Símbolo de Legendre
En la teoría de los números, el símbolo de Legendre es una función multiplicativa utilizada para determinar el carácter cuadrático de un número (mod p), es decir si es residuo cuadrático o no;[1] la misma que toma como argumentos un enteroy devuelve uno de los valoreses o no residuo cuadrático módulo, es decir de si la congruencia tiene solución o no.El símbolo de Legendre fue introducido por Adrien-Marie Legendre in 1798[2] en el curso de sus intentos de demostrar la ley de reciprocidad cuadrática.Generalizaciones del símbolo incluyen el símbolo de Jacobi y los caracteres de Dirichlet de orden superior.La conveniencia de la notación del símbolo de Legendre inspiró la introducción de varios otros símbolos que se utilizan en la teoría algebraica de números, como el símbolo de Hilbert y el símbolo de Artin., el símbolo de Legendre, denotadoes residuo cuadrático móduloes no residuo cuadrático módulo{\displaystyle \left({\frac {a}{p}}\right)={\begin{cases}0&{\text{si }}p{\text{ es divisor de }}a,\\1&{\text{si }}a{\text{ es residuo cuadrático módulo }}p,\\-1&{\text{si }}a{\text{ es no residuo cuadrático módulo }}p.\\\end{cases}}}Para algunos valores concretos de, el símbolo de Legendre aún puede simplificarse más: El símbolo de Legendre satisface algunas propiedades interesantes: