el LHC normalmente no funciona durante los meses de invierno, [70] aunque se hicieron excepciones durante los inviernos de 2009/10 y 2012/2013 para compensar los retrasos en la puesta en marcha de 2008. y mejorar la precisión de las mediciones de la nueva partícula descubierta en 2012, respectivamente.

Accidentes y retrasos en la construcción

Exclusión de Rusia

Con la invasión rusa de Ucrania en 2022 , se puso en duda la participación de los rusos en el CERN. Alrededor del 8% de la población activa es de nacionalidad rusa. En junio de 2022, el CERN dijo que el consejo de gobierno "tiene la intención de rescindir" los acuerdos de cooperación del CERN con Bielorrusia y Rusia cuando expiren, respectivamente, en junio y diciembre de 2024. El CERN dijo que monitorearía los acontecimientos en Ucrania y sigue preparado para tomar medidas adicionales según sea necesario. [79] [80] El CERN dijo además que reduciría la contribución de Ucrania al CERN para 2022 al monto ya remitido a la Organización, renunciando así al segundo tramo de la contribución. [81]

Corrientes iniciales del imán inferior

En sus dos ejecuciones (2010 a 2012 y 2015), el LHC funcionó inicialmente con energías inferiores a su energía operativa planificada, y aumentó hasta solo 2 x 4 TeV de energía en su primera ejecución y 2 x 6,5 TeV en su segunda ejecución. por debajo de la energía de diseño de 2 x 7 TeV. Esto se debe a que los imanes superconductores masivos requieren un entrenamiento magnético considerable para manejar las altas corrientes involucradas sin perder su capacidad superconductora , y las altas corrientes son necesarias para permitir una alta energía de protones. El proceso de "entrenamiento" implica hacer funcionar repetidamente los imanes con corrientes más bajas para provocar cualquier enfriamiento o movimiento mínimo que pueda resultar. También lleva tiempo enfriar los imanes hasta su temperatura de funcionamiento de alrededor de 1,9 K (cerca del cero absoluto ). Con el tiempo, el imán "se asienta" y deja de apagarse con estas corrientes menores y puede manejar toda la corriente de diseño sin apagarse; Los medios del CERN describen los imanes como "sacudiendo" las inevitables pequeñas imperfecciones de fabricación en sus cristales y posiciones que inicialmente habían perjudicado su capacidad para manejar las corrientes planificadas. Los imanes, con el tiempo y con entrenamiento, gradualmente se vuelven capaces de manejar todas sus corrientes planificadas sin apagarse. [82] [83]

Pruebas inaugurales (2008)

El primer rayo circuló a través del colisionador en la mañana del 10 de septiembre de 2008. [84] El CERN disparó con éxito los protones alrededor del túnel en etapas, tres kilómetros a la vez. Las partículas fueron disparadas en el sentido de las agujas del reloj hacia el acelerador y lograron rodearlo a las 10:28 hora local. [55] El LHC completó con éxito su prueba principal: después de una serie de pruebas, dos puntos blancos parpadearon en una pantalla de computadora mostrando que los protones viajaron a lo largo de todo el colisionador. Fue necesaria menos de una hora para guiar la corriente de partículas por su circuito inaugural. [85] A continuación, el CERN envió con éxito un haz de protones en sentido antihorario, tardando un poco más, una hora y media, debido a un problema con la criogenia , y el circuito completo se completó a las 14:59.

Apagar incidente

El 19 de septiembre de 2008, se produjo un enfriamiento del imán en unos 100 imanes de flexión en los sectores 3 y 4, donde una falla eléctrica expulsó alrededor de seis toneladas de helio líquido (el refrigerante criogénico de los imanes ) hacia el túnel. El vapor que se escapaba se expandió con fuerza explosiva, dañando 53 imanes superconductores y sus soportes, y contaminando la tubería de vacío, que también perdió las condiciones de vacío. [56] [57] [86]

Poco después del incidente, el CERN informó que la causa más probable del problema era una conexión eléctrica defectuosa entre dos imanes. Se estimó que las reparaciones tardarían al menos dos meses, debido al tiempo necesario para calentar los sectores afectados y luego enfriarlos a la temperatura de funcionamiento. [87] El CERN publicó un informe técnico provisional [86] y un análisis preliminar del incidente los días 15 y 16 de octubre de 2008 respectivamente, [88] y un informe más detallado el 5 de diciembre de 2008. [76] El análisis del incidente realizado por el CERN confirmó que efectivamente la causa había sido un fallo eléctrico. La conexión eléctrica defectuosa había provocado (correctamente) una interrupción del suministro eléctrico a prueba de fallos de los sistemas eléctricos que alimentaban los imanes superconductores, pero también había provocado un arco eléctrico (o descarga) que dañaba la integridad de la carcasa del helio sobreenfriado y el aislamiento de vacío, provocando la pérdida del refrigerante. La temperatura y la presión aumentan rápidamente más allá de la capacidad de los sistemas de seguridad para contenerla, [86] y provocan un aumento de temperatura de aproximadamente 100 grados Celsius en algunos de los imanes afectados. La energía almacenada en los imanes superconductores y el ruido eléctrico inducido en otros detectores de extinción también influyeron en el rápido calentamiento. Alrededor de dos toneladas de helio líquido escaparon explosivamente antes de que los detectores activaran una parada de emergencia, y posteriormente otras cuatro toneladas se escaparon a menor presión. [86] Un total de 53 imanes resultaron dañados en el incidente y fueron reparados o reemplazados durante el cierre invernal. [89] Este accidente fue discutido detalladamente en un artículo de Ciencia y Tecnología de Superconductores del 22 de febrero de 2010 escrito por el físico del CERN Lucio Rossi . [90]

En el calendario original para la puesta en servicio del LHC, se esperaba que las primeras colisiones "modestas" de alta energía en un centro de masa de 900 GeV tuvieran lugar antes de finales de septiembre de 2008, y se esperaba que el LHC estuviera funcionando a 10 TeV a finales de 2008. [91] Sin embargo, debido al retraso causado por el incidente, el colisionador no estuvo operativo hasta noviembre de 2009. [92] A pesar del retraso, el LHC fue inaugurado oficialmente el 21 de octubre de 2008, en presencia de líderes políticos, ministros de ciencia de los 20 estados miembros del CERN, funcionarios del CERN y miembros de la comunidad científica mundial. [93]

La mayor parte de 2009 se dedicó a reparaciones y revisiones de los daños causados ​​por el incidente del enfriamiento, junto con dos fugas de vacío más identificadas en julio de 2009; esto empujó el inicio de operaciones a noviembre de ese año. [78]

Ejecución 1: primera ejecución operativa (2009-2013)

Seminario sobre la física del LHC por John Iliopoulos (2009) [94]

El 20 de noviembre de 2009, haces de baja energía circularon por el túnel por primera vez desde el incidente, y poco después, el 30 de noviembre, el LHC alcanzó 1,18 TeV por haz, convirtiéndose en el acelerador de partículas de mayor energía del mundo, superando al Tevatron . El récord anterior de 0,98 TeV por haz se mantuvo durante ocho años. [95]

A principios de 2010 se observó un aumento continuo de las energías de los haces y los primeros experimentos de física hacia 3,5 TeV por haz y el 30 de marzo de 2010, el LHC estableció un nuevo récord de colisiones de alta energía al colisionar haces de protones a un nivel de energía combinado de 7 TeV. El intento fue el tercero ese día, después de dos intentos fallidos en los que hubo que "arrojar" los protones del colisionador y hubo que inyectar nuevos haces. [96] Esto también marcó el inicio del principal programa de investigación.

El primer experimento con protones finalizó el 4 de noviembre de 2010. Un experimento con iones de plomo comenzó el 8 de noviembre de 2010 y finalizó el 6 de diciembre de 2010, [97] permitiendo al experimento ALICE estudiar la materia en condiciones extremas similares a las poco después del Big Bang. [98]

El CERN planeó originalmente que el LHC funcionara hasta finales de 2012, con una breve pausa a finales de 2011 para permitir un aumento en la energía del haz de 3,5 a 4 TeV por haz. [5] A finales de 2012, se planeó cerrar temporalmente el LHC hasta alrededor de 2015 para permitir la actualización a una energía de haz planificada de 7 TeV por haz. [99] A finales de 2012, a la luz del descubrimiento del bosón de Higgs en julio de 2012, el cierre se pospuso durante algunas semanas hasta principios de 2013, para permitir que se obtuvieran datos adicionales antes del cierre.

Apagado prolongado 1 (2013-2015)

Una sección del túnel del LHC. Los imanes dipolo están pintados de color azul para protegerlos de la oxidación. [100]

El LHC se cerró el 13 de febrero de 2013 para su actualización de dos años denominada Long Shutdown 1 (LS1), que abarcaría muchos aspectos del LHC: permitir colisiones a 14 TeV, mejorar sus detectores y preaceleradores (el Proton Synchrotron y Super Proton Synchrotron), además de reemplazar su sistema de ventilación y 100 km (62 millas) de cableado dañados por colisiones de alta energía desde su primera ejecución. [101] El colisionador mejorado comenzó su largo proceso de puesta en marcha y prueba en junio de 2014, con el propulsor del sincrotrón de protones a partir del 2 de junio de 2014, la interconexión final entre los imanes y las partículas circulantes del sincrotrón de protones el 18 de junio de 2014, y la primera La sección del sistema superimán principal del LHC alcanzó una temperatura de funcionamiento de 1,9 K (-271,25 °C), unos días después. [102] Debido al lento avance en el "entrenamiento" de los imanes superconductores, se decidió iniciar la segunda ejecución con una energía menor de 6,5 TeV por haz, correspondiente a una corriente en el imán de 11.000 amperios . Se informó que el primero de los principales imanes del LHC se había entrenado con éxito el 9 de diciembre de 2014, mientras que el entrenamiento de los otros sectores magnéticos finalizó en marzo de 2015. [103]

Ejecución 2: segunda ejecución operativa (2015-2018)

El 5 de abril de 2015, el LHC se reinició después de una pausa de dos años, durante la cual los conectores eléctricos entre los imanes de flexión se actualizaron para manejar de forma segura la corriente requerida para 7 TeV por haz (energía de colisión de 14 TeV). [6] [104] Sin embargo, los imanes de flexión solo fueron entrenados para manejar hasta 6,5 ​​TeV por haz (energía de colisión de 13 TeV), que se convirtió en la energía operativa de 2015 a 2018. [82] La energía se alcanzó por primera vez el 10 de abril. 2015. [105] Las actualizaciones culminaron en la colisión de protones con una energía combinada de 13 TeV. [106] El 3 de junio de 2015, el LHC comenzó a entregar datos de física después de casi dos años fuera de línea. [107] En los meses siguientes, se utilizó para colisiones protón-protón, mientras que en noviembre, la máquina pasó a colisiones de iones de plomo y en diciembre comenzó el habitual apagado invernal.

En 2016, los operadores de la máquina se centraron en aumentar la luminosidad en las colisiones entre protones. El valor de diseño se alcanzó por primera vez el 29 de junio [40] y mejoras adicionales aumentaron la tasa de colisiones hasta un 40% por encima del valor de diseño. [108] El número total de colisiones en 2016 superó el número de la Prueba 1, con una energía más alta por colisión. A la carrera protón-protón le siguieron cuatro semanas de colisiones protón-plomo. [109]

En 2017, la luminosidad se incrementó aún más y alcanzó el doble del valor de diseño. El número total de colisiones también fue mayor que en 2016. [41]

La carrera de física de 2018 comenzó el 17 de abril y se detuvo el 3 de diciembre, incluidas cuatro semanas de colisiones plomo-plomo. [110]

Apagado prolongado 2 (2018-2022)

El Long Shutdown 2 (LS2) comenzó el 10 de diciembre de 2018. Se realizaron mantenimiento y modernización del LHC y de todo el complejo de aceleradores del CERN. El objetivo de las actualizaciones era implementar el proyecto Gran Colisionador de Hadrones de Alta Luminosidad (HL-LHC), que aumentará la luminosidad en un factor de 10. LS2 finalizó en abril de 2022. El Long Shutdown 3 (LS3) en la década de 2020 tendrá lugar antes de que finalice el proyecto HL-LHC.

Ejecución 3: tercera ejecución operativa (2022)

El LHC volvió a estar operativo el 22 de abril de 2022 con una nueva energía máxima del haz de 6,8 TeV (energía de colisión de 13,6 TeV), que se alcanzó por primera vez el 25 de abril. [111] [112] Comenzó oficialmente su tercera temporada de física el 5 de julio de 2022. [113] Se espera que esta ronda continúe hasta 2026. [114] Además de una mayor energía, se espera que el LHC alcance una mayor luminosidad, que se espera que aumente aún más con la actualización del HL-LHC después del experimento 3. [115]

Cronograma de operaciones

Hallazgos y descubrimientos

Un objetivo inicial de la investigación fue investigar la posible existencia del bosón de Higgs , una parte clave del modelo estándar de física que fue predicho por la teoría, pero que aún no se había observado antes debido a su gran masa y su naturaleza esquiva. Los científicos del CERN estimaron que, si el modelo estándar fuera correcto, el LHC produciría varios bosones de Higgs cada minuto, lo que permitiría a los físicos confirmar o refutar finalmente la existencia del bosón de Higgs. Además, el LHC permitió la búsqueda de partículas supersimétricas y otras partículas hipotéticas como posibles áreas desconocidas de la física. [60] Algunas extensiones del modelo estándar predicen partículas adicionales, como los pesados ​​bosones calibre W' y Z' , que también se estima que están al alcance del LHC para descubrirlas. [132]

Primera ejecución (datos tomados de 2009 a 2013)

Los primeros resultados de física del LHC, que implicaron 284 colisiones que tuvieron lugar en el detector ALICE, se informaron el 15 de diciembre de 2009. [117] Se publicaron los resultados de las primeras colisiones protón-protón a energías superiores a las colisiones protón-antiprotón Tevatron del Fermilab. por la colaboración CMS a principios de febrero de 2010, produciendo una producción de hadrones cargados mayor de lo previsto. [133]

Después del primer año de recopilación de datos, las colaboraciones experimentales del LHC comenzaron a publicar sus resultados preliminares sobre la búsqueda de nueva física más allá del modelo estándar en colisiones protón-protón. [134] [135] [136] [137] No se detectó evidencia de nuevas partículas en los datos de 2010. Como resultado, se establecieron límites en el espacio de parámetros permitido de varias extensiones del modelo estándar, como modelos con grandes dimensiones adicionales , versiones restringidas del modelo estándar mínimo supersimétrico y otros. [138] [139] [140]

El 24 de mayo de 2011, se informó que en el LHC se había creado plasma de quarks y gluones (la materia más densa que se cree que existe además de los agujeros negros ). [120]

Un diagrama de Feynman de una forma en que se puede producir el bosón de Higgs en el LHC. Aquí, dos quarks emiten cada uno un bosón W o Z , que se combinan para formar un Higgs neutro.

Entre julio y agosto de 2011, se presentaron en conferencias celebradas en Grenoble [141] y Mumbai los resultados de las búsquedas del bosón de Higgs y de partículas exóticas, basados ​​en los datos recopilados durante la primera mitad del año 2011. [142] En la última conferencia, se informó que, a pesar de los indicios de una señal de Higgs en datos anteriores, ATLAS y CMS excluyen con un nivel de confianza del 95% (usando el método CLs ) la existencia de un bosón de Higgs con las propiedades predichas por el Modelo estándar sobre la mayor parte de la región de masa entre 145 y 466 GeV. [143] Las búsquedas de nuevas partículas tampoco arrojaron señales, lo que permitió restringir aún más el espacio de parámetros de varias extensiones del modelo estándar, incluidas sus extensiones supersimétricas. [144] [145]

El 13 de diciembre de 2011, el CERN informó que el modelo estándar del bosón de Higgs, si existe, probablemente tenga una masa limitada al rango de 115 a 130 GeV. Tanto el detector CMS como el ATLAS también han mostrado picos de intensidad en el rango de 124-125 GeV, consistentes con el ruido de fondo o con la observación del bosón de Higgs. [146]

El 22 de diciembre de 2011, se informó que se había observado una nueva partícula compuesta, el estado de fondo χ b (3P). [123]

El 4 de julio de 2012, los equipos de CMS y ATLAS anunciaron el descubrimiento de un bosón en la región de masa alrededor de 125-126 GeV, con una significación estadística de 5 sigma cada uno. Esto cumple con el nivel formal requerido para anunciar una nueva partícula. Las propiedades observadas eran consistentes con el bosón de Higgs, pero los científicos se mostraron cautelosos en cuanto a si se identifica formalmente como realmente el bosón de Higgs, en espera de más análisis. [147] El 14 de marzo de 2013, el CERN anunció la confirmación de que la partícula observada era de hecho el bosón de Higgs previsto. [148]

El 8 de noviembre de 2012, el equipo del LHCb informó sobre un experimento considerado como una prueba "dorada" de las teorías de supersimetría en física, [126] midiendo la muy rara desintegración del mesón en dos muones ( ). Los resultados, que coinciden con los predichos por el modelo estándar no supersimétrico en lugar de las predicciones de muchas ramas de la supersimetría, muestran que las desintegraciones son menos comunes de lo que predicen algunas formas de supersimetría, aunque aún podrían coincidir con las predicciones de otras versiones de la teoría de la supersimetría. Se afirma que los resultados, tal como fueron redactados inicialmente, carecen de pruebas, pero tienen un nivel de significancia relativamente alto de 3,5 sigma. [149] El resultado fue confirmado posteriormente por la colaboración de CMS. [150]

En agosto de 2013, el equipo del LHCb reveló una anomalía en la distribución angular de los productos de desintegración del mesón B que el modelo estándar no podía predecir; esta anomalía tenía una certeza estadística de 4,5 sigma, poco menos de los 5 sigma necesarios para ser reconocida oficialmente como un descubrimiento. Se desconoce cuál sería la causa de esta anomalía, aunque se ha sugerido el bosón Z' como posible candidato. [151]

El 19 de noviembre de 2014, el experimento LHCb anunció el descubrimiento de dos nuevas partículas subatómicas pesadas,
Ξ′
segundo
y
Ξ
−b
. Ambos son bariones que se componen de un quark inferior, uno inferior y un quark extraño. Son estados excitados del barión Xi inferior . [152] [153]

La colaboración del LHCb ha observado múltiples hadrones exóticos, posiblemente pentaquarks o tetraquarks , en los datos del experimento 1. El 4 de abril de 2014, la colaboración confirmó la existencia del candidato tetraquark Z(4430) con un significado superior a 13,9 sigma. [154] [155] El 13 de julio de 2015, resultados consistentes con los estados de pentaquark en la desintegración de los bariones Lambda inferiores0
segundo
) Fue reportado. [156] [157] [158]

El 28 de junio de 2016, la colaboración anunció cuatro partículas similares a tetraquarks que se descomponen en un mesón J/ψ y un mesón φ, de las cuales solo una estaba bien establecida antes (X(4274), X(4500) y X(4700) y X( 4140) ). [159] [160]

En diciembre de 2016, ATLAS presentó una medición de la masa del bosón W, investigando la precisión de los análisis realizados en el Tevatron. [161]

Segunda ejecución (2015-2018)

En la conferencia EPS-HEP 2015 de julio, las colaboraciones presentaron las primeras mediciones de la sección transversal de varias partículas con energía de colisión más alta.

El 15 de diciembre de 2015, los experimentos ATLAS y CMS informaron una serie de resultados preliminares para búsquedas de física de Higgs, supersimetría (SUSY) y búsquedas exóticas utilizando datos de colisiones de protones de 13 TeV. Ambos experimentos observaron un exceso moderado alrededor de 750 GeV en el espectro de masas invariante de dos fotones , [162] [163] [164] pero los experimentos no confirmaron la existencia de la partícula hipotética en un informe de agosto de 2016. [165] [166] [167]

En julio de 2017, se mostraron muchos análisis basados ​​en el gran conjunto de datos recopilados en 2016. Se estudiaron con más detalle las propiedades del bosón de Higgs y se mejoró la precisión de muchos otros resultados. [168]

Hasta marzo de 2021, los experimentos del LHC han descubierto 59 nuevos hadrones en los datos recopilados durante las dos primeras ejecuciones. [169]

El 5 de julio de 2022, el LHCb informó del descubrimiento de un nuevo tipo de pentaquark compuesto por un quark charm y un antiquark charm y un quark up, un down y un quark extraño, observado en un análisis de las desintegraciones de mesones B cargados. [170]

Planes futuros

Actualización de "alta luminosidad"

Después de algunos años de ejecución, cualquier experimento de física de partículas normalmente comienza a sufrir rendimientos decrecientes : a medida que los resultados clave alcanzables por el dispositivo comienzan a completarse, los años posteriores de operación descubren proporcionalmente menos que los años anteriores. Una respuesta común es actualizar los dispositivos involucrados, generalmente en energía de colisión, luminosidad o detectores mejorados. Además de un posible aumento a 14 TeV de energía de colisión, en junio de 2018 comenzó una mejora de la luminosidad del LHC, denominada Gran Colisionador de Hadrones de Alta Luminosidad, que aumentará el potencial del acelerador para nuevos descubrimientos en física, a partir de 2027. [171] La actualización tiene como objetivo aumentar la luminosidad de la máquina en un factor de 10, hasta 10 35  cm −2 s −1 , proporcionando una mejor oportunidad de ver procesos raros y mejorando las mediciones estadísticamente marginales. [115]

Futuro colisionador circular propuesto

El CERN tiene varios diseños preliminares para un futuro colisionador circular (FCC), que sería el acelerador de partículas más potente jamás construido, con diferentes tipos de colisionadores cuyo coste oscila entre 9.000 millones de euros (10.200 millones de dólares estadounidenses) y 21.000 millones de euros. Utilizaría el anillo del LHC como preacelerador, de forma similar a cómo el LHC utiliza el Súper Sincrotrón de Protones, más pequeño. Es la primera apuesta del CERN en un proceso de establecimiento de prioridades llamado Estrategia Europea para la Actualización de la Física de Partículas, y afectará el futuro del campo hasta bien entrada la segunda mitad del siglo. A partir de 2023, no existe un plan fijo y se desconoce si se financiará la construcción. [172]

Seguridad de las colisiones de partículas.

Los experimentos en el Gran Colisionador de Hadrones despertaron temores de que las colisiones de partículas pudieran producir fenómenos apocalípticos, que implicaran la producción de agujeros negros microscópicos estables o la creación de partículas hipotéticas llamadas extraños . [173] Dos revisiones de seguridad encargadas por el CERN examinaron estas preocupaciones y concluyeron que los experimentos en el LHC no presentan ningún peligro y que no hay motivo de preocupación, [174] [175] [176] una conclusión respaldada por la Sociedad Estadounidense de Física . [177]

Los informes también señalaron que las condiciones físicas y los eventos de colisión que existen en el LHC y experimentos similares ocurren de forma natural y rutinaria en el universo sin consecuencias peligrosas, [175] incluidos los rayos cósmicos de energía ultraalta que se observa impactan la Tierra con energías mucho más altas que los de cualquier colisionador construido por humanos, como la partícula Oh-My-God que tenía 320 millones de TeV de energía, y una energía de colisión decenas de veces mayor que las colisiones más energéticas producidas en el LHC.

Cultura popular

El Gran Colisionador de Hadrones atrajo una atención considerable fuera de la comunidad científica y su progreso es seguido por la mayoría de los medios científicos populares. El LHC también ha inspirado obras de ficción, incluidas novelas, series de televisión, videojuegos y películas.

"Large Hadron Rap" [178] de Katherine McAlpine , empleada del CERN , superó los 8 millones de visitas en YouTube en 2022. [179] [180]

La banda Les Horribles Cernettes fue fundada por mujeres del CERN. El nombre fue elegido para que tuviera las mismas iniciales que el LHC. [181] [182]

World 's Toughest Fixes de National Geographic Channel , temporada 2 (2010), episodio 6 "Atom Smasher" presenta el reemplazo de la última sección del imán superconductor en la reparación del colisionador después del incidente de enfriamiento de 2008. El episodio incluye imágenes reales desde las instalaciones de reparación hasta el interior del colisionador y explicaciones de la función, ingeniería y propósito del LHC. [183]

La canción "Munich" del álbum de estudio de 2012 Scars & Stories de The Fray está inspirada en el LHC. El cantante Isaac Slade dijo en una entrevista con The Huffington Post : "Hay un gran colisionador de partículas en Suiza que está ayudando a los científicos a desvelar lo que crea la gravedad y la masa. Se están planteando algunas preguntas muy importantes, incluso algunas cosas que propuso Einstein, que han sido aceptadas durante décadas están empezando a ser cuestionadas. Están buscando la Partícula de Dios, básicamente, la partícula que lo mantiene todo unido. Esa canción en realidad trata sobre el misterio de por qué todos somos aquí y qué es lo que lo mantiene todo unido, ¿sabes?" [184]

El Gran Colisionador de Hadrones fue el tema central de la película estudiantil Decay de 2012 , y la película se filmó en los túneles de mantenimiento del CERN. [185]

Ficción

La novela Ángeles y demonios , de Dan Brown , trata sobre la antimateria creada en el LHC para ser utilizada en un arma contra el Vaticano. En respuesta, el CERN publicó un artículo "¿Realidad o ficción?" página que analiza la precisión de la descripción que hace el libro del LHC, el CERN y la física de partículas en general. [186] La versión cinematográfica del libro tiene imágenes filmadas en el lugar de uno de los experimentos en el LHC; El director, Ron Howard , se reunió con expertos del CERN en un esfuerzo por hacer más precisa la ciencia de la historia. [187]

La novela FlashForward , de Robert J. Sawyer , trata de la búsqueda del bosón de Higgs en el LHC. El CERN publicó una página de "Ciencia y ficción" entrevistando a Sawyer y a los físicos sobre el libro y la serie de televisión basada en él. [188]

Ver también

Referencias

  1. ^ abc "El gran colisionador de hadrones". CERN. 28 de junio de 2023.
  2. ^ ab Joel Achenbach (marzo de 2012). "La partícula de Dios". Revista National Geographic . Archivado desde el original el 25 de febrero de 2008 . Consultado el 25 de febrero de 2008 .
  3. ^ Highfield, Roger (16 de septiembre de 2008). "Gran Colisionador de Hadrones: trece formas de cambiar el mundo". El Telégrafo diario . Londres. Archivado desde el original el 24 de septiembre de 2009 . Consultado el 10 de octubre de 2008 .
  4. ^ "El CERN LHC ve un éxito en alta energía". Noticias de la BBC . 30 de marzo de 2010 . Consultado el 30 de marzo de 2010 .
  5. ^ ab "El LHC funcionará a 4 TeV por haz en 2012". Relaciones con los medios y la prensa (nota de prensa). CERN. 13 de febrero de 2012.
  6. ^ abc Jonathan Webb (5 de abril de 2015). "El gran colisionador de hadrones se reinicia después de una pausa". BBC . Consultado el 5 de abril de 2015 .
  7. ^ O'Luanaigh, Cian. "Los rayos de protones están de vuelta en el LHC". CERN . Consultado el 24 de abril de 2015 .
  8. ^ Rincón, Paul (3 de junio de 2015). "El Gran Colisionador de Hadrones abre el grifo de datos'" . Consultado el 28 de agosto de 2015 .
  9. ^ Webb, Jonathan (21 de mayo de 2015). "El LHC bate récords energéticos con colisiones de prueba" . Consultado el 28 de agosto de 2015 .
  10. ^ "Kit de medios digitales 2022: Higgs10, LHC Ejecute 3 y reinicie". CERN . 7 de octubre de 2023 . Consultado el 10 de octubre de 2023 .
  11. ^ "Datos y cifras sobre el LHC". CERN . Consultado el 17 de abril de 2023 .
  12. ^ "Es hora de colisiones de plomo en el LHC". CERN . 7 de octubre de 2023 . Consultado el 10 de octubre de 2023 .
  13. ^ "Higgs perdido". CERN. 2008 . Consultado el 10 de octubre de 2008 .
  14. ^ "Hacia una superfuerza". CERN. 2008 . Consultado el 10 de octubre de 2008 .
  15. ^ "LHCb - Experimento de belleza del gran colisionador de hadrones". lhcb-public.web.cern.ch .
  16. ^ Calle, J.; Stevenson, E. (1937). "Nueva evidencia de la existencia de una partícula de masa intermedia entre el protón y el electrón". Revisión física . 52 (9): 1003. Código bibliográfico : 1937PhRv...52.1003S. doi : 10.1103/PhysRev.52.1003. S2CID  1378839.
  17. ^ "La Física". Experimento ATLAS en el CERN . 26 de marzo de 2015.
  18. ^ Adiós, Dennis (15 de mayo de 2007). "CERN - Gran Colisionador de Hadrones - Física de partículas - Un gigante aborda las preguntas más importantes de la física". Los New York Times . ISSN  0362-4331 . Consultado el 23 de octubre de 2019 .
  19. ^ "El modelo estándar". El Instituto de Física . Consultado el 10 de octubre de 2023 .
  20. ^ Giudice, GF (2010). Una odisea del zeptoespacio: un viaje a la física del LHC. Prensa de la Universidad de Oxford . ISBN 978-0-19-958191-7. Archivado desde el original el 1 de noviembre de 2013 . Consultado el 11 de agosto de 2013 .
  21. ^ Brian Greene (11 de septiembre de 2008). "Los orígenes del universo: un curso intensivo". Los New York Times . Consultado el 17 de abril de 2009 .
  22. ^ Shaaban Khalil (2003). "Búsqueda de supersimetría en el LHC". Física Contemporánea . 44 (3): 193–201. Código Bib : 2003ConPh..44..193K. doi : 10.1080/0010751031000077378. S2CID  121063627.
  23. ^ Alexander Belyaev (2009). "Estado de supersimetría y fenomenología en el Gran Colisionador de Hadrones". Pramana . 72 (1): 143–160. Código Bib : 2009Prama..72..143B. doi :10.1007/s12043-009-0012-0. S2CID  122457391.
  24. ^ Anil Ananthaswamy (11 de noviembre de 2009). “En SUSY confiamos: Lo que realmente busca el LHC”. Científico nuevo .
  25. ^ Lisa Randall (2002). "Dimensiones adicionales y geometrías deformadas" (PDF) . Ciencia . 296 (5572): 1422-1427. Código Bib : 2002 Ciencia... 296.1422R. doi : 10.1126/ciencia.1072567. PMID  12029124. S2CID  13882282. Archivado desde el original (PDF) el 7 de octubre de 2018 . Consultado el 3 de septiembre de 2008 .
  26. ^ Panagiota Kanti (2009). "Agujeros negros en el Gran Colisionador de Hadrones". Física de los agujeros negros . Apuntes de conferencias de física . vol. 769, págs. 387–423. arXiv : 0802.2218 . Código Bib : 2009LNP...769..387K. doi :10.1007/978-3-540-88460-6_10. ISBN 978-3-540-88459-0. S2CID  17651318.
  27. ^ "Iones pesados ​​y plasma de quarks-gluones". CERN. 18 de julio de 2012.
  28. ^ "Los experimentos del LHC aportan nuevos conocimientos sobre el universo primordial". Relaciones con los medios y la prensa (nota de prensa). CERN. 26 de noviembre de 2010 . Consultado el 2 de diciembre de 2010 .
  29. ^ Aad, G.; et al. (Colaboración ATLAS) (2010). "Observación de una asimetría de Dijet dependiente de la centralidad en colisiones plomo-plomo en √sNN = 2,76 TeV con el detector ATLAS en el LHC". Cartas de revisión física . 105 (25): 252303. arXiv : 1011.6182 . Código Bib : 2010PhRvL.105y2303A. doi : 10.1103/PhysRevLett.105.252303 . PMID  21231581.
  30. ^ "Preguntas frecuentes sobre la guía del LHC" (PDF) . cds.cern.ch.Febrero de 2017 . Consultado el 23 de julio de 2021 .
  31. ^ "La fábrica Z". CERN. 2008 . Consultado el 17 de abril de 2009 .
  32. ^ Henley, EM; Ellis, SD, eds. (2013). 100 años de física subatómica . Científico mundial. doi :10.1142/8605. ISBN 978-981-4425-80-3.
  33. ^ ab Stephen Myers (4 de octubre de 2013). "El Gran Colisionador de Hadrones 2008-2013". Revista Internacional de Física Moderna A. 28 (25): 1330035-1–1330035-65. Código Bib : 2013IJMPA..2830035M . doi : 10.1142/S0217751X13300354 .
  34. ^ "Estado de la producción en masa de cables superconductores del LHC".
  35. ^ "Impulsando el CERN". CERN. 2018 . Consultado el 23 de junio de 2018 .
  36. ^ Brady, Henry E. (11 de mayo de 2019). "El desafío del Big Data y la ciencia de datos". Revista Anual de Ciencias Políticas . 22 (1): 297–323. doi : 10.1146/annurev-polisci-090216-023229 . ISSN  1094-2939.
  37. ^ "Primer haz exitoso con una energía récord de 6,5 TeV". 10 de abril de 2015 . Consultado el 10 de enero de 2016 .
  38. ^ Deboy, D.; Assmann, RW; Burkart, F.; Cauchi, M.; Wollmann, D. (29 de agosto de 2011). "Medidas acústicas en colimadores del LHC" (PDF) . Proyecto de colimación del LHC . El anillo funciona con una acústica fundamental y armónicos de 11,245 kHz.
  39. ^ "Experiencia operativa del disparador de alto nivel ATLAS con haz único y rayos cósmicos" (PDF) . Consultado el 29 de octubre de 2010 .
  40. ^ abc "El rendimiento del LHC alcanza nuevos máximos". 13 de julio de 2016 . Consultado el 13 de mayo de 2017 .
  41. ^ abcd "Récord de luminosidad: LHC bien hecho". 15 de noviembre de 2017 . Consultado el 2 de diciembre de 2017 .
  42. ^ ab Jörg Wenninger (noviembre de 2007). «Retos operativos del LHC» (PowerPoint) . pag. 53 . Consultado el 17 de abril de 2009 .
  43. ^ "Proyecto Iones para el LHC (I-LHC)". CERN. 1 de noviembre de 2007 . Consultado el 17 de abril de 2009 .
  44. ^ "Opinión: Una nueva frontera energética para los iones pesados". 24 de noviembre de 2015 . Consultado el 10 de enero de 2016 .
  45. ^ Charley, Sara. "El LHC renovado se vuelve heavy metal". revista de simetría . Consultado el 23 de octubre de 2019 .
  46. ^ Greene, Brian (julio de 2013). "Cómo se encontró el bosón de Higgs". Revista Smithsonian . Consultado el 23 de octubre de 2019 .
  47. ^ ab "Bienvenido a la red informática mundial del LHC". Red informática mundial del LHC . CERN . Consultado el 13 de mayo de 2017 .
  48. ^ "parrilla de producción: les petits pc du lhc". Cité-sciences.fr . Consultado el 22 de mayo de 2011 .
  49. ^ "Acerca de". Red informática mundial del LHC . CERN . Consultado el 13 de mayo de 2017 .
  50. ^ "LHC @ casa". berkeley.edu .
  51. ^ Craig Lloyd (18 de diciembre de 2012). "La primera ejecución de protones del LHC termina con éxito, un nuevo hito" . Consultado el 26 de diciembre de 2014 .
  52. ^ "La búsqueda del bosón de Higgs llega a un punto de decisión clave". NBC News - Ciencia - Tecnología y ciencia . 12 de junio de 2012.
  53. ^ "Bienvenido a la red informática mundial del LHC". Red informática mundial del LHC . CERN. [Una] colaboración global de más de 170 centros de computación en 36 países... para almacenar, distribuir y analizar los ~25 Petabytes (25 millones de Gigabytes) de datos generados anualmente por el Gran Colisionador de Hadrones.
  54. ^ "Bienvenido a la red informática mundial del LHC". Red informática mundial del LHC . 23 de julio de 2023. Actualmente WLCG está formado por más de 170 centros informáticos en más de 40 países… El WLCG es ahora la red informática más grande del mundo.
  55. ^ ab "Primer haz del LHC: ciencia acelerada". Relaciones con los medios y la prensa (nota de prensa). CERN. 10 de septiembre de 2008 . Consultado el 9 de octubre de 2008 .
  56. ^ ab Paul Rincón (23 de septiembre de 2008). "Collider se detuvo hasta el próximo año". Noticias de la BBC . Consultado el 9 de octubre de 2008 .
  57. ^ ab "Gran Colisionador de Hadrones - Física de partículas de Purdue". Física.purdue.edu. Archivado desde el original el 17 de julio de 2012 . Consultado el 5 de julio de 2012 .
  58. ^ ab "El LHC ha vuelto". Relaciones con los medios y la prensa (nota de prensa). CERN. 20 de noviembre de 2009 . Consultado el 13 de noviembre de 2016 .
  59. ^ "Dos haces circulantes provocan las primeras colisiones en el LHC". Relaciones con los medios y la prensa (nota de prensa). CERN. 23 de noviembre de 2009 . Consultado el 13 de noviembre de 2016 .
  60. ^ ab "¿Qué es el LHCb" (PDF) . Preguntas frecuentes sobre el CERN . Grupo de Comunicación del CERN. Enero de 2008. p. 44. Archivado desde el original (PDF) el 26 de marzo de 2009 . Consultado el 2 de abril de 2010 .
  61. ^ Amina Khan (31 de marzo de 2010). "El Gran Colisionador de Hadrones recompensa a los científicos que observan en Caltech". Los Ángeles Times . Consultado el 2 de abril de 2010 .
  62. ^ M. Hogenboom (24 de julio de 2013). "Desintegración ultra rara confirmada en el LHC". BBC . Consultado el 18 de agosto de 2013 .
  63. ^ "Desafíos de la física de aceleradores". CERN. 14 de enero de 1999. Archivado desde el original el 5 de octubre de 2006 . Consultado el 28 de septiembre de 2009 .
  64. ^ John Poole (2004). "Definiciones y parámetros de haz" (PDF) . Informe de diseño del LHC .
  65. ^ Agence Science-Presse (7 de diciembre de 2009). "LHC: Un (très) petit Big Bang" (en francés). Gravamen Multimedia . Consultado el 29 de octubre de 2010 . traducción de Google
  66. ^ "¿Cuánto cuesta?". CERN. 2007. Archivado desde el original el 7 de agosto de 2011 . Consultado el 28 de septiembre de 2009 .
  67. ^ Luciano Maiani (16 de octubre de 2001). "Revisión de costos del LHC hasta su finalización". CERN. Archivado desde el original el 27 de diciembre de 2008 . Consultado el 15 de enero de 2001 .
  68. ^ Toni Feder (2001). "El CERN se enfrenta al aumento de costes del LHC". Física hoy . 54 (12): 21-22. Código Bib : 2001PhT....54l..21F. doi : 10.1063/1.1445534 .
  69. ^ "La explosión de imanes puede retrasar el proyecto del colisionador del CERN". Reuters . 5 de abril de 2007. Archivado desde el original el 3 de mayo de 2007 . Consultado el 28 de septiembre de 2009 .
  70. ^ Paul Rincón (23 de septiembre de 2008). "Collider se detuvo hasta el próximo año". Noticias de la BBC . Consultado el 28 de septiembre de 2009 .
  71. ^ Robert Aymar (26 de octubre de 2005). "Mensaje del Director General". Relaciones con los medios y la prensa (nota de prensa). CERN . Consultado el 12 de junio de 2013 .
  72. ^ "Fermilab 'estupefacto' por el fiasco que rompió el imán". Fotónica.com. 4 de abril de 2007 . Consultado el 28 de septiembre de 2009 .
  73. ^ "Actualización de Fermilab sobre imanes tripletes internos en el LHC: reparaciones de imanes en curso en el CERN". Relaciones con los medios y la prensa (nota de prensa). CERN. 1 de junio de 2007. Archivado desde el original el 6 de enero de 2009 . Consultado el 28 de septiembre de 2009 .
  74. ^ "Actualizaciones sobre la falla del triplete interno del LHC". Fermilab hoy . Fermilab . 28 de septiembre de 2007 . Consultado el 28 de septiembre de 2009 .
  75. ^ Paul Rincón (23 de septiembre de 2008). "Collider se detuvo hasta el próximo año". Noticias de la BBC . Consultado el 29 de septiembre de 2009 .
  76. ^ ab "El LHC se reiniciará en 2009". Relaciones con los medios y la prensa (nota de prensa). CERN. 5 de diciembre de 2008 . Consultado el 13 de noviembre de 2016 .
  77. ^ Dennis Overbye (5 de diciembre de 2008). "Después de las reparaciones, está prevista la puesta en marcha en verano del colisionador". New York Times . Consultado el 8 de diciembre de 2008 .
  78. ^ ab "Noticias sobre el LHC". CERN. 16 de julio de 2009 . Consultado el 28 de septiembre de 2009 .
  79. ^ "El CERN destructor de átomos para 'terminar' el trabajo con Rusia y Bielorrusia". Phys.org . Consultado el 1 de agosto de 2022 .
  80. ^ "El Consejo del CERN declara su intención de rescindir los acuerdos de cooperación con Rusia y Bielorrusia en sus fechas de vencimiento en 2024 | CERN". Inicio.web.cern.ch. 17 de junio de 2022 . Consultado el 1 de agosto de 2022 .
  81. ^ "Resoluciones | Consejo del CERN". Council.web.cern.ch . Consultado el 12 de agosto de 2022 .
  82. ^ ab "Reinicio del LHC: ¿Por qué 13 Tev?". CERN . Consultado el 28 de agosto de 2015 .
  83. ^ "Primeros imanes del LHC preparados para reiniciarse". Revista Simetría . Consultado el 28 de agosto de 2015 .
  84. ^ Paul Rincón (10 de septiembre de 2008). "El experimento 'Big Bang' comienza bien" . Noticias de la BBC . Consultado el 17 de abril de 2009 .
  85. ^ Mark Henderson (10 de septiembre de 2008). "Los científicos aplauden cuando los protones completan el primer circuito del Gran Colisionador de Hadrones". Tiempos en línea . Londres . Consultado el 6 de octubre de 2008 .
  86. ^ abcd "Informe resumido provisional sobre el análisis del incidente del 19 de septiembre de 2008 en el LHC" (PDF) . CERN. 15 de octubre de 2008. EDMS 973073 . Consultado el 28 de septiembre de 2009 .
  87. ^ "Incidente en el sector 3-4 del LHC". Relaciones con los medios y la prensa (nota de prensa). CERN. 20 de septiembre de 2008 . Consultado el 13 de noviembre de 2016 .
  88. ^ "El CERN publica un análisis del incidente del LHC". Relaciones con los medios y la prensa (nota de prensa). CERN. 16 de octubre de 2008 . Consultado el 13 de noviembre de 2016 .
  89. ^ "El imán final del LHC pasa a la clandestinidad". Relaciones con los medios y la prensa (nota de prensa). CERN. 30 de abril de 2009 . Consultado el 13 de noviembre de 2016 .
  90. ^ L. Rossi (2010). «Superconductividad: su papel, sus éxitos y sus reveses en el Gran Colisionador de Hadrones del CERN» (PDF) . Ciencia y tecnología de superconductores . 23 (3): 034001. Código bibliográfico : 2010SuScT..23c4001R. doi :10.1088/0953-2048/23/3/034001. S2CID  53063554.
  91. ^ "El CERN anuncia la fecha de puesta en marcha del LHC". Relaciones con los medios y la prensa (nota de prensa). CERN. 7 de agosto de 2008 . Consultado el 13 de noviembre de 2016 .
  92. ^ "La dirección del CERN confirma el nuevo calendario de reinicio del LHC". Relaciones con los medios y la prensa (nota de prensa). CERN. 9 de febrero de 2009 . Consultado el 13 de noviembre de 2016 .
  93. ^ "El CERN inaugura el LHC". Relaciones con los medios y la prensa (nota de prensa). CERN. 21 de octubre de 2008 . Consultado el 21 de octubre de 2008 .
  94. ^ Seminario sobre la física del LHC por John Iliopoulos, École Normale Supérieure , París, 2009.
  95. ^ "El LHC establece un nuevo récord mundial". Relaciones con los medios y la prensa (nota de prensa). CERN. 30 de noviembre de 2009 . Consultado el 13 de noviembre de 2016 .
  96. ^ "Big Bang Machine establece un récord de colisiones". El hindú . Associated Press. 30 de marzo de 2010.
  97. ^ "El CERN completa la transición al funcionamiento con iones de plomo en el LHC". Relaciones con los medios y la prensa (nota de prensa). CERN. 8 de noviembre de 2010 . Consultado el 28 de febrero de 2016 .
  98. ^ "Lo último del LHC: último período de funcionamiento de protones para 2010. - Boletín del CERN". Cdsweb.cern.ch. 1 de noviembre de 2010 . Consultado el 17 de agosto de 2011 .
  99. ^ "La primera prueba de protones del LHC finaliza con un nuevo hito". Relaciones con los medios y la prensa (nota de prensa). CERN. 17 de diciembre de 2012.
  100. ^ Hortala, Thomas (19 de mayo de 2021). "Por qué los imanes del LHC son azules y respuestas a otras preguntas coloridas sobre aceleradores". CERN . Consultado el 20 de mayo de 2023 .
  101. ^ "Apagado prolongado 1: Se avecinan tiempos emocionantes". cern.ch.Consultado el 28 de agosto de 2015 .
  102. ^ "CERN". cern.ch.Consultado el 28 de agosto de 2015 .
  103. ^ "LHC 2015 - últimas noticias". cern.ch.Consultado el 19 de enero de 2016 .
  104. ^ "Consolidaciones del LHC: una guía paso a paso". CERN.
  105. ^ O'Luanaigh, Cian. "Primer haz exitoso con una energía récord de 6,5 TeV". CERN . Consultado el 24 de abril de 2015 .
  106. ^ ab O'Luanaigh, Cian (21 de mayo de 2015). "Primeras imágenes de colisiones a 13 TeV". CERN.
  107. ^ ab "Físicos ansiosos por una nueva ejecución del Gran Colisionador de Hadrones de alta energía". Ciencia diaria . 3 de junio de 2015 . Consultado el 4 de junio de 2015 .
  108. ^ ab "Informe del LHC: operación protón-protón a finales de 2016". 31 de octubre de 2016 . Consultado el 27 de enero de 2017 .
  109. ^ "Informe del LHC: mucho más allá de las expectativas". 13 de diciembre de 2016 . Consultado el 27 de enero de 2017 .
  110. ^ "Calendario del LHC 2018" (PDF) .
  111. ^ "Al Cern riavviato LHC, il più grande acceleratore di particelle" [LHC, el acelerador de partículas más grande, reiniciado en el CERN]. Askanews (en italiano). 22 de abril de 2022 . Consultado el 22 de abril de 2022 .
  112. ^ Keane, Sean (22 de abril de 2022). "El gran colisionador de hadrones del CERN se reinicia después de una actualización de tres años". CNET . Consultado el 22 de abril de 2022 .
  113. ^ "Anunciada la temporada de física Run 3". CERN . 24 de junio de 2022 . Consultado el 24 de junio de 2022 .
  114. ^ "El colisionador de partículas más grande del mundo se reinicia después de una larga pausa". CERN . 22 de abril de 2022 . Consultado el 22 de abril de 2022 .
  115. ^ ab "Nuevas tecnologías para el LHC de alta luminosidad | CERN". Inicio.preocupación . Consultado el 1 de agosto de 2022 .
  116. ^ "El LHC establece un nuevo récord mundial". Relaciones con los medios y la prensa (nota de prensa). CERN. 30 de noviembre de 2009 . Consultado el 13 de noviembre de 2016 .
  117. ^ ab Primera ciencia producida en el LHC 15 de diciembre de 2009
  118. ^ "El LHC ve las primeras colisiones de 3,5 TeV de haz estable de 2011". ruptura de simetría. 13 de marzo de 2011 . Consultado el 15 de marzo de 2011 .
  119. ^ "El LHC establece un récord mundial de intensidad del haz". Relaciones con los medios y la prensa (nota de prensa). CERN. 22 de abril de 2011 . Consultado el 13 de noviembre de 2016 .
  120. ^ ab Than, Ker (26 de mayo de 2011). "La materia más densa creada en una máquina Big-Bang". National Geographic . Archivado desde el original el 7 de junio de 2023.
  121. ^ "El LHC alcanza el hito de datos de 2011". Relaciones con los medios y la prensa (nota de prensa). CERN. 17 de junio de 2011 . Consultado el 20 de junio de 2011 .
  122. ^ Anna Phan. "¡¡¡Un femtobarn inverso grabado !!!". Diarios cuánticos .
  123. ^ ab Jonathan Amos (22 de diciembre de 2011). "El LHC informa del descubrimiento de su primera partícula nueva". Noticias de la BBC .
  124. ^ "La toma de datos físicos del LHC comienza con un nuevo récord de energía de colisión de 8 TeV". Relaciones con los medios y la prensa (nota de prensa). CERN. 5 de abril de 2012 . Consultado el 13 de noviembre de 2016 .
  125. ^ "Nuevos resultados indican que la nueva partícula es un bosón de Higgs". CERN. 14 de marzo de 2013 . Consultado el 14 de marzo de 2013 .
  126. ^ ab Ghosh, Pallab (12 de noviembre de 2012). "La teoría de la física popular se está quedando sin escondites". Noticias de la BBC . Consultado el 14 de noviembre de 2012 .
  127. ^ "La primera prueba de protones del LHC finaliza con un nuevo hito". Relaciones con los medios y la prensa (nota de prensa). CERN. 17 de diciembre de 2012 . Consultado el 10 de marzo de 2014 .
  128. ^ "Primer haz exitoso con una energía récord de 6,5 TeV". CERN. 10 de abril de 2015 . Consultado el 5 de mayo de 2015 .
  129. ^ "Una nueva frontera energética para los iones pesados" . Consultado el 2 de abril de 2021 .
  130. ^ abc "Informe del LHC: terminó otra ejecución y LS2 acaba de comenzar ...". CERN .
  131. ^ "Se reinicia el Gran Colisionador de Hadrones". Relaciones con los medios y la prensa (nota de prensa). CERN. 22 de abril de 2022 . Consultado el 8 de noviembre de 2022 .
  132. ^ P. Rincón (17 de mayo de 2010). "La búsqueda de partículas del LHC 'se acerca', dice un físico". Noticias de la BBC.
  133. ^ V. Khachatryan y otros. (Colaboración CMS) (2010). "Distribuciones de momento transversal y pseudorapidez de hadrones cargados en colisiones de pp en √s = 0,9 y 2,36 TeV". Revista de Física de Altas Energías . 2010 (2): 1–35. arXiv : 1002.0621 . Código Bib : 2010JHEP...02..041K. doi : 10.1007/JHEP02(2010)041 .
  134. ^ V. Khachatryan y otros. (Colaboración CMS) (2011). "Búsqueda de firmas microscópicas de agujeros negros en el gran colisionador de hadrones". Letras de Física B. 697 (5): 434–453. arXiv : 1012.3375 . Código bibliográfico : 2011PhLB..697..434C. doi : 10.1016/j.physletb.2011.02.032 .
  135. ^ V. Khachatryan y otros. (Colaboración CMS) (2011). "Búsqueda de supersimetría en colisiones de pp a 7 TeV en eventos con chorros y energía transversal faltante". Letras de Física B. 698 (3): 196–218. arXiv : 1101.1628 . Código bibliográfico : 2011PhLB..698..196C. doi : 10.1016/j.physletb.2011.03.021 .
  136. ^ G. Aad y col. ( Colaboración ATLAS ) (2011). "Búsqueda de supersimetría utilizando estados finales con un leptón, chorros y momento transversal faltante con el detector ATLAS en √s = 7 TeV pp". Cartas de revisión física . 106 (13): 131802. arXiv : 1102.2357 . Código bibliográfico : 2011PhRvL.106m1802A. doi : 10.1103/PhysRevLett.106.131802 . PMID  21517374.
  137. ^ G. Aad y col. (Colaboración ATLAS) (2011). "Búsqueda de squarks y gluinos utilizando estados finales con chorros y falta de momento transversal con el detector ATLAS en colisiones protón-protón √s = 7 TeV". Letras de Física B. 701 (2): 186–203. arXiv : 1102.5290 . Código Bib : 2011PhLB..701..186A. doi : 10.1016/j.physletb.2011.05.061 .
  138. ^ Chalmers, M. Verificación de la realidad en el LHC, físicaworld.com, 18 de enero de 2011
  139. ^ McAlpine, K. ¿Encontrará el LHC la supersimetría? Archivado el 25 de febrero de 2011 en Wayback Machine , físicaworld.com, 22 de febrero de 2011
  140. ^ Geoff Brumfiel (2011). "Una hermosa teoría choca con datos de partículas sorprendentes". Naturaleza . 471 (7336): 13-14. Código Bib :2011Natur.471...13B. doi : 10.1038/471013a . PMID  21368793.
  141. ^ "Los experimentos del LHC presentan sus últimos resultados en la Conferencia Eurofísica sobre Física de Altas Energías". Relaciones con los medios y la prensa (nota de prensa). CERN. 21 de julio de 2011 . Consultado el 13 de noviembre de 2016 .
  142. ^ "Los experimentos del LHC presentan los últimos resultados en la conferencia de Mumbai". Relaciones con los medios y la prensa (nota de prensa). CERN. 22 de agosto de 2011 . Consultado el 13 de noviembre de 2016 .
  143. ^ Pallab Ghosh (22 de agosto de 2011). "El rango del bosón de Higgs se estrecha en el colisionador europeo". Noticias de la BBC.
  144. ^ Pallab Ghosh (27 de agosto de 2011). "Los resultados del LHC ponen la teoría de la supersimetría en aprietos'". Noticias de la BBC.
  145. ^ "El experimento LHCb ve la física del modelo estándar". Revista Simetría . SLAC/Fermilab. 29 de agosto de 2011 . Consultado el 1 de septiembre de 2011 .
  146. ^ "Los experimentos ATLAS y CMS presentan el estado de búsqueda de Higgs". Relaciones con los medios y la prensa (nota de prensa). CERN. 13 de diciembre de 2011 . Consultado el 13 de noviembre de 2016 .
  147. ^ "Los experimentos del CERN observan partículas compatibles con el bosón de Higgs buscado durante mucho tiempo". Relaciones con los medios y la prensa (nota de prensa). CERN. 4 de julio de 2012 . Consultado el 9 de noviembre de 2016 .
  148. ^ "Ahora confiado: los físicos del CERN dicen que la nueva partícula es el bosón de Higgs (Actualización 3)". Organización Física. 14 de marzo de 2013 . Consultado el 4 de diciembre de 2019 .
  149. ^ Colaboración LHCb (7 de enero de 2013). "Primera evidencia de la decadencia ". Cartas de revisión física . 110 (2): 021801. arXiv : 1211.2674 . Código bibliográfico : 2013PhRvL.110b1801A. doi : 10.1103/PhysRevLett.110.021801. PMID  23383888. S2CID  13103388.
  150. ^ Colaboración CMS (5 de septiembre de 2013). "Medición de la fracción de ramificación B s 0 → μ + μ − {\displaystyle B_{s}^{0}\rightarrow \mu ^{+}\mu ^{-}} y búsqueda de B 0 → μ + μ − {\displaystyle B^{0}\rightarrow \mu ^{+}\mu ^{-}} con el experimento CMS". Cartas de revisión física . 111 (10): 101804. arXiv : 1307.5025 . Código bibliográfico : 2013PhRvL.111j1804C. doi : 10.1103/PhysRevLett.111.101804 . PMID  25166654.
  151. ^ "¿Se detectaron indicios de nueva física en el LHC?". 10 de mayo de 2017.
  152. ^ Nuevas partículas subatómicas predichas por canadienses encontradas en el CERN, 19 de noviembre de 2014
  153. ^ "El experimento LHCb observa dos nuevas partículas bariónicas nunca antes vistas". Relaciones con los medios y la prensa (nota de prensa). CERN. 19 de noviembre de 2014 . Consultado el 19 de noviembre de 2014 .
  154. ^ O'Luanaigh, Cian (9 de abril de 2014). "El LHCb confirma la existencia de hadrones exóticos". CERN . Consultado el 4 de abril de 2016 .
  155. ^ Aaij, R.; et al. (Colaboración LHCb) (4 de junio de 2014). "Observación del carácter resonante del estado Z (4430) -". Cartas de revisión física . 112 (21): 222002. arXiv : 1404.1903 . Código Bib : 2014PhRvL.112v2002A. doi : 10.1103/PhysRevLett.112.222002 . PMID  24949760.
  156. ^ Aaij, R.; et al. ( Colaboración LHCb ) (12 de agosto de 2015). "Observación de resonancias J/ψp consistentes con estados de pentaquark en desintegraciones Λ0b → J/ψK−p". Cartas de revisión física . 115 (7): 072001. arXiv : 1507.03414 . Código Bib : 2015PhRvL.115g2001A. doi : 10.1103/PhysRevLett.115.072001 . PMID  26317714.
  157. ^ "El experimento LHCb del CERN informa la observación de partículas exóticas de pentaquark". Relaciones con los medios y la prensa (nota de prensa). CERN . Consultado el 28 de agosto de 2015 .
  158. ^ Rincón, Paul (1 de julio de 2015). "El Gran Colisionador de Hadrones descubre una nueva partícula de pentaquark". Noticias de la BBC . Consultado el 14 de julio de 2015 .
  159. ^ Aaij, R.; et al. (Colaboración LHCb) (2017). "Observación de estructuras J/ψφ consistentes con estados exóticos a partir del análisis de amplitud de desintegraciones B + →J/ψφK + ". Cartas de revisión física . 118 (2): 022003. arXiv : 1606.07895 . Código Bib : 2017PhRvL.118b2003A. doi : 10.1103/PhysRevLett.118.022003. PMID  28128595. S2CID  206284149.
  160. ^ Aaij, R.; et al. (Colaboración LHCb) (2017). "Análisis de amplitud de desintegraciones B + →J/ψφK + ". Revisión física D. 95 (1): 012002. arXiv : 1606.07898 . Código Bib : 2017PhRvD..95a2002A. doi : 10.1103/PhysRevD.95.012002. S2CID  73689011.
  161. ^ "ATLAS publica la primera medición de la masa W utilizando datos del LHC". 13 de diciembre de 2016 . Consultado el 27 de enero de 2017 .
  162. ^ Adiós, Dennis (15 de diciembre de 2015). "Los físicos de Europa encuentran indicios tentadores de una nueva partícula misteriosa". New York Times . Consultado el 15 de diciembre de 2015 .
  163. ^ Colaboración CMS (15 de diciembre de 2015). "Búsqueda de nueva física en eventos de difotones de alta masa en colisiones protón-protón a 13 TeV". Solenoide de muón compacto . Consultado el 2 de enero de 2016 .
  164. ^ Colaboración ATLAS (15 de diciembre de 2015). "Búsqueda de resonancias que decaen en pares de fotones en 3,2 fb-1 de colisiones de pp a √s = 13 TeV con el detector ATLAS" (PDF) . Consultado el 2 de enero de 2016 .
  165. ^ Colaboración CMS. "Resumen del análisis de física de CMS" (PDF) . CERN . Consultado el 4 de agosto de 2016 .
  166. ^ Adiós, Dennis (5 de agosto de 2016). "La partícula que no fue". New York Times . Consultado el 5 de agosto de 2016 .
  167. ^ "Chicago ve una avalancha de datos del LHC y nuevos resultados en la conferencia ICHEP 2016". Relaciones con los medios y la prensa (nota de prensa). CERN. 5 de agosto de 2015 . Consultado el 5 de agosto de 2015 .
  168. ^ "Los experimentos del LHC profundizan en la precisión". Relaciones con los medios y la prensa (nota de prensa). CERN. 11 de julio de 2017. Archivado desde el original el 14 de julio de 2017 . Consultado el 23 de julio de 2017 .
  169. ^ Traczyk, Piotr (3 de marzo de 2021). "59 nuevos hadrones y contando". CERN . Consultado el 23 de julio de 2021 .
  170. ^ "El proyecto Gran Colisionador de Hadrones descubre tres nuevas partículas exóticas". Revista E&T. 5 de julio de 2022. Archivado desde el original el 8 de agosto de 2022 . Consultado el 1 de agosto de 2022 .
  171. ^ "Un nuevo calendario para el LHC y su sucesor". CERN . 13 de diciembre de 2019. Archivado desde el original el 29 de mayo de 2023.
  172. ^ "Futuro colisionador circular: la carrera para construir el colisionador de partículas más poderoso del mundo". SciTechDaily . 7 de abril de 2023 . Consultado el 11 de junio de 2023 .
  173. ^ Alan Boyle (2 de septiembre de 2008). "Los tribunales sopesan las afirmaciones apocalípticas". Registro Cósmico . MSNBC . Archivado desde el original el 18 de octubre de 2015 . Consultado el 28 de septiembre de 2009 .
  174. ^ J.-P. Blaizot; J. Iliopoulos; J. Madsen; GG Ross; P. Sonderegger; H.-J. Specht (2003). "Estudio de eventos potencialmente peligrosos durante colisiones de iones pesados ​​en el LHC" (PDF) . CERN . Consultado el 28 de septiembre de 2009 .
  175. ^ ab Ellis, J.; Giudice, G.; Mangano, ML; Tkachev, T.; Wiedemann, U. (2008). "Revisión de la seguridad de las colisiones del LHC". Revista de Física G. 35 (11): 115004. arXiv : 0806.3414 . Código Bib : 2008JPhG...35k5004E. doi :10.1088/0954-3899/35/11/115004. S2CID  53370175.
  176. ^ "La seguridad del LHC". Relaciones con los medios y la prensa (nota de prensa). CERN. 2008 . Consultado el 28 de septiembre de 2009 .
  177. ^ División de partículas y campos. «Declaración del Comité Ejecutivo del DPF sobre la seguridad de las colisiones en el Gran Colisionador de Hadrones» (PDF) . Sociedad Estadounidense de Física . Archivado desde el original (PDF) el 24 de octubre de 2009 . Consultado el 28 de septiembre de 2009 .
  178. ^ Katherine McAlpine (28 de julio de 2008). "Gran rap de hadrones". YouTube . Archivado desde el original el 30 de octubre de 2021 . Consultado el 8 de mayo de 2011 .
  179. ^ Roger Highfield (6 de septiembre de 2008). "El rap sobre el experimento científico más grande del mundo se convierte en un éxito en YouTube". Telegrafo diario . Londres. Archivado desde el original el 28 de agosto de 2008 . Consultado el 28 de septiembre de 2009 .
  180. ^ Jennifer Bogo (1 de agosto de 2008). "El rap del gran colisionador de hadrones enseña física de partículas en 4 minutos". Mecánica Popular . Consultado el 28 de septiembre de 2009 .
  181. ^ Malcolm W Brown (29 de diciembre de 1998). "Los físicos descubren otra fuerza unificadora: Doo-Wop" (PDF) . New York Times . Consultado el 21 de septiembre de 2010 .
  182. ^ Heather McCabe (10 de febrero de 1999). "Grrl Geeks rockean" (PDF) . Noticias por cable . Consultado el 21 de septiembre de 2010 .
  183. ^ "Aplastadores de átomos". Las soluciones más difíciles del mundo . Temporada 2. Episodio 6. Canal National Geographic . Archivado desde el original el 2 de mayo de 2014 . Consultado el 15 de junio de 2014 .
  184. ^ Ragogna, Mike (20 de enero de 2012). "La historia de Wayman Tisdale y Scars & Stories: conversaciones con el director Brian Schodorf y Isaac Slade de The Fray" . Consultado el 23 de abril de 2022 .
  185. ^ Boyle, Rebecca (31 de octubre de 2012). "El gran colisionador de hadrones desata zombis arrasadores" . Consultado el 22 de noviembre de 2012 .
  186. ^ Taylor, Allen (2011). "Ángeles y demonios". Científico nuevo . CERN. 214 (2871): 31. Código Bib :2012NewSc.214R..31T. doi : 10.1016/S0262-4079(12)61690-X . Consultado el 2 de agosto de 2015 .
  187. ^ Ceri Perkins (2 de junio de 2008). "ATLAS recibe el tratamiento de Hollywood". Noticias electrónicas de ATLAS . Consultado el 2 de agosto de 2015 .
  188. ^ "FlashAdelante". CERN. Septiembre de 2009 . Consultado el 3 de octubre de 2009 .

enlaces externos

Video
Noticias