stringtranslate.com

Modelo de disco de Poincaré

Disco de Poincaré con líneas paralelas hiperbólicas
Modelo de disco de Poincaré del mosaico triheptagonal truncado .

En geometría , el modelo de disco de Poincaré , también llamado modelo de disco conforme , es un modelo de geometría hiperbólica bidimensional en el que todos los puntos están dentro del disco unitario y las líneas rectas son arcos circulares contenidos dentro del disco que son ortogonales al círculo unitario o diámetros del círculo unitario.

El grupo de isometrías que preservan la orientación del modelo de disco está dado por el grupo unitario especial proyectivo PSU(1,1) , el cociente del grupo unitario especial SU(1,1) por su centro { I , − I } .

Junto con el modelo de Klein y el modelo del semiespacio de Poincaré , fue propuesto por Eugenio Beltrami quien utilizó estos modelos para demostrar que la geometría hiperbólica era equiconsistente con la geometría euclidiana . Lleva el nombre de Henri Poincaré , porque su redescubrimiento de esta representación catorce años después se hizo más conocido que la obra original de Beltrami. [1]

El modelo de bola de Poincaré es un modelo similar para la geometría hiperbólica de 3 o n dimensiones en la que los puntos de la geometría están en la bola unitaria de n dimensiones .

Historia

El modelo de disco fue descrito por primera vez por Bernhard Riemann en una conferencia de 1854 (publicada en 1868), que inspiró un artículo de 1868 de Eugenio Beltrami . [2] Henri Poincaré lo empleó en su tratamiento de 1882 de las funciones hiperbólicas, parabólicas y elípticas, [3] pero se hizo ampliamente conocido después de la presentación de Poincaré en su tratado filosófico de 1905, Ciencia e hipótesis . [4] Allí describe un mundo, ahora conocido como el disco de Poincaré, en el que el espacio era euclidiano, pero que a sus habitantes les parecía que satisfacía los axiomas de la geometría hiperbólica:

"Supongamos, por ejemplo, un mundo encerrado en una gran esfera y sujeto a las siguientes leyes: La temperatura no es uniforme; es mayor en su centro y disminuye gradualmente a medida que nos acercamos a la circunferencia de la esfera, donde es absoluta . cero . La ley de esta temperatura es la siguiente: si es el radio de la esfera y la distancia del punto considerado desde el centro, la temperatura absoluta será proporcional a . Además, supondré que en este mundo todos los cuerpos tienen el mismo coeficiente de dilatación , de modo que la dilatación lineal de cualquier cuerpo es proporcional a su temperatura absoluta.Finalmente, supondré que un cuerpo transportado de un punto a otro de diferente temperatura está instantáneamente en equilibrio térmico con su nuevo entorno. ... Si construyen una geometría, no será como la nuestra, que es el estudio de los movimientos de nuestros sólidos invariables; será el estudio de los cambios de posición que ellos habrán distinguido así, y no serán -Desplazamientos euclidianos', y esta será geometría no euclidiana . De modo que seres como nosotros, educados en un mundo así, no tendrán la misma geometría que la nuestra." [4] (pp.65-68)

El disco de Poincaré fue una prueba importante para la hipótesis de que la elección de la geometría espacial es más convencional que fáctica, especialmente en las influyentes discusiones filosóficas de Rudolf Carnap [5] y de Hans Reichenbach . [6]

Líneas y distancia

Disco de Poincaré con 3 líneas rectas ultraparalelas (hiperbólicas)

Las líneas rectas hiperbólicas o geodésicas constan de todos los arcos de círculos euclidianos contenidos dentro del disco que son ortogonales al límite del disco, más todos los diámetros del disco.

Las distancias en este modelo son métricas de Cayley-Klein . Dados dos puntos distintos p y q dentro del disco, la única línea hiperbólica que los conecta cruza el límite en dos puntos ideales , a y b . Etiquételos de modo que los puntos sean, en orden, a , p , q , b , es decir, de modo que | aq | > | ap | y | pb | > | qb | .

La distancia hiperbólica entre p y q es entonces [7]

Las barras verticales indican la longitud euclidiana del segmento de línea que conecta los puntos entre ellos en el modelo (no a lo largo del arco circular); ln es el logaritmo natural .

De manera equivalente, si u y v son dos vectores en un espacio vectorial real de n dimensiones R n con la norma euclidiana habitual, los cuales tienen una norma menor que 1, entonces podemos definir una invariante isométrica por

donde denota la norma euclidiana habitual. Entonces la función de distancia es

Dicha función de distancia se define para dos vectores cualesquiera de norma menor que uno, y convierte el conjunto de dichos vectores en un espacio métrico que es un modelo de espacio hiperbólico de curvatura constante −1. El modelo tiene la propiedad conforme de que el ángulo entre dos curvas que se cruzan en el espacio hiperbólico es el mismo que el ángulo en el modelo.

Especializándonos en el caso en el que uno de los puntos es el origen y la distancia euclidiana entre los puntos es r , la distancia hiperbólica es:

función hiperbólica inversatangente hiperbólica

Métrica y curvatura

Vista del modelo ' bola ' de Poincaré del panal icosaédrico regular hiperbólico , {3,5,3}

El tensor métrico asociado del modelo de disco de Poincaré viene dado por [8]

donde x i son las coordenadas cartesianas del espacio euclidiano ambiental.

Un marco ortonormal con respecto a esta métrica de Riemann viene dado por

con doble coframe de 1 formas

En dos dimensiones

En dos dimensiones, con respecto a estos marcos y la conexión Levi-Civita , las formas de conexión están dadas por la matriz simétrica sesgada única de 1 formas que está libre de torsión , es decir, que satisface la ecuación matricial . Resolviendo esta ecuación para los rendimientos

donde está la matriz de curvatura

Por tanto, la curvatura del disco hiperbólico es

construcción de líneas

Con compás y regla

La única línea hiperbólica que pasa por dos puntos y no en un diámetro del círculo límite se puede construir mediante:

Si P y Q están en un diámetro del círculo límite, ese diámetro es la línea hiperbólica.

Otra forma es:

Por geometría analítica

Una construcción básica de la geometría analítica es encontrar una línea que pase por dos puntos dados. En el modelo de disco de Poincaré, las líneas en el plano están definidas por porciones de círculos que tienen ecuaciones de la forma

que es la forma general de un círculo ortogonal al círculo unitario, o sino por diámetros. Dados dos puntos u = (u 1 , u 2 ) y v = (v 1 , v 2 ) en el disco que no se encuentran sobre un diámetro, podemos resolver para el círculo de esta forma que pasa por ambos puntos y obtener

Si los puntos u y v son puntos en el límite del disco que no se encuentran en los puntos extremos de un diámetro, lo anterior se simplifica a

Anglos

Podemos calcular el ángulo entre el arco circular cuyos puntos finales ( puntos ideales ) están dados por los vectores unitarios u y v , y el arco cuyos puntos finales son s y t , mediante una fórmula. Dado que los puntos ideales son los mismos en el modelo de Klein y en el modelo de disco de Poincaré, las fórmulas son idénticas para cada modelo.

Si las líneas de ambos modelos son diámetros, de modo que v = − u y t = − s , entonces simplemente estamos encontrando el ángulo entre dos vectores unitarios, y la fórmula para el ángulo θ es

Si v = − u pero no t = − s , la fórmula se convierte, en términos del producto de cuña ( ),

dónde

Si ambas cuerdas no son diámetros, se obtiene la fórmula general

dónde

Usando la identidad de Binet-Cauchy y el hecho de que estos son vectores unitarios, podemos reescribir las expresiones anteriores puramente en términos del producto escalar , como

Ciclos

En el plano euclidiano las circunferencias generalizadas (curvas de curvatura constante) son rectas y circunferencias. En la esfera , son círculos grandes y pequeños . En el plano hiperbólico, existen 4 tipos distintos de círculos o ciclos generalizados : círculos, horociclos, hiperciclos y geodésicas (o "líneas hiperbólicas"). En el modelo de disco de Poincaré, todos ellos están representados por líneas rectas o círculos.

Un círculo euclidiano:

(Cuando el centro del disco no está dentro del círculo, el centro euclidiano siempre está más cerca del centro del disco que el centro hiperbólico, es decir, se mantiene).

Una cuerda euclidiana del círculo límite:

circulos

Un círculo (el conjunto de todos los puntos de un plano que están a una distancia determinada de un punto determinado, su centro) es un círculo completamente dentro del disco que no toca ni cruza su límite. El centro hiperbólico del círculo en el modelo no corresponde en general al centro euclidiano del círculo, pero están en el mismo radio del círculo límite.

Hiperciclos

Un hiperciclo (el conjunto de todos los puntos en un plano que están a un lado y a una distancia dada de una línea dada, su eje) es un arco o cuerda de círculo euclidiano del círculo límite que intersecta al círculo límite en un punto positivo pero no - ángulo recto . Su eje es la recta hiperbólica que comparte los mismos dos puntos ideales . Esto también se conoce como curva equidistante.

Horociclos

Un horociclo (una curva cuyas geodésicas normales o perpendiculares son paralelos limitantes , todas convergiendo asintóticamente al mismo punto ideal ), es un círculo dentro del disco que es tangente al círculo límite del disco. El punto donde toca el círculo límite no es parte del horociclo. Es un punto ideal y es el centro hiperbólico del horociclo. También es el punto al que convergen todas las geodésicas perpendiculares.

Relación con otros modelos de geometría hiperbólica

el modelo del disco de Poincaré (línea P ), y sus relaciones con los demás modelos

Relación con el modelo de disco de Klein

El modelo de disco de Klein (también conocido como modelo de Beltrami-Klein) y el modelo de disco de Poincaré son modelos que proyectan todo el plano hiperbólico en un disco . Los dos modelos se relacionan a través de una proyección sobre o desde el modelo del hemisferio . El modelo de disco de Klein es una proyección ortográfica al modelo de hemisferio mientras que el modelo de disco de Poincaré es una proyección estereográfica .

Una ventaja del modelo de disco de Klein es que las líneas en este modelo son cuerdas rectas euclidianas . Una desventaja es que el modelo de disco de Klein no es conforme (los círculos y los ángulos están distorsionados).

Al proyectar las mismas líneas en ambos modelos sobre un mismo disco ambas líneas pasan por los mismos dos puntos ideales . (los puntos ideales permanecen en el mismo lugar) además el polo de la cuerda en el modelo del disco de Klein es el centro del círculo que contiene el arco en el modelo del disco de Poincaré.

Un punto ( x , y ) en el modelo de disco de Poincaré se asigna al modelo de Klein.

Un punto ( x , y ) en el modelo de Klein se asigna al modelo de disco de Poincaré.

Para puntos ideales y las fórmulas se vuelven así, los puntos son fijos.

Si un vector de norma es menor que uno que representa un punto del modelo de disco de Poincaré, entonces el punto correspondiente del modelo de disco de Klein viene dado por:

Por el contrario, a partir de un vector de norma menor que uno que representa un punto del modelo de Beltrami-Klein, el punto correspondiente del modelo de disco de Poincaré viene dado por:

Relación con el modelo de semiplano de Poincaré

El modelo de disco de Poincaré y el modelo de semiplano de Poincaré llevan el nombre de Henri Poincaré .

Si un número complejo de norma es menor que uno que representa un punto del modelo de disco de Poincaré, entonces el punto correspondiente del modelo de semiplano viene dado por la inversa de la transformada de Cayley:

Un punto ( x , y ) en el modelo de disco se asigna al modelo de semiplano. [9]

Un punto ( x , y ) en el modelo de semiplano se asigna al modelo de disco.

Relación con el modelo hiperboloide

El modelo de disco de Poincaré, así como el modelo de Klein , se relacionan proyectivamente con el modelo hiperboloide . Si tenemos un punto [ tx 1 , ...,  x n ] en la hoja superior del hiperboloide del modelo hiperboloide, definiendo así un punto en el modelo hiperboloide, podemos proyectarlo en el hiperplano t  = 0 mediante intersectándolo con una línea trazada a través de [−1, 0, ..., 0]. El resultado es el punto correspondiente del modelo de disco de Poincaré.

Para coordenadas cartesianas ( tx i ) en el hiperboloide y ( y i ) en el plano, las fórmulas de conversión son:

Compara las fórmulas de proyección estereográfica entre una esfera y un plano.


Realizaciones artísticas

El mosaico hiperbólico triangular (6,4,2) que inspiró a MC Escher

MC Escher exploró el concepto de representar el infinito en un plano bidimensional. Las conversaciones con el matemático canadiense HSM Coxeter alrededor de 1956 inspiraron el interés de Escher por los teselados hiperbólicos , que son mosaicos regulares del plano hiperbólico. Los grabados en madera de Escher Circle Limit I-IV demuestran este concepto entre 1958 y 1960, siendo el último Circle Limit IV: Heaven and Hell en 1960. [10] Según Bruno Ernst, el mejor de ellos es Circle Limit III .


HyperRogue , un juego roguelike, utiliza el plano hiperbólico para su geometría mundial y también utiliza el modelo de disco de Poincaré.

Ver también

Referencias

  1. ^ Penrose, Roger (2004). El camino hacia la realidad: una guía completa de las leyes del universo . Gran Bretaña: Jonathan Cape. pag. 45.ISBN _ 0-224-04447-8.
  2. ^ Milnor, John W. "Geometría hiperbólica: los primeros 150 años". Boletín de la Sociedad Estadounidense de Matemáticas 6, no. 1 (1982): 9-24.
    B. Riemann, "Ueber die Hypothesen welche der Geometrie zu Grunde liegen", Abh. KG Wiss. Göttingen 13 (de su discurso inaugural de 1854).

    Eugenio Beltrami. "Teoria fundamentale degli spazii di curvatura costante", Annali di mat. ser. II 2, 232-255 (Op. Mat. 1, 406-429; Ann. École Norm. Sup. 6 (1869), 345-375).

  3. ^ Poincaré, H. (1 de diciembre de 1882). "Teoría de los grupos fuchsiens". Acta Mathematica (en francés). 1 (1): 1–62. doi : 10.1007/BF02592124 . ISSN  1871-2509. S2CID  120406828.
  4. ^ ab Poincaré, Henri (1905). Ciencia e hipótesis. Robarts - Universidad de Toronto. Londres W. Scott.
  5. ^ Carus, AW; Friedman, Michael; Kienzler, Wolfgang; Richardson, Alan; Schlotter, Sven (25 de junio de 2019). Rudolf Carnap: Primeros escritos: Las obras completas de Rudolf Carnap, volumen 1. Oxford University Press. ISBN 978-0-19-106526-2.
  6. ^ Reichenbach, Hans (13 de marzo de 2012). La filosofía del espacio y el tiempo. Corporación de mensajería. ISBN 978-0-486-13803-9.
  7. ^ Berger, Marcel (1987) [1977]. "9.6 El modelo Poincaré". Geometría II . Traducido por Cole, M.; Levy, S. Springer. pag. 339.
  8. ^ "Comparación de tensores métricos de los modelos de disco de geometría hiperbólica de Poincaré y Klein". Intercambio de pila . 23 de mayo de 2015.
  9. ^ "Asignación del modelo de disco de Poincaré al modelo de medio plano de Poincaré" . Consultado el 13 de diciembre de 2015 .
  10. ^ Exploración del límite del círculo de Escher

Otras lecturas

enlaces externos