Un espacio unidimensional ( espacio 1D ) es un espacio matemático en el que la ubicación se puede especificar con una sola coordenada . Un ejemplo es la línea numérica , cada punto de la cual se describe mediante un solo número real . [1] Cualquier línea recta o curva suave es un espacio unidimensional, independientemente de la dimensión del espacio ambiente en el que está incrustada la línea o curva. Los ejemplos incluyen el círculo en un plano o una curva de espacio paramétrico . En el espacio físico , un subespacio 1D se denomina " dimensión lineal " ( rectilíneo o curvilíneo ), con unidades de longitud (por ejemplo, metro ).
En geometría algebraica existen varias estructuras que son espacios unidimensionales pero que normalmente se denominan con términos más específicos. Cualquier cuerpo es un espacio vectorial unidimensional sobre sí mismo. La línea proyectiva sobre denotada es un espacio unidimensional. En particular, si el cuerpo son los números complejos entonces la línea proyectiva compleja es unidimensional con respecto a (pero a veces se la llama esfera de Riemann , ya que es un modelo de la esfera , bidimensional con respecto a las coordenadas de los números reales).
Para cada vector propio de una transformación lineal T en un espacio vectorial V , existe un espacio unidimensional A ⊂ V generado por el vector propio tal que T ( A ) = A , es decir, A es un conjunto invariante bajo la acción de T . [2]
En la teoría de Lie , un subespacio unidimensional de un álgebra de Lie se asigna a un grupo de un parámetro según la correspondencia grupo de Lie-álgebra de Lie . [3]
En términos más generales, un anillo es un módulo de longitud sobre sí mismo. De manera similar, la línea proyectiva sobre un anillo es un espacio unidimensional sobre el anillo. En caso de que el anillo sea un álgebra sobre un cuerpo , estos espacios son unidimensionales con respecto al álgebra, incluso si el álgebra es de mayor dimensionalidad.
Los sistemas de coordenadas unidimensionales incluyen la recta numérica .