stringtranslate.com

BepiColombo

BepiColombo es una misión conjunta de la Agencia Espacial Europea (ESA) y la Agencia Japonesa de Exploración Aeroespacial (JAXA) al planeta Mercurio . [4] La misión comprende dos satélites lanzados juntos: el Mercury Planetary Orbiter ( MPO ) y el Mio ( Mercury Magnetospheric Orbiter , MMO ). [5] La misión realizará un estudio exhaustivo de Mercurio, incluida la caracterización de su campo magnético , magnetosfera y estructura tanto interior como superficial. Fue lanzado en un cohete Ariane 5 [2] el 20 de octubre de 2018 a las 01:45 UTC , con una llegada a Mercurio prevista para el 5 de diciembre de 2025, después de un sobrevuelo de la Tierra , dos sobrevuelos de Venus y seis sobrevuelos de Mercurio. [1] [6] La misión fue aprobada en noviembre de 2009, después de años de propuesta y planificación como parte del programa Horizonte 2000+ de la Agencia Espacial Europea; [7] es la última misión del programa que se lanzará. [8]

Nombres

BepiColombo lleva el nombre de Giuseppe "Bepi" Colombo (1920-1984), científico , matemático e ingeniero de la Universidad de Padua , Italia , quien propuso por primera vez la maniobra de asistencia gravitatoria interplanetaria utilizada en la misión Mariner 10 de 1974 , una técnica que ahora se utiliza con frecuencia. por sondas planetarias.

Mio , el nombre del Orbitador Magnetosférico de Mercurio, fue seleccionado entre miles de sugerencias por parte del público japonés. En japonés, Mio significa vía fluvial y, según JAXA, simboliza los hitos de investigación y desarrollo alcanzados hasta ahora y los deseos de un viaje seguro en el futuro. JAXA dijo que la nave espacial viajará a través del viento solar como un barco que viaja a través del océano. [5] En chino y japonés, Mercurio es conocido como la "estrella de agua" (水星) según wǔxíng .

Tras su sobrevuelo a la Tierra en abril de 2020, BepiColombo fue confundido brevemente con un asteroide cercano a la Tierra y recibió la designación provisional 2020 GL 2 . [9] [10] [11] [12]

Misión

La misión consta de tres componentes, que se separarán en naves espaciales independientes al llegar a Mercurio. [13]

Durante las fases de lanzamiento y crucero, estos tres componentes se unen para formar el Mercury Cruise System (MCS).

El contratista principal de la ESA es Airbus Defence and Space . [14] La ESA es responsable de la misión general, el diseño, el desarrollo, el montaje y las pruebas de los módulos de propulsión y MPO, y el lanzamiento. Los dos orbitadores, operados por controladores de misión con sede en Darmstadt, Alemania, se lanzaron juntos con éxito el 20 de octubre de 2018. [15] El lanzamiento tuvo lugar en el vuelo VA245 de Ariane desde el puerto espacial europeo en Kourou, Guayana Francesa. [16] La nave espacial realizará un crucero interplanetario de siete años a Mercurio utilizando propulsión eléctrica solar ( propulsores de iones ) y asistencia gravitatoria desde la Tierra, Venus y una eventual captura gravitacional en Mercurio . [1] Está previsto que la estación terrestre de 35 metros (115 pies) de la ESA en Cebreros, España, sea la principal instalación terrestre para las comunicaciones durante todas las fases de la misión.

Se espera que los satélites Mio y MPO lleguen a la órbita de Mercurio el 5 de diciembre de 2025 y se separarán y observarán Mercurio en colaboración durante un año, con una posible extensión de un año. [1] Los orbitadores están equipados con instrumentos científicos proporcionados por varios países europeos y Japón. La misión caracterizará el núcleo de hierro sólido y líquido ( 34 del radio del planeta) y determinará el tamaño de cada uno. [17] La ​​misión también completará mapeos de campos gravitacionales y magnéticos . Rusia proporcionó espectrómetros de rayos gamma y neutrones para verificar la existencia de hielo de agua en los cráteres polares que están permanentemente a la sombra de los rayos del Sol.

Mercurio es demasiado pequeño y caliente para que su gravedad pueda retener una atmósfera significativa durante largos períodos de tiempo, pero tiene una "tenue exosfera limitada por la superficie " [18] que contiene hidrógeno , helio , oxígeno , sodio , calcio , potasio y otros oligoelementos. . Su exosfera no es estable ya que los átomos se pierden y reponen continuamente a partir de diversas fuentes. La misión estudiará la composición y dinámica de la exosfera, incluida la generación y el escape.

Objetivos

Los principales objetivos de la misión son: [3] [19]

Diseño

Órbitas previstas para los satélites Mio y MPO, las dos sondas de la misión BepiColombo

La nave espacial apilada tardará siete años en posicionarse para entrar en la órbita de Mercurio. Durante este tiempo, utilizará propulsión solar eléctrica y nueve asistencias gravitacionales, sobrevolando la Tierra y la Luna en abril de 2020, Venus en 2020 y 2021, y seis sobrevuelos a Mercurio entre 2021 y 2025. [1]

La nave espacial apilada abandonó la Tierra con un exceso de velocidad hiperbólica de 3,475 km/s (2,159 mi/s). Inicialmente, la nave se colocó en una órbita heliocéntrica similar a la de la Tierra. Después de que tanto la nave espacial como la Tierra completaron una órbita y media, regresó a la Tierra para realizar una maniobra asistida por la gravedad y se desvió hacia Venus. Dos sobrevuelos consecutivos de Venus reducen el perihelio cerca de la distancia entre el Sol y Mercurio casi sin necesidad de empuje. Una secuencia de seis sobrevuelos de Mercurio reducirá la velocidad relativa a 1,76 km/s (1,09 mi/s). Después del cuarto sobrevuelo de Mercurio, la nave estará en una órbita similar a la de Mercurio y permanecerá en las proximidades de Mercurio (ver [1]). Cuatro arcos de empuje finales reducen la velocidad relativa hasta el punto en que Mercurio capturará "débilmente" la nave espacial el 5 de diciembre de 2025 en su órbita polar . Sólo se necesita una pequeña maniobra para poner la nave en órbita alrededor de Mercurio con un apocentro de 178.000 kilómetros (111.000 millas). Luego, los orbitadores se separan y ajustarán sus órbitas mediante propulsores químicos. [22] [23]

Historia

La propuesta de misión BepiColombo fue seleccionada por la ESA en 2000. En 2004 se emitió una solicitud de propuestas para la carga útil científica . [24] En 2007, Astrium fue seleccionada como contratista principal y Ariane 5 como vehículo de lanzamiento . [24] El lanzamiento inicial previsto en julio de 2014 se pospuso varias veces, principalmente debido a retrasos en el desarrollo del sistema de propulsión eléctrica solar . [24] El costo total de la misión se estimó en 2017 en 2 mil millones de dólares. [25]

Cronograma

Animación de la trayectoria de BepiColombo del 20 de octubre de 2018 al 2 de noviembre de 2025
   BepiColombo  ·   Tierra  ·   venus  ·   Mercurio  ·   Sol
Para obtener una animación más detallada, vea este vídeo.
Secuencia de imágenes tomadas durante el segundo sobrevuelo de Mercurio
Animación de la trayectoria de BepiColombo alrededor de Mercurio

A partir de 2021 , el calendario de la misión es: [1]

Cronología de BepiColombo desde el 20 de octubre de 2018 hasta el 2 de noviembre de 2025. El círculo rojo indica sobrevuelos.

Componentes

Módulo de transferencia de mercurio

Sobrevuelo de la Tierra el 10 de abril de 2020.
BepiColombo, fotografiado en los Observatorios Northolt Branch , 16 horas después del sobrevuelo de la Tierra. El brillante satélite que pasa es INSAT-2D , un satélite geoestacionario desaparecido .

El módulo de transferencia de mercurio (MTM) tiene una masa de 2615 kg (5765 lb), incluidos 1400 kg (3100 lb) de propulsor de xenón, y está ubicado en la base de la pila. Su función es llevar los dos orbitadores científicos a Mercurio y apoyarlos durante el crucero.

El MTM está equipado con un sistema de propulsión eléctrica solar como propulsión principal de la nave espacial. Sus cuatro propulsores de iones QinetiQ -T6 funcionan individualmente o en pares para un empuje combinado máximo de 290 mN, [38], lo que lo convierte en el conjunto de motores de iones más potente jamás operado en el espacio. El MTM suministra energía eléctrica a los dos orbitadores en hibernación, así como a su sistema de propulsión eléctrica solar, gracias a dos paneles solares de 14 metros de largo . [39] Dependiendo de la distancia de la sonda al Sol , la potencia generada oscilará entre 7 y 14 kW, requiriendo cada T6 entre 2,5 y 4,5 kW según el nivel de empuje deseado.

El sistema de propulsión eléctrica solar suele tener un impulso específico muy alto y un empuje bajo . Esto conduce a un perfil de vuelo con fases continuas de frenado de bajo empuje de meses de duración, interrumpidas por asistencias de gravedad planetaria , para reducir gradualmente la velocidad de la nave espacial. Momentos antes de la inserción en la órbita de Mercurio, el MTM será desechado de la pila de la nave espacial. [39] Después de la separación del MTM, el MPO proporcionará a Mio todos los recursos de energía y datos necesarios hasta que Mio sea entregado a la órbita de su misión; La separación de Mio de MPO se logrará mediante expulsión por giro.

Orbitador planetario de Mercurio

Mercury Planetary Orbiter en ESTEC antes del apilamiento
Pruebas de radio del orbitador BepiColombo

El Mercury Planetary Orbiter (MPO) tiene una masa de 1150 kg (2540 lb) y utiliza un panel solar de un solo lado capaz de proporcionar hasta 1000 vatios y con reflectores solares ópticos para mantener su temperatura por debajo de 200 °C (392 °F). . El panel solar requiere una rotación continua manteniendo el Sol en un ángulo de incidencia bajo para generar la energía adecuada y al mismo tiempo limitar la temperatura. [39]

El MPO llevará una carga útil de 11 instrumentos, que incluyen cámaras, espectrómetros ( IR , UV , rayos X , rayos γ , neutrones ), un radiómetro, un altímetro láser, un magnetómetro, analizadores de partículas, un transpondedor de banda Ka y un acelerómetro. Los componentes de la carga útil están montados en el lado nadir de la nave espacial para lograr bajas temperaturas del detector, además de los espectrómetros MERTIS y PHEBUS ubicados directamente en el radiador principal para proporcionar un mejor campo de visión. [39]

Una antena de alta ganancia de 1,0 m (3 pies 3 pulgadas) de diámetro resistente a altas temperaturas está montada en un brazo corto en el lado cenital de la nave espacial. Las comunicaciones se realizarán en las bandas X y Ka con una velocidad binaria media de 50 kbit/s y un volumen total de datos de 1.550 Gbit /año. Está previsto que la estación terrestre de 35 metros (115 pies) de la ESA en Cebreros, España, sea la principal instalación terrestre para las comunicaciones durante todas las fases de la misión. [39]

Carga útil científica

La carga útil científica del Mercury Planetary Orbiter consta de once instrumentos: [40] [41]

Mio (Orbitador Magnetosférico de Mercurio)

Mio en ESTEC antes de apilar

Mio , o Orbitador Magnetosférico de Mercurio (MMO), desarrollado y construido principalmente por Japón , tiene la forma de un prisma octogonal corto, de 180 cm (71 pulgadas) de largo de cara a cara y 90 cm (35 pulgadas) de alto. [3] [47] Tiene una masa de 285 kg (628 lb), incluida una carga útil científica de 45 kg (99 lb) que consta de 5 grupos de instrumentos, 4 para medición de plasma y polvo realizados por investigadores de Japón, y un magnetómetro de Austria . [3] [48] [49]

Mio se estabilizará a 15 rpm con el eje de giro perpendicular al ecuador de Mercurio. Entrará en una órbita polar a una altitud de 590 × 11.640 km (370 × 7.230 mi), fuera de la órbita de MPO. [48] ​​La parte superior e inferior del octágono actúan como radiadores con rejillas para el control activo de la temperatura. Los laterales están cubiertos con células solares que proporcionan 90 vatios. Las comunicaciones con la Tierra se realizarán a través de una antena de alta ganancia en fase de banda X de 0,8 m (2 pies 7 pulgadas) de diámetro y dos antenas de ganancia media que operarán en la banda X. La telemetría devolverá 160 Gb /año, unos 5 kbit/s durante la vida útil de la nave espacial, que se espera que sea superior a un año. El sistema de reacción y control se basa en propulsores de gas frío . Después de su lanzamiento en la órbita de Mercurio, Mio será operado por el Centro de Operaciones Espaciales Sagamihara utilizando la antena de 64 m (210 pies) del Centro de Espacio Profundo Usuda ubicada en Nagano, Japón . [40]

Carga útil científica

Foto capturada el 23 de junio de 2022 mientras la nave espacial sobrevolaba el planeta para realizar la segunda de seis maniobras de asistencia gravitacional en Mercurio. Esta imagen fue tomada por la Cámara de Monitoreo 3 del Módulo de Transferencia de Mercurio, cuando la nave espacial se encontraba a 1406 km de la superficie de Mercurio.

Mio lleva cinco grupos de instrumentos científicos con una masa total de 45 kg (99 lb): [3] [40]

Elemento de superficie de mercurio (cancelado)

El Elemento de Superficie de Mercurio (MSE) fue cancelado en 2003 debido a limitaciones presupuestarias. [8] En el momento de la cancelación, MSE estaba destinado a ser un módulo de aterrizaje pequeño de 44 kg (97 lb) diseñado para operar durante aproximadamente una semana en la superficie de Mercurio. [22] Con la forma de un disco de 0,9 m (2 pies 11 pulgadas) de diámetro, fue diseñado para aterrizar en una latitud de 85 ° cerca de la región del terminador. Las maniobras de frenado llevarían el módulo de aterrizaje a velocidad cero a una altitud de 120 m (390 pies), momento en el cual la unidad de propulsión sería expulsada, las bolsas de aire se inflarían y el módulo caería a la superficie con una velocidad de impacto máxima de 30 m/s. (98 pies/s). Los datos científicos se almacenarían a bordo y se transmitirían a través de una antena UHF de dipolo cruzado al MPO o al Mio. El MSE habría llevado una carga útil de 7 kg (15 lb) compuesta por un sistema de imágenes (una cámara de descenso y una cámara de superficie), un paquete de flujo de calor y propiedades físicas, un espectrómetro de rayos X de partículas alfa , un magnetómetro , un sismómetro , un dispositivo de penetración del suelo (topo) y un microrover . [51]

Ver también

Referencias

  1. ^ abcdefghi "Ficha informativa de BepiColombo". ESA. 6 de julio de 2017 . Consultado el 6 de julio de 2017 .
  2. ^ ab "Primera imagen de BepiColombo desde el espacio". ESA. 10 de octubre de 2018.
  3. ^ abcde "MIO/BepiColombo". JAXÁ. 2018 . Consultado el 9 de julio de 2018 .
  4. ^ Amos, Jonathan (18 de enero de 2008). "La sonda europea apunta a Mercurio". Noticias de la BBC . Consultado el 21 de enero de 2008 .
  5. ^ ab "MIO - Nuevo nombre del Orbitador Magnetosférico de Mercurio" (Presione soltar). JAXÁ. 8 de junio de 2018 . Consultado el 9 de junio de 2018 .
  6. ^ "Lanzamiento de BepiColombo reprogramado para octubre de 2018". ESA. 25 de noviembre de 2016 . Consultado el 14 de diciembre de 2016 .
  7. ^ "Descripción general de BepiColombo". ESA. 5 de septiembre de 2016 . Consultado el 13 de marzo de 2017 .
  8. ^ ab "Decisiones críticas sobre la visión cósmica" (Presione soltar). ESA. 7 de noviembre de 2003. N° 75-2003 . Consultado el 14 de diciembre de 2016 .
  9. ^ "MPEC 2020-G96: 2020 GL2". Centro Planeta Menor. 13 de abril de 2020. Archivado desde el original el 13 de abril de 2020.
  10. ^ "2020 GL2". Centro Planeta Menor. 13 de abril de 2020. Archivado desde el original el 13 de abril de 2020.
  11. ^ "MPEC 2020-G97: ELIMINACIÓN DE 2020 GL2". Centro Planeta Menor. 13 de abril de 2020 . Consultado el 14 de abril de 2020 .
  12. ^ "BepiColombo vuela por la Tierra". Sociedad Europlaneta. 10 de abril de 2020 . Consultado el 24 de junio de 2022 . Los datos recopilados para esta imagen, aunque fue enviada al Minor Planet Center como satélite artificial 2018-080A (designación oficial de BepiColombo), llevaron a que se confundiera con un asteroide cercano a la Tierra. El "descubrimiento", anunciado por el Minor Planet Center como asteroide 2020 GL2, fue retractado poco después. Esta fue la tercera vez que una nave espacial fue anunciada erróneamente como un "nuevo asteroide" durante un sobrevuelo a la Tierra, después de Rosetta , también conocida como 2007 VN84, y Gaia , también conocida como 2015 HP116. Por cierto, las tres son misiones de la ESA .
  13. ^ Hayakawa, Hajime; Maejima, Hironori (2011). Orbitador magnetosférico de mercurio BepiColombo (MMO) (PDF) . 9ª Conferencia IAA de Misiones Planetarias de Bajo Costo. 21 a 23 de junio de 2011, Laurel, Maryland. Archivado desde el original (PDF) el 23 de febrero de 2020 . Consultado el 15 de agosto de 2011 .
  14. ^ "BepiColombo entrará en la fase de implementación". ESA. 26 de febrero de 2007.
  15. ^ Amós, Jonathan (20 de octubre de 2018). "Despegue de BepiColombo en misión a Mercurio". Noticias de la BBC . Consultado el 20 de octubre de 2018 .
  16. ^ "Mira el lanzamiento de BepiColombo". Agencia Espacial Europea. 16 de octubre de 2018 . Consultado el 8 de diciembre de 2021 .
  17. ^ Science with BepiColombo ESA, consultado: 23 de octubre de 2018
  18. ^ Domingue, Deborah L.; Koehn, Patrick L.; et al. (Agosto de 2007). "La atmósfera de Mercurio: una exosfera limitada a la superficie". Reseñas de ciencia espacial . 131 (1–4): 161–186. Código Bib : 2007SSRv..131..161D. doi :10.1007/s11214-007-9260-9. S2CID  121301247.
  19. ^ "BepiColombo: hoja informativa". ESA. 1 de diciembre de 2016 . Consultado el 13 de diciembre de 2016 .
  20. ^ "BepiColombo - Prueba de la relatividad general". ESA. 4 de julio de 2003. Archivado desde el original el 7 de febrero de 2014 . Consultado el 7 de febrero de 2014 .
  21. ^ La relatividad general de Einstein revela una nueva peculiaridad de la órbita de Mercurio Emily Conover Science News 11 de abril de 2018
  22. ^ ab "BepiColombo". Centro Nacional de Datos de Ciencias Espaciales . NASA. 26 de agosto de 2014 . Consultado el 6 de abril de 2015 . Dominio publicoEste artículo incorpora texto de esta fuente, que se encuentra en el dominio público .
  23. ^ "Operaciones de la misión: llegar a Mercurio". ESA . Consultado el 7 de febrero de 2014 .
  24. ^ abc BepiColombo: Misión conjunta a Mercurio Elizabeth Howell Space.com 21 de octubre de 2018
  25. ^ Misión BepiColombo Mercury probada para viajar al 'horno de pizza' Stephen Clarke Spaceflight Now 17 de julio de 2017
  26. ^ O'Callaghan, Jonathan. "Por pura casualidad, una nave espacial europea está a punto de sobrevolar Venus y podría buscar señales de vida". Forbes . Consultado el 16 de septiembre de 2020 .
  27. ^ "BepiColombo vuela por Venus de camino a Mercurio". ESA. 15 de octubre de 2020 . Consultado el 15 de octubre de 2020 . El sobrevuelo en sí fue todo un éxito", confirma Elsa. "La única diferencia con las operaciones normales en la fase de crucero es que cerca de Venus tenemos que cerrar temporalmente el obturador de cualquiera de los rastreadores de estrellas que se espera que sean cegados por el planeta, similar a cerrar los ojos para evitar mirar al sol
  28. ^ "El segundo sobrevuelo de Venus de BepiColombo en imágenes". Agencia Espacial Europea . Consultado el 8 de diciembre de 2021 .
  29. ^ Pultarova, Tereza (11 de agosto de 2021). "La nave espacial con destino a Mercurio se toma una selfie con Venus en un sobrevuelo cercano (foto)". Espacio.com . Consultado el 8 de diciembre de 2021 .
  30. ^ Operaciones de la ESA [@esa Operations] (2 de octubre de 2021). "A las 01:34:41 CEST de esta mañana, BepiColombo pasó a sólo 199 kilómetros (124 millas) del planeta interior, caliente y rocoso" (Tweet) - vía Twitter.
  31. ^ "Segundas raciones de Mercurio". Agencia Espacial Europea . 24 de junio de 2022 . Consultado el 24 de junio de 2022 .
  32. ^ "BepiColombo se prepara para el tercer sobrevuelo de Mercurio". Agencia Espacial Europea . 14 de junio de 2023 . Consultado el 16 de junio de 2023 .
  33. ^ "BepiColombo". Twitter/BepiColombo . 20 de junio de 2023 . Consultado el 20 de junio de 2023 . ¡Nuestro equipo de #BepiColombo @esa Operations confirma que todo salió bien con nuestro #MercuryFlyby anoche! Ahora esperamos y vemos qué imágenes y datos recopilaron nuestros equipos de instrumentos.
  34. ^ Calificación del propulsor T6 para BepiColombo Archivado el 12 de agosto de 2016 en Wayback Machine RA Lewis, J. Pérez Luna, N. Coombs. 30.º Simposio internacional sobre tecnología y ciencia espaciales 34.º Conferencia internacional sobre propulsión eléctrica y 6.º Simposio sobre nanosatélites, Hyogo-Kobe (Japón), 4 a 10 de julio de 2015
  35. ^ Arquitecturas y rendimiento del sistema de propulsión eléctrica con propulsor de iones T6 y T5 de QinetiQ Archivado el 15 de diciembre de 2017 en Wayback Machine Mark Hutchins, Huw Simpson. 30.º Simposio internacional sobre tecnología y ciencia espaciales 34.º Conferencia internacional sobre propulsión eléctrica y 6.º Simposio sobre nanosatélites, Hyogo-Kobe (Japón), 4 a 10 de julio de 2015
  36. ^ "Disparo del propulsor de iones T6". ESA. 27 de abril de 2016 . Consultado el 7 de agosto de 2019 .
  37. ^ "Propulsores de iones T6 instalados en BepiColombo". ESA. 26 de abril de 2016 . Consultado el 7 de agosto de 2019 .
  38. ^ Clark, Stephen D.; Hutchins, Mark S.; et al. (2013). Actuaciones de prueba de propulsor de propulsión eléctrica BepiColombo y acoplamiento de electrónica de alta potencia. 33ª Conferencia Internacional sobre Propulsión Eléctrica 6 a 10 de octubre de 2013 Washington, DC IEPC-2013-133. Archivado desde el original el 20 de diciembre de 2016.
  39. ^ abcdef "Mercury Planetary Orbiter - Nave espacial". ESA. 16 de agosto de 2018 . Consultado el 7 de agosto de 2019 .
  40. ^ abc "MMO (Orbitador Magnetosférico de Mercurio): Objetivos". JAXÁ. 2011 . Consultado el 7 de febrero de 2014 .
  41. ^ "Mercury Planetary Orbiter - Instrumentos". ESA. 15 de enero de 2008 . Consultado el 6 de febrero de 2014 .
  42. ^ ab "MPS: BepiColombo - SERENA".
  43. ^ "MPS: MIXS en BepiColombo".
  44. ^ Fraser, GW; Carpintero, JD; Rothery, DA; Pearson, JF; Martindale, A.; Huovelin, J.; Treis, J.; Anand, M.; Antila, M.; Ashcroft, M.; Benkoff, J.; Suave, P.; Bowyer, A.; Bradley, A.; Puentes, J.; Marrón, C.; Bulloch, C.; Bunce, EJ; Christensen, U.; Evans, M.; Fairbend, R.; Feasey, M.; Giannini, F.; Hermann, S.; Hesse, M.; Hilchenbach, M.; Jorden, T.; Alegría, K .; Kaipiainen, M.; Kitchingman, I.; Lechner, P.; Lutz, G.; Malkki, A.; Muinonen, K.; Näränen, J.; Portín, P.; Prydderch, M.; Juan, J. San; Sclater, E.; Schyns, E.; Stevenson, TJ; Strüder, L.; Syrjasuo, M.; Talboys, D.; Tomás, P.; Whitford, C.; Whitehead, S. (2010). "El espectrómetro de rayos X de imágenes de mercurio (MIXS) en bepicolombo". Ciencias planetarias y espaciales . 58 (1–2): 79–95. Código Bib : 2010P&SS...58...79F. doi :10.1016/j.pss.2009.05.004. ISSN  0032-0633.
  45. ^ "SERENA". ESA . Consultado el 7 de agosto de 2019 .
  46. ^ "Estrofio". Programa de descubrimiento. NASA. Archivado desde el original el 8 de enero de 2017 . Consultado el 7 de enero de 2017 . Dominio publicoEste artículo incorpora texto de esta fuente, que se encuentra en el dominio público .
  47. ^ Yamakawa, Hiroshi; Ogawa, Hiroyuki; et al. (Enero de 2004). "Estado actual del diseño de la nave espacial BepiColombo/MMO". Avances en la investigación espacial . 33 (12): 2133–2141. Código Bib : 2004AdSpR..33.2133Y. doi :10.1016/S0273-1177(03)00437-X.
  48. ^ ab "Proyecto de exploración de mercurio" BepiColombo"" (PDF) . JAXÁ. 2014 . Consultado el 6 de abril de 2015 .
  49. ^ "Un par de exploradores planetarios en Mercurio". esa.int . Consultado el 21 de octubre de 2018 .
  50. ^ "MPPE".
  51. ^ "Lander de BepiColombo". ESA. 20 de febrero de 2002 . Consultado el 7 de febrero de 2014 .

enlaces externos