stringtranslate.com

Teoría de las mareas

Mareas altas y bajas en la bahía de Fundy

La teoría de las mareas es la aplicación de la mecánica del medio continuo para interpretar y predecir las deformaciones de las mareas de los cuerpos planetarios y satelitales y sus atmósferas y océanos (especialmente los océanos de la Tierra) bajo la carga gravitacional de otro cuerpo o cuerpos astronómicos (especialmente la Luna y el Sol ).

Historia

Astronomía aborigen australiana

El pueblo Yolngu del noreste de la Tierra de Arnhem en el Territorio del Norte de Australia identificó un vínculo entre la Luna y las mareas, que míticamente atribuyeron a que la Luna se llenaba de agua y se vaciaba nuevamente. [1] [2]

Era clásica

Las mareas recibieron relativamente poca atención en las civilizaciones alrededor del mar Mediterráneo , ya que las mareas allí son relativamente pequeñas y las áreas que las experimentan lo hacen de manera poco confiable. [3] [4] [5] Sin embargo, se propusieron varias teorías, desde comparar los movimientos con la respiración o el flujo sanguíneo hasta teorías que involucraban remolinos o ciclos fluviales. [4] Algunos pensadores asiáticos consideraron una idea similar de "tierra respiradora". [6] Se dice que Platón creía que las mareas eran causadas por el agua que entraba y salía de cavernas submarinas. [3] Crates de Mallus atribuyó las mareas al "movimiento contrario (ἀντισπασμός) del mar" y Apolodoro de Corcira a "los reflujos del océano". [7] Un antiguo texto indio Purana que data del 400-300 a. C. se refiere al ascenso y descenso del océano debido a la expansión del calor de la luz de la Luna. [a] [8]

Finalmente, los griegos descubrieron el vínculo entre la Luna (y el Sol ) y las mareas , aunque la fecha exacta del descubrimiento no está clara; hay referencias al mismo en fuentes como Piteas de Massilia en el 325 a. C. y la Historia natural de Plinio el Viejo en el 77 d. C. Aunque se conocía el calendario de las mareas y su vínculo con los movimientos lunares y solares, no estaba claro el mecanismo exacto que los conectaba. [4] El clasicista Thomas Little Heath afirmó que tanto Piteas como Posidonio relacionaban las mareas con la luna, "el primero directamente, el segundo a través del establecimiento de vientos". [7] Séneca menciona en De Providentia el movimiento periódico de las mareas controlado por la esfera lunar. [9] Eratóstenes (siglo III a. C.) y Posidonio (siglo I a. C.) produjeron descripciones detalladas de las mareas y su relación con las fases de la luna ; Posidonio en particular hizo largas observaciones del mar en la costa española, aunque poco de su trabajo sobrevivió. La influencia de la Luna en las mareas fue mencionada en el Tetrabiblos de Ptolomeo como evidencia de la realidad de la astrología . [3] [10] Se cree que Seleuco de Seleucia teorizó alrededor del 150 a. C. que las mareas eran causadas por la Luna como parte de su modelo heliocéntrico . [11] [12]

Aristóteles , a juzgar por las discusiones sobre sus creencias en otras fuentes, se cree que creía que las mareas eran causadas por vientos impulsados ​​por el calor del Sol, y rechazó la teoría de que la Luna causaba las mareas. Una leyenda apócrifa afirma que se suicidó frustrado por su incapacidad para comprender completamente las mareas. [3] Heráclides también sostuvo que "el sol crea vientos, y que estos vientos, cuando soplan, causan la marea alta y, cuando cesan, la marea baja". [7] Dicearco también "atribuyó las mareas a la acción directa del sol según su posición". [7] Filóstrato analiza las mareas en el Libro Cinco de la Vida de Apolonio de Tiana (circa 217-238 d. C.); era vagamente consciente de una correlación de las mareas con las fases de la Luna, pero las atribuyó a espíritus que movían agua dentro y fuera de las cavernas, lo que relacionó con la leyenda de que los espíritus de los muertos no pueden moverse en ciertas fases de la Luna. [b]

Periodo medieval

Beda el Venerable analiza las mareas en El cálculo del tiempo y muestra que el hecho de que las mareas se produzcan dos veces al día está relacionado con la Luna y que el ciclo lunar mensual de mareas vivas y muertas también está relacionado con la posición de la Luna. Continúa señalando que los tiempos de las mareas varían a lo largo de la misma costa y que los movimientos del agua causan mareas bajas en un lugar cuando hay mareas altas en otro. [13] Sin embargo, no hizo ningún progreso en cuanto a la cuestión de cómo exactamente la Luna crea las mareas. [4]

Se decía que los métodos empíricos medievales para predecir las mareas permitían "saber qué luna produce marea alta" a partir de los movimientos de la luna. [14] Dante hace referencia a la influencia de la luna en las mareas en su Divina Comedia . [15] [3]

La comprensión medieval europea de las mareas se basaba a menudo en obras de astrónomos musulmanes que estuvieron disponibles a través de traducciones latinas a partir del siglo XII. [16] Abu Ma'shar al-Balkhi , en su Introductorium in astronomiam , enseñó que las mareas de reflujo y de inundación eran causadas por la Luna. [16] Abu Ma'shar discutió los efectos del viento y las fases de la Luna en relación con el Sol en las mareas. [16] En el siglo XII, al-Bitruji contribuyó con la noción de que las mareas eran causadas por la circulación general de los cielos. [16] Los astrólogos árabes medievales frecuentemente hacían referencia a la influencia de la Luna en las mareas como evidencia de la realidad de la astrología; algunos de sus tratados sobre el tema influyeron en Europa occidental. [10] [3] Algunos teorizaron que la influencia era causada por los rayos lunares que calentaban el fondo del océano. [5]

Era moderna

Simon Stevin en su obra De spiegheling der Ebbenvloet (La teoría del reflujo y la inundación ) de 1608 descarta una gran cantidad de conceptos erróneos que aún existían sobre el reflujo y la inundación. Stevin aboga por la idea de que la atracción de la Luna era responsable de las mareas y escribe en términos claros sobre el reflujo, la inundación, la marea viva y la marea muerta, enfatizando que era necesario realizar más investigaciones. [17] [18] En 1609, Johannes Kepler sugirió correctamente que la gravitación de la Luna causa las mareas, [c] que comparó con la atracción magnética [20] [4] [21] [22] basando su argumento en antiguas observaciones y correlaciones.

En 1616, Galileo Galilei escribió Discurso sobre las mareas . [23] Rechaza enérgicamente y en tono burlón la teoría lunar de las mareas, [21] [4] e intenta explicar las mareas como resultado de la rotación y revolución de la Tierra alrededor del Sol , creyendo que los océanos se movían como el agua en una gran cuenca: a medida que la cuenca se mueve, también lo hace el agua. [24] Por lo tanto, a medida que la Tierra gira, la fuerza de rotación de la Tierra hace que los océanos se "aceleren y retarden alternativamente". [25] Su visión sobre la oscilación y el movimiento "alternativamente acelerado y retardado" de la rotación de la Tierra es un "proceso dinámico" que se desviaba del dogma anterior, que proponía "un proceso de expansión y contracción del agua de mar". [26] Sin embargo, la teoría de Galileo era errónea. [23] En siglos posteriores, análisis posteriores condujeron a la actual física de las mareas. Galileo intentó utilizar su teoría de las mareas para demostrar el movimiento de la Tierra alrededor del Sol. Galileo teorizó que debido al movimiento de la Tierra, las fronteras de los océanos como el Atlántico y el Pacífico mostrarían una marea alta y una marea baja por día. El mar Mediterráneo tenía dos mareas altas y dos mareas bajas, aunque Galileo argumentó que esto era producto de efectos secundarios y que su teoría se mantendría en el Atlántico. Sin embargo, los contemporáneos de Galileo notaron que el Atlántico también tenía dos mareas altas y dos mareas bajas por día, lo que llevó a Galileo a omitir esta afirmación en su Diálogo de 1632. [ 27 ]

René Descartes teorizó que las mareas (junto con el movimiento de los planetas, etc.) eran causadas por vórtices etéricos , sin hacer referencia a las teorías de Kepler sobre la gravitación por atracción mutua; esto fue extremadamente influyente, con numerosos seguidores de Descartes exponiendo esta teoría a lo largo del siglo XVII, particularmente en Francia. [28] Sin embargo, Descartes y sus seguidores reconocieron la influencia de la Luna, especulando que las ondas de presión de la Luna a través del éter eran responsables de la correlación. [5] [29] [6] [30]

Modelo de tres cuerpos de Newton

Newton , en los Principia , proporciona una explicación correcta de la fuerza de marea , que puede utilizarse para explicar las mareas en un planeta cubierto por un océano uniforme, pero que no tiene en cuenta la distribución de los continentes ni la batimetría del océano . [31]

Teoría dinámica

Mientras que Newton explicó las mareas describiendo las fuerzas generadoras de mareas y Daniel Bernoulli dio una descripción de la reacción estática de las aguas de la Tierra al potencial de marea, la teoría dinámica de las mareas , desarrollada por Pierre-Simon Laplace en 1775, [32] describe la reacción real del océano a las fuerzas de marea. [33] La teoría de las mareas oceánicas de Laplace tiene en cuenta la fricción , la resonancia y los períodos naturales de las cuencas oceánicas. Predice los grandes sistemas anfidrómicos en las cuencas oceánicas del mundo y explica las mareas oceánicas que se observan realmente. [34]

La teoría del equilibrio, basada en el gradiente gravitacional del Sol y la Luna pero que ignora la rotación de la Tierra, los efectos de los continentes y otros efectos importantes, no podía explicar las mareas oceánicas reales. [35] Dado que las mediciones han confirmado la teoría dinámica, muchas cosas tienen ahora explicaciones posibles, como la forma en que las mareas interactúan con las dorsales marinas profundas y las cadenas de montes submarinos dan lugar a remolinos profundos que transportan nutrientes desde las profundidades hasta la superficie. [36] La teoría de la marea de equilibrio calcula la altura de la ola de marea en menos de medio metro, mientras que la teoría dinámica explica por qué las mareas alcanzan los 15 metros. [37]

Las observaciones satelitales confirman la precisión de la teoría dinámica, y las mareas en todo el mundo ahora se miden con una precisión de unos pocos centímetros. [38] [39] Las mediciones del satélite CHAMP coinciden estrechamente con los modelos basados ​​en los datos TOPEX . [40] [41] [42] Los modelos precisos de mareas en todo el mundo son esenciales para la investigación, ya que las variaciones debidas a las mareas deben eliminarse de las mediciones al calcular la gravedad y los cambios en los niveles del mar. [43]

Ecuaciones de mareas de Laplace

En 1776, Laplace formuló un único conjunto de ecuaciones diferenciales parciales lineales para el flujo de mareas, descrito como un flujo laminar barotrópico bidimensional. Se introducen los efectos de Coriolis , así como la fuerza lateral por gravedad . Laplace obtuvo estas ecuaciones simplificando las ecuaciones de dinámica de fluidos , pero también se pueden derivar de integrales de energía mediante la ecuación de Lagrange .

Para una lámina de fluido de espesor promedio D , la elevación de marea vertical ζ , así como los componentes de velocidad horizontal u y v (en las direcciones de latitud φ y longitud λ , respectivamente) satisfacen las ecuaciones de marea de Laplace : [44]

donde Ω es la frecuencia angular de rotación del planeta, g es la aceleración gravitacional del planeta en la superficie media del océano, a es el radio planetario y U es el potencial de fuerza de marea gravitacional externa .

William Thomson (Lord Kelvin) reescribió los términos de momento de Laplace utilizando el rotacional para hallar una ecuación para la vorticidad . En determinadas condiciones, esta ecuación puede reescribirse como una conservación de la vorticidad.

Análisis y predicción de mareas

Análisis armónico

Espectro de mareas medido en Ft. Pulaski en 2012. Datos descargados de http://tidesandcurrents.noaa.gov/datums.html?id=8670870 Transformada de Fourier calculada con https://sourceforge.net/projects/amoreaccuratefouriertransform/

Las mejoras teóricas de Laplace fueron sustanciales, pero aún dejaban la predicción en un estado aproximado. Esta situación cambió en la década de 1860 cuando William Thomson aplicó el análisis de Fourier a los movimientos de marea como análisis armónico y tuvo más en cuenta las circunstancias locales de los fenómenos de marea . El trabajo de Thomson en este campo fue desarrollado y ampliado por George Darwin , que aplicó la teoría lunar vigente en su época. Los símbolos de Darwin para los componentes armónicos de las mareas todavía se utilizan.

Los desarrollos armónicos de Darwin de las fuerzas generadoras de mareas fueron mejorados posteriormente cuando AT Doodson , aplicando la teoría lunar de EW Brown , [45] desarrolló el potencial generador de mareas (TGP) en forma armónica, distinguiendo 388 frecuencias de marea. [46] El trabajo de Doodson se llevó a cabo y publicó en 1921. [47] Doodson ideó un sistema práctico para especificar los diferentes componentes armónicos del potencial generador de mareas, los números de Doodson , un sistema todavía en uso.

Desde mediados del siglo XX, los análisis posteriores han generado muchos más términos que los 388 de Doodson. Aproximadamente 62 constituyentes tienen un tamaño suficiente para ser considerados para su posible uso en la predicción de mareas marinas, pero a veces muchos menos pueden predecir mareas con una precisión útil. Los cálculos de predicciones de mareas utilizando los constituyentes armónicos son laboriosos y, desde la década de 1870 hasta aproximadamente la década de 1960, se llevaron a cabo utilizando una máquina mecánica de predicción de mareas , una forma especial de computadora analógica . Más recientemente, se utilizan computadoras digitales, utilizando el método de inversión de matrices, para determinar los constituyentes armónicos de marea directamente a partir de los registros de mareógrafos.

Constituyentes de las mareas

Predicción de mareas sumando partes constituyentes.

Los componentes de las mareas se combinan para dar un agregado que varía infinitamente debido a sus frecuencias diferentes e inconmensurables: el efecto se visualiza en una animación de la American Mathematical Society que ilustra la forma en que los componentes solían combinarse mecánicamente en la máquina de predicción de mareas. A continuación se muestran las amplitudes (la mitad de la amplitud de pico a pico ) de los componentes de las mareas para seis ubicaciones de ejemplo: Eastport, Maine (ME), [48] Biloxi, Mississippi (MS), San Juan, Puerto Rico (PR), Kodiak, Alaska (AK), San Francisco, California (CA) y Hilo, Hawaii (HI).

Semidiurno

Diurno

Largo periodo

Periodo corto

Números de Doodson

Para especificar los diferentes componentes armónicos del potencial generador de mareas, Doodson ideó un sistema práctico que todavía se utiliza y que implica lo que se denominan números de Doodson basados ​​en los seis argumentos de Doodson o variables de Doodson. El número de diferentes componentes de frecuencia de marea es grande, pero cada uno corresponde a una combinación lineal específica de seis frecuencias utilizando múltiplos enteros pequeños, positivos o negativos. En principio, estos argumentos angulares básicos se pueden especificar de numerosas maneras; la elección de Doodson de sus seis "argumentos de Doodson" se ha utilizado ampliamente en el estudio de las mareas. En términos de estos argumentos de Doodson, cada frecuencia de marea se puede especificar como una suma formada por un múltiplo entero pequeño de cada uno de los seis argumentos. Los seis multiplicadores enteros pequeños resultantes codifican efectivamente la frecuencia del argumento de marea en cuestión, y estos son los números de Doodson: en la práctica, todos, excepto el primero, suelen estar sesgados hacia arriba en +5 para evitar números negativos en la notación. (En el caso de que el múltiplo sesgado exceda 9, el sistema adopta X para 10 y E para 11.) [49]

Los argumentos de Doodson se especifican de la siguiente manera, en orden de frecuencia decreciente: [49]

es la hora lunar media, el ángulo horario de Greenwich de la Luna media más 12 horas.
es la longitud media de la Luna.
es la longitud media del Sol.
es la longitud del perigeo medio de la Luna.
es el negativo de la longitud del nodo ascendente medio de la Luna en la eclíptica.
o es la longitud del perigeo medio del Sol.

En estas expresiones, los símbolos , , y se refieren a un conjunto alternativo de argumentos angulares fundamentales (generalmente preferidos para su uso en la teoría lunar moderna), en los que:

es la anomalía media de la Luna (distancia desde su perigeo).
es la anomalía media del Sol (distancia desde su perigeo).
es el argumento medio de latitud de la Luna (distancia desde su nodo).
es la elongación media de la Luna (distancia al Sol).

Es posible definir varias variables auxiliares en base a combinaciones de éstas.

En términos de este sistema, cada frecuencia constituyente de marea puede identificarse por sus números Doodson. El constituyente de marea más fuerte "M 2 " tiene una frecuencia de 2 ciclos por día lunar, sus números Doodson se escriben generalmente 255.555, lo que significa que su frecuencia está compuesta por el doble del primer argumento Doodson, y cero veces todos los demás. El segundo constituyente de marea más fuerte "S 2 " está influenciado por el sol, y sus números Doodson son 273.555, lo que significa que su frecuencia está compuesta por el doble del primer argumento Doodson, +2 veces el segundo, -2 veces el tercero, y cero veces cada uno de los otros tres. [50] Esto se suma al equivalente angular del tiempo solar medio +12 horas. Estas dos frecuencias componentes más fuertes tienen argumentos simples para los cuales el sistema Doodson podría parecer innecesariamente complejo, pero cada una de las cientos de otras frecuencias componentes se puede especificar brevemente de una manera similar, mostrando en conjunto la utilidad de la codificación.

Véase también

Notas

  1. ^ En todos los océanos el agua permanece siempre igual en cantidad, y nunca aumenta ni disminuye; sino que, como el agua de un caldero, que, como consecuencia de su combinación con el calor, se expande, así también las aguas del océano se hinchan con el aumento de la luna. Las aguas, aunque en realidad no son ni más ni menos, se dilatan o contraen a medida que la luna aumenta o disminuye en las quincenas de luz y de oscuridad. - El Vishnu Purana libro II cap. IV
  2. ^ Yo mismo he visto entre los celtas las mareas del océano tal como se describen. Después de hacer varias conjeturas sobre por qué una masa de agua tan grande retrocede y avanza, he llegado a la conclusión de que Apolonio discernió la verdad real. Pues en una de sus cartas a los indios dice que el océano es impulsado por influencias o espíritus submarinos desde varios abismos que la tierra ofrece tanto debajo como alrededor de él, para avanzar hacia afuera y retroceder de nuevo, siempre que la influencia o espíritu, como el aliento de nuestros cuerpos, cede y retrocede. Y esta teoría se confirma por el curso que siguen las enfermedades en Gadeira, pues en el momento de la crecida las almas de los moribundos no abandonan los cuerpos, y esto difícilmente sucedería, dice, si la influencia o espíritu de los que he hablado también estuviera avanzando hacia la tierra. También os hablan de ciertos fenómenos del océano en relación con las fases de la luna, según nace, alcanza su plenitud y mengua. Verifiqué estos fenómenos, pues el océano sigue exactamente el ritmo del tamaño de la luna, disminuyendo y aumentando con ella. - Filóstrato , La vida de Apolonio de Tiana , V
  3. ^ "Orbis virtutis tractoriæ, quæ est in Luna, porrigitur utque ad Terras, & prolectat aquas sub Zonam Torridam,… Celeriter vero Luna verticem transvolante, cum aquæ tam celeriter sequi non possint, fluxus quidem fit Oceani sub Torrida in Occidentem,…" ( "La esfera del poder de elevación, que está [centrada] en la luna, se extiende hasta la tierra y atrae las aguas bajo la zona tórrida... Sin embargo, la luna vuela rápidamente a través del cenit; porque las aguas no pueden seguirlo rápidamente, la marea del océano bajo la [zona] tórrida se hace efectivamente hacia el oeste,…”) [19]

Referencias

  1. ^ "Luna". Astronomía indígena australiana . Consultado el 8 de octubre de 2020 .
  2. ^ ""Cerrando la brecha" a través de la astronomía cultural australiana". Arqueoastronomía y etnoastronomía: construyendo puentes entre culturas : 282–290. 2011.
  3. ^ abcdef Tabarroni, G. (1989). "Las mareas y Newton". Memoria de la Sociedad de Astronomía Italiana . 60 : 770–777. Código Bib : 1989MmSAI..60..769T . Consultado el 27 de diciembre de 2020 .
  4. ^ abcdef Marmer, HA (marzo de 1922). "Los problemas de la marea". The Scientific Monthly . 14 (3): 209–222.
  5. ^ abc Pugh, David T. (28 de diciembre de 1987). Mareas, oleadas y nivel medio del mar (PDF) . JOHN WILEY & SONS. págs. 2–4. ISBN 047191505X. Recuperado el 27 de diciembre de 2020 .
  6. ^ ab "Entendiendo las mareas: desde creencias antiguas hasta soluciones actuales a las ecuaciones de Laplace" (PDF) . Vol. 33, núm. 2. SIAM News.
  7. ^ abcd Heath, Thomas Little (1913). Aristarco de Samos, el antiguo Copérnico. Gerstein - Universidad de Toronto. Oxford : Clarendon Press. págs. 306–307.
  8. ^ Cartwright, David Edgar (1999). Mareas: una historia científica. Cambridge University Press. pág. 6. ISBN 9780521797467. Recuperado el 28 de diciembre de 2020 .
  9. Séneca , De Providentia , sección IV
  10. ^ ab Cartwright, David E. (2001). "Sobre los orígenes del conocimiento de las mareas marinas desde la Antigüedad hasta el siglo XIII". Historia de las Ciencias de la Tierra . 20 (2): 105–126. Código Bibliográfico :2001ESHis..20..105C. doi :10.17704/eshi.20.2.m23118527q395675. JSTOR  24138749 . Consultado el 27 de diciembre de 2020 .
  11. Lucio Russo , Flussi e riflussi , Feltrinelli, Milán, 2003, ISBN 88-07-10349-4
  12. ^ Van der Waerden, BL (1987). "El sistema heliocéntrico en la astronomía griega, persa e hindú". Anales de la Academia de Ciencias de Nueva York . 500 (1): 525–545. Código Bibliográfico :1987NYASA.500..525V. doi :10.1111/j.1749-6632.1987.tb37224.x. S2CID  222087224.
  13. ^ Bede (2004). El cálculo del tiempo . Traducido por Faith Wallis. Liverpool University Press. pp. 64-65. ISBN 978-0-85323-693-1.
  14. ^ HUGHES, PAUL. "UN ESTUDIO SOBRE EL DESARROLLO DE TABLAS DE MAREAS PRIMITIVAS Y MODERNAS" (PDF) . Tesis doctoral, Universidad John Moores de Liverpool . Consultado el 27 de diciembre de 2020 .
  15. ^ "Proyecto Dante de Princeton: Navegador principal de poemas (2.0)". dante.princeton.edu .
  16. ^ abcd Marina Tolmacheva (2014). Glick, Thomas F. (ed.). Geografía, corografía . Routledge. pág. 188. ISBN 978-1135459321.
  17. ^ Simon Stevin - Instituto Marino de Flandes (pdf, en holandés)
  18. ^ Palmerino, La recepción de la ciencia galileana del movimiento en la Europa del siglo XVII, pp. 200 op books.google.nl
  19. ^ Johannes Kepler, Astronomia nova … (1609), pág. 5 de la Introductio in hoc opus (Introducción a esta obra). De la página 5:
  20. ^ Johannes Kepler, Astronomia nova... (1609), pág. 5 de la Introductio in hoc opus
  21. ^ ab Popova, Maria (27 de diciembre de 2019). «Cómo Kepler inventó la ciencia ficción... al tiempo que revolucionaba nuestra comprensión del universo». Brain Pickings . Consultado el 27 de diciembre de 2020 .
  22. ^ Eugene, Hecht (2019). "Kepler y los orígenes de la teoría de la gravedad". American Journal of Physics . 87 (3): 176–185. Código Bibliográfico :2019AmJPh..87..176H. doi :10.1119/1.5089751. S2CID  126889093.
  23. ^ ab Rice University : La teoría de las mareas de Galileo, por Rossella Gigli, consultado el 10 de marzo de 2010
  24. ^ Tyson, Peter (29 de octubre de 2002). "El gran error de Galileo". NOVA . PBS . Consultado el 19 de febrero de 2014 .
  25. ^ Palmieri, Paolo (1998). Reexaminando la teoría de las mareas de Galileo . Springer-Verlag. pág. 229.
  26. ^ Palmeri, Paolo (1998). Reexaminando la teoría de las mareas de Galileo . Springer-Verlag. pág. 227.
  27. ^ Naylor, Ron (2007). "Teoría de las mareas de Galileo". Isis . 98 (1): 1–22. Bibcode :2007Isis...98....1N. doi :10.1086/512829. PMID  17539198. S2CID  46174715.
  28. ^ Aiton, EJ (1955). "La teoría de las mareas de Descartes". Anales de la Ciencia . 11 (4): 337–348. doi :10.1080/00033795500200335.
  29. ^ "Voltaire, Carta XIV". Archivado desde el original el 13 de abril de 2021. Consultado el 28 de diciembre de 2020 .
  30. ^ Cartwright, David Edgar (1999). Mareas: una historia científica. Cambridge University Press. pág. 31. ISBN 9780521797467. Recuperado el 28 de diciembre de 2020 .
  31. ^ "Mareas estáticas: la teoría del equilibrio". Archivado desde el original el 10 de abril de 2014 . Consultado el 14 de abril de 2014 .
  32. ^ "Breves notas sobre la teoría dinámica de Laplace". 20 de noviembre de 2011. Archivado desde el original el 2 de abril de 2015. Consultado el 31 de marzo de 2015 .
  33. ^ "Dinámica de las mareas" (PDF) . Faculty.washington.edu .
  34. ^ "La visión de un astrónomo sobre las descripciones actuales de mareas en libros de texto de nivel universitario" (PDF) . Sociedad Coreana de Ciencias de la Tierra . 30 (5): 671–681. Septiembre de 2009.
  35. ^ Bryden, IG (2003). "Sistemas de energía mareomotriz", en Meyers, RA (ed.) Enciclopedia de ciencia física y tecnología . Aberdeen: Academic Press, pág. 753. doi:10.1016/b0-12-227410-5/00778-x
  36. ^ Floor Anthoni. "Mareas". Seafriends.org.nz . Consultado el 2 de junio de 2012 .
  37. ^ "La causa y la naturaleza de las mareas".
  38. ^ "Imágenes TOPEX/Poseidon de Scientific Visualization Studio". Svs.gsfc.nasa.gov . Consultado el 2 de junio de 2012 .
  39. ^ "TOPEX/Poseidon Western Hemisphere: Tide Height Model : NASA/Goddard Space Flight Center Scientific Visualization Studio : Descarga y transmisión gratuitas : Internet Archive". 15 de junio de 2000.
  40. ^ "Datos TOPEX utilizados para modelar las mareas reales durante 15 días del año 2000". 15 de junio de 2000. Archivado desde el original el 18 de septiembre de 2015 . Consultado el 14 de septiembre de 2015 .
  41. ^ http://www.geomag.us/info/Ocean/m2_CHAMP+longwave_SSH.swf
  42. ^ "OSU Tidal Data Inversion". Volkov.oce.orst.edu. Archivado desde el original el 22 de octubre de 2012. Consultado el 2 de junio de 2012 .
  43. ^ "Análisis dinámico y residual de las mareas oceánicas para mejorar el desaliasing de GRACE (DAROTA)". Archivado desde el original el 2 de abril de 2015.
  44. ^ "Las ecuaciones de marea de Laplace y las mareas atmosféricas" (PDF) .[ enlace muerto permanente ]
  45. ^ Cartwright, David Edgar (1999). Mareas: una historia científica. Cambridge University Press. págs. 163-164. ISBN 9780521797467.
  46. ^ S Casotto, F Biscani, "Un enfoque completamente analítico para el desarrollo armónico del potencial generador de mareas que tiene en cuenta la precesión, la nutación y las perturbaciones debidas a los términos de figura y planetarios", División de Astronomía Dinámica de la AAS, abril de 2004, vol. 36(2), 67.
  47. AT Doodson (1921), "El desarrollo armónico del potencial generador de mareas", Actas de la Royal Society de Londres. Serie A, vol. 100, núm. 704 (1 de diciembre de 1921), págs. 305-329.
  48. ^ NOAA. "Eastport, ME Tidal Constituents". NOAA . Consultado el 22 de mayo de 2012 .
  49. ^ ab Melchior, P. (1971). "Precesión-nutaciones y potencial de marea". Mecánica celeste . 4 (2): 190–212. Código Bibliográfico :1971CeMec...4..190M. doi :10.1007/BF01228823. S2CID  126219362.y TD Moyer (2003) ya citado.
  50. ^ Véase por ejemplo Melchior (1971), ya citado, en la pág. 191.

Enlaces externos