stringtranslate.com

Vehículo de lanzamiento

La Soyuz TMA-5 rusa despega del cosmódromo de Baikonur en Kazajstán rumbo a la Estación Espacial Internacional
Comparación de vehículos de lanzamiento. Mostrar masas de carga útil a LEO , GTO , TLI y MTO

Un vehículo de lanzamiento suele ser un vehículo propulsado por un cohete diseñado para transportar una carga útil (una nave espacial tripulada o satélites ) desde la superficie de la Tierra o la atmósfera inferior hasta el espacio exterior . La forma más común es el cohete multietapa con forma de misil balístico , pero el término es más general y también abarca vehículos como el transbordador espacial . La mayoría de los vehículos de lanzamiento operan desde una plataforma de lanzamiento , respaldada por un centro de control de lanzamiento y sistemas como el ensamblaje del vehículo y el abastecimiento de combustible. [1] Los vehículos de lanzamiento están diseñados con aerodinámica y tecnologías avanzadas, lo que contribuye a altos costos operativos.

Un vehículo de lanzamiento orbital debe elevar su carga útil al menos hasta el límite del espacio, aproximadamente 150 km (93 millas) y acelerarla a una velocidad horizontal de al menos 7.814 m/s (17.480 mph). [2] Los vehículos suborbitales lanzan sus cargas útiles a menor velocidad o se lanzan en ángulos de elevación mayores que la horizontal.

Los vehículos de lanzamiento orbital prácticos utilizan propulsores químicos como combustible sólido , hidrógeno líquido , queroseno , oxígeno líquido o propulsores hipergólicos .

Los vehículos de lanzamiento se clasifican según su capacidad de carga útil orbital, desde carga pequeña , mediana , pesada hasta súper pesada .

Historia

Los vuelos espaciales comenzaron en el siglo XX tras los avances teóricos y prácticos de Konstantin Tsiolkovsky , Robert H. Goddard y Hermann Oberth , cada uno de los cuales publicó trabajos proponiendo cohetes como medio para los vuelos espaciales. [a] Los primeros programas exitosos de cohetes a gran escala fueron iniciados en la Alemania nazi por Wernher von Braun . La Unión Soviética tomó la delantera en la carrera espacial de la posguerra , poniendo en órbita el primer satélite , [3] el primer animal, [4] : ​​155  el primer ser humano [5] y la primera mujer [6] . Luego, Estados Unidos llevaría a los primeros hombres a la Luna en 1969. A finales del siglo XX, Francia, el Reino Unido, Japón y China también trabajaron en proyectos para llegar al espacio.

Masa en órbita

Los vehículos de lanzamiento están clasificados por la NASA según su capacidad de carga útil en órbita terrestre baja : [7]

Los cohetes sonoros son similares a los vehículos de lanzamiento de pequeña elevación, aunque suelen ser incluso más pequeños y no colocan cargas útiles en órbita. Se utilizó un cohete de sondeo SS-520 modificado para poner en órbita una carga útil de 4 kilogramos ( TRICOM-1R ) en 2018. [11]

información general

Los vuelos espaciales orbitales requieren que la carga útil de un satélite o nave espacial se acelere a una velocidad muy alta. En el vacío del espacio, las fuerzas de reacción deben ser proporcionadas por la eyección de masa, lo que da como resultado la ecuación del cohete . La física de los vuelos espaciales es tal que normalmente se requieren etapas de cohetes para alcanzar la órbita deseada. [ cita necesaria ]

Los vehículos de lanzamiento desechables están diseñados para un solo uso, con propulsores que normalmente se separan de su carga útil y se desintegran durante el reingreso a la atmósfera o al contacto con el suelo. Por el contrario, los vehículos de lanzamiento reutilizables están diseñados para recuperarse intactos y lanzarse nuevamente. El Falcon 9 es un ejemplo de vehículo de lanzamiento reutilizable. [12] A partir de 2023, todos los vehículos de lanzamiento reutilizables que alguna vez estuvieron operativos han sido parcialmente reutilizables, lo que significa que algunos componentes se recuperan y otros no. Esto suele significar la recuperación de etapas específicas, generalmente solo la primera etapa, pero a veces se pueden recuperar componentes específicos de una etapa de cohete y otros no. El Transbordador Espacial , por ejemplo, recuperó y reutilizó sus propulsores de cohetes sólidos , el orbitador del Transbordador Espacial que también actuaba como segunda etapa, y los motores utilizados por la etapa central (el RS-25 , que estaba situado en la parte trasera del orbitador). ), sin embargo, el depósito de combustible del que se abastecían los motores, que estaba separado de los motores, no se reutilizó. [ cita necesaria ]

Por ejemplo, la Agencia Espacial Europea es responsable del Ariane V , y la United Launch Alliance fabrica y lanza los cohetes Delta IV y Atlas V. [ cita necesaria ]

Ubicaciones de la plataforma de lanzamiento

Lanzamiento al mar por parte de una empresa china Orienspace

Las plataformas de lanzamiento pueden ubicarse en tierra ( puerto espacial ), en una plataforma oceánica fija ( San Marco ), en una plataforma oceánica móvil ( Sea Launch ) y en un submarino . Los vehículos de lanzamiento también pueden lanzarse desde el aire . [ cita necesaria ]

Regímenes de vuelo

Un vehículo de lanzamiento partirá con su carga útil en algún lugar de la superficie de la Tierra. Para alcanzar la órbita, el vehículo debe viajar verticalmente para salir de la atmósfera y horizontalmente para evitar volver a contactar con el suelo. La velocidad requerida varía según la órbita, pero siempre será extrema en comparación con las velocidades encontradas en la vida normal. [ cita necesaria ]

Los vehículos de lanzamiento ofrecen distintos grados de rendimiento. Por ejemplo, un satélite con destino a la órbita geoestacionaria (GEO) puede insertarse directamente en la etapa superior del vehículo de lanzamiento o lanzarse a una órbita de transferencia geoestacionaria (GTO). Una inserción directa impone mayores exigencias al vehículo de lanzamiento, mientras que GTO exige más a la nave espacial. Una vez en órbita, las etapas superiores de los vehículos de lanzamiento y los satélites pueden tener capacidades superpuestas, aunque las etapas superiores tienden a tener vidas orbitales medidas en horas o días, mientras que las naves espaciales pueden durar décadas. [ cita necesaria ]

Lanzamiento distribuido

El lanzamiento distribuido implica el logro de un objetivo con múltiples lanzamientos de naves espaciales. Una nave espacial grande como la Estación Espacial Internacional se puede construir ensamblando módulos en órbita o realizando una transferencia de propulsor en el espacio para aumentar en gran medida las capacidades delta-V de un vehículo cislunar o de espacio profundo . El lanzamiento distribuido permite misiones espaciales que no son posibles con arquitecturas de lanzamiento único. [13]

Las arquitecturas de misión para el lanzamiento distribuido se exploraron en la década de 2000 [14] y los vehículos de lanzamiento con capacidad de lanzamiento distribuido integrada comenzaron a desarrollarse en 2017 con el diseño Starship . La arquitectura de lanzamiento estándar de Starship es repostar la nave espacial en órbita terrestre baja para permitirle enviar cargas útiles de gran masa en misiones mucho más energéticas . [15]

Regresar al sitio de lanzamiento

Después de 1980, pero antes de la década de 2010, dos vehículos de lanzamiento orbital desarrollaron la capacidad de regresar al sitio de lanzamiento (RTLS). Tanto el transbordador espacial estadounidense —con uno de sus modos de aborto [16] [17] —como el Buran soviético [18] tenían diseñada la capacidad de devolver una parte del vehículo de lanzamiento al lugar de lanzamiento mediante el mecanismo de movimiento horizontal. aterrizaje de la parte del avión espacial del vehículo de lanzamiento. En ambos casos, la estructura de propulsión principal del vehículo y el gran tanque de propulsor eran prescindibles , como había sido el procedimiento estándar para todos los vehículos de lanzamiento orbital volados antes de ese momento. Ambos se demostraron posteriormente en vuelos nominales orbitales reales, aunque ambos también tenían un modo de aborto durante el lanzamiento que posiblemente podría permitir a la tripulación aterrizar el avión espacial después de un lanzamiento fuera de lo nominal. [ cita necesaria ]

En la década de 2000, tanto SpaceX como Blue Origin desarrollaron de forma privada un conjunto de tecnologías para respaldar el aterrizaje vertical de la etapa propulsora de un vehículo de lanzamiento. Después de 2010, SpaceX emprendió un programa de desarrollo para adquirir la capacidad de traer de regreso y aterrizar verticalmente una parte del vehículo de lanzamiento orbital Falcon 9 : la primera etapa . El primer aterrizaje exitoso se realizó en diciembre de 2015, [19] desde 2017, las etapas de los cohetes aterrizan rutinariamente en una plataforma de aterrizaje adyacente al sitio de lanzamiento o en una plataforma de aterrizaje en el mar, a cierta distancia del sitio de lanzamiento. [20] El Falcon Heavy está diseñado de manera similar para reutilizar los tres núcleos que componen su primera etapa. En su primer vuelo en febrero de 2018, los dos núcleos externos regresaron con éxito a las plataformas de aterrizaje del sitio de lanzamiento, mientras que el núcleo central apuntó a la plataforma de aterrizaje en el mar, pero no aterrizó con éxito en ella. [21]

Blue Origin desarrolló tecnologías similares para traer de regreso y aterrizar su suborbital New Shepard , demostró con éxito el retorno en 2015 y reutilizó con éxito el mismo propulsor en un segundo vuelo suborbital en enero de 2016. [22] En octubre de 2016, Blue había vuelto a volar y aterrizar con éxito, ese mismo vehículo de lanzamiento un total de cinco veces. [23] Sin embargo, debe tenerse en cuenta que las trayectorias de lanzamiento de ambos vehículos son muy diferentes, con New Shepard yendo directamente hacia arriba y hacia abajo, mientras que Falcon 9 tiene que cancelar una velocidad horizontal sustancial y regresar desde una distancia significativa hacia abajo. [ cita necesaria ]

Tanto Blue Origin como SpaceX también tienen vehículos de lanzamiento reutilizables adicionales en desarrollo. Blue está desarrollando la primera etapa del orbital New Glenn LV para que sea reutilizable, y el primer vuelo está previsto para no antes de 2024. SpaceX tiene un nuevo vehículo de lanzamiento superpesado en desarrollo para misiones al espacio interplanetario . SpaceX Starship está diseñado para admitir RTLS, aterrizaje vertical y reutilización completa tanto de la etapa propulsora como de la segunda etapa integrada/nave espacial grande que están diseñadas para su uso con Starship. [24] Su primer intento de lanzamiento tuvo lugar en abril de 2023; sin embargo, ambas etapas se perdieron durante el ascenso. [ cita necesaria ]

Ver también

Notas

  1. ^
    • Tsiolkovsky, 1903, Exploración del espacio exterior mediante dispositivos de cohetes
    • Goddard, 1919, Un método para alcanzar altitudes extremas
    • Oberth, 1923, Die Rakete zu den Planetenräumen

Referencias

  1. ^ "La NASA mata la actualización del sistema de lanzamiento 'herido' en KSC". Florida hoy. Archivado desde el original el 13 de octubre de 2002.
  2. ^ Hill, James VH (abril de 1999), "Getting to Low Earth Orbit", Space Future , archivado desde el original el 19 de marzo de 2012 , consultado el 18 de marzo de 2012 .
  3. ^ "Sputnik | Satélites, historia y hechos | Britannica". www.britannica.com .
  4. ^ Siddiqi, Asif A. (2000). Desafío a Apolo: la Unión Soviética y la carrera espacial, 1945-1974.
  5. ^ "Yuri Gagarin: primer hombre en el espacio". NASA . Consultado el 8 de enero de 2023 .
  6. ^ "Este día en la historia: la cosmonauta soviética Valentina Tereshkova se convierte en la primera mujer en el espacio". Historia.com. 16 de junio de 1963 . Consultado el 8 de enero de 2023 .
  7. ^ Hojas de ruta de tecnología espacial de la NASA: sistemas de propulsión de lanzamiento, p.11: "Pequeño: cargas útiles de 0 a 2 toneladas, mediano: cargas útiles de 2 a 20 toneladas, pesado: cargas útiles de 20 a 50 toneladas, súper pesado: cargas útiles de> 50 toneladas"
  8. ^ "Servicios de lanzamiento: hitos". Arianeespacio . Consultado el 19 de agosto de 2014 .
  9. ^ ab "Bienvenidos a la Guayana Francesa" (PDF) . arianespace.com . Espacio Ariane. Archivado desde el original (PDF) el 23 de septiembre de 2015 . Consultado el 19 de agosto de 2014 .
  10. ^ Informe final del HSF: Buscando un programa de vuelos espaciales tripulados digno de una gran nación, octubre de 2009, Revisión del Comité de planes de vuelos espaciales tripulados de EE. UU. , p. 64-66: "5.2.1 La necesidad de carga pesada... requieren un vehículo de lanzamiento de “carga súper pesada”... rango de 25 a 40 mt, estableciendo un límite inferior hipotético en el tamaño del vehículo de carga súper pesada vehículo de lanzamiento si se dispone de reabastecimiento de combustible... esto favorece fuertemente una capacidad mínima de carga pesada de aproximadamente 50 toneladas..."
  11. ^ "SS-520". space.skyrocket.de . Consultado el 2 de junio de 2020 .
  12. ^ Lindsey, Clark (28 de marzo de 2013). "SpaceX avanza rápidamente hacia la primera etapa de vuelo de regreso" . Reloj NewSpace . Consultado el 29 de marzo de 2013 .
  13. ^ Kutter, Bernard; Monda, Eric; Wenner, Chauncey; Rhys, Noé (2015). Lanzamiento distribuido: habilitación de misiones más allá de LEO (PDF) . AIAA 2015. Instituto Americano de Aeronáutica y Astronáutica . Consultado el 23 de marzo de 2018 .
  14. ^ Chung, Victoria I.; Crues, Edwin Z.; Blum, Mike G.; Alofs, Cathy (2007). Una simulación de lanzamiento y ascenso de Orion/Ares I: un segmento de la simulación de exploración espacial distribuida (DSES) (PDF) . AIAA 2007. Instituto Americano de Aeronáutica y Astronáutica . Consultado el 23 de marzo de 2018 .
  15. ^ Foust, Jeff (29 de septiembre de 2017). "Musk presenta una versión revisada del sistema de lanzamiento interplanetario gigante". Noticias espaciales . Consultado el 23 de marzo de 2018 .
  16. ^ "Regresar al sitio de lanzamiento". NASA.gov . Consultado el 4 de octubre de 2016 .
  17. ^ "Evolución del aborto del transbordador espacial" (PDF) . ntrs.nasa.gov . 26 de septiembre de 2011 . Consultado el 4 de octubre de 2016 .
  18. ^ Handwerk, Brian (12 de abril de 2016). "El transbordador espacial soviético olvidado podría volar solo". National Geographic . Sociedad Geográfica Nacional . Archivado desde el original el 15 de abril de 2016 . Consultado el 4 de octubre de 2016 .
  19. ^ Newcomb, Alyssa; Dooley, Erin (21 de diciembre de 2015). "El aterrizaje histórico del cohete SpaceX es un éxito". ABC Noticias . Consultado el 4 de octubre de 2016 .
  20. ^ Sparks, Daniel (17 de agosto de 2016). "SpaceX aterriza el sexto cohete y se acerca a la reutilización". Los Motley Fool . Consultado el 27 de febrero de 2017 .
  21. ^ Gebhardt, Chris (5 de febrero de 2018). "SpaceX presenta con éxito Falcon Heavy en un lanzamiento de demostración desde KSC - NASASpaceFlight.com". NASASpaceFlight.com . Consultado el 23 de febrero de 2018 .
  22. ^ Foust, Jeff (22 de enero de 2016). "Blue Origin responde al vehículo suborbital New Shepard". Noticias espaciales . Consultado el 1 de noviembre de 2017 .
  23. ^ Foust, Jeff (5 de octubre de 2016). "lue Origin prueba con éxito el sistema de aborto New Shepard". Noticias espaciales . Consultado el 8 de octubre de 2016 .
  24. ^ Foust, Jeff (15 de octubre de 2017). "Musk ofrece más detalles técnicos sobre el sistema BFR - SpaceNews.com". SpaceNews.com . Consultado el 23 de febrero de 2018 .

enlaces externos