Esta es una lista de artículos sobre números primos . Un número primo (o primo ) es un número natural mayor que 1 que no tiene divisores positivos distintos de 1 y él mismo. Según el teorema de Euclides , hay un número infinito de números primos. Se pueden generar subconjuntos de los números primos con varias fórmulas para primos . A continuación se enumeran los primeros 1000 primos, seguidos de listas de tipos notables de números primos en orden alfabético, dando sus respectivos primeros términos. 1 no es primo ni compuesto .
La siguiente tabla enumera los primeros 1000 números primos, con 20 columnas de números primos consecutivos en cada una de las 50 filas. [1]
(secuencia A000040 en la OEIS ).
El proyecto de verificación de la conjetura de Goldbach informa que ha calculado todos los primos menores de 4×10 18 . [2] Eso significa 95.676.260.903.887.607 primos [3] (casi 10 17 ), pero no se almacenaron. Existen fórmulas conocidas para evaluar la función de conteo de primos (el número de primos menores que un valor dado) más rápido que el cálculo de los primos. Esto se ha utilizado para calcular que hay 1.925.320.391.606.803.968.923 primos (aproximadamente 2 × 1021 ) menor que 10 23 . Un cálculo diferente determinó que hay 18.435.599.767.349.200.867.866 primos (aproximadamente 2 × 1022 ) menor que 10 24 , si la hipótesis de Riemann es verdadera. [4]
A continuación se enumeran los primeros números primos de muchas formas y tipos con nombre. Para más detalles, consulte el artículo sobre el nombre. n es un número natural (incluido el 0) en las definiciones.
Primos con espacios entre primos de igual tamaño después y antes de ellos, de modo que sean iguales a la media aritmética de los primos más cercanos después y antes.
Primos que son el número de particiones de un conjunto con n miembros.
2 , 5 , 877 , 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. El siguiente término tiene 6539 dígitos. ( OEIS : A051131 )
Donde p es primo y p +2 es primo o semiprimo .
2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 47 , 53 , 59 , 67 , 71 , 83 , 89 , 101 , 107 , 109 , 113 , 7 , 131 , 137 , 139 , 149 , 157 , 167 , 179 , 181 , 191 , 197 , 199 , 211 , 227 , 233 , 239 , 251 , 257 , 263 , 269 , 281 , 293 , 307 , 311 , 317 , 337 , 347 , 353 , 359 , 379 , 389 , 401 , 409 ( OEIS : A109611 )
Un número primo circular es un número que permanece primo en cualquier rotación cíclica de sus dígitos (en base 10).
2 , 3 , 5 , 7 , 11 , 13 , 17 , 31 , 37 , 71 , 73 , 79 , 97 , 113 , 131 , 197 , 199 , 311 , 337 , 373 , 719 , 733 , 919 , 71 , 991 , 1193 , 1931 , 3119 , 3779 , 7793 , 7937 , 9311 , 9377 , 11939 , 19391 , 19937 , 37199 , 39119 , 71993 , 91193 , 93719 , 93911 , 99371 , 193939 , 199933 , 319993 , 331999 , 391939 , 393919 , 919393 , 933199 , 939193 , 939391 , 993319 , 999331 ( OEIS : A068652 )
Algunas fuentes solo enumeran el primo más pequeño en cada ciclo, por ejemplo, enumeran 13, pero omiten 31 ( OEIS realmente llama a esta secuencia primos circulares, pero no a la secuencia anterior):
2 , 3 , 5 , 7 , 11 , 13 , 17 , 37 , 79 , 113 , 197 , 199 , 337 , 1193 , 3779 , 11939 , 19937 , 193939 , 199933 , 1111111111, 11111111111111111111111 ( OEIS : A016114 )
Todos los números primos repunit son circulares.
Un primo de grupo es un primo p tal que todo número natural par k ≤ p − 3 es la diferencia de dos primos que no excede p .
3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , ... ( OEIS : A038134 )
Todos los números primos impares entre 3 y 89, inclusive, son primos de grupo. Los primeros 10 números primos que no son primos de grupo son:
2 , 97 , 127 , 149 , 191 , 211 , 223 , 227 , 229 , 251 .
Donde ( p , p +4) son ambos primos.
( 3 , 7 ), ( 7 , 11 ), ( 13 , 17 ), ( 19 , 23 ), ( 37 , 41 ), ( 43 , 47 ), ( 67 , 71 ), ( 79 , 83 ), ( 97 , 101 ), ( 103 , 107 ), ( 109 , 113 ) , ( 127 , 131 ), ( 163 , 167 ), ( 193 , 197 ), ( 223 , 227 ), ( 229 , 233 ), ( 277 , 281 ) ( OEIS : A023200 , OEIS : A046132 )
De la forma donde x = y + 1.
7 , 19 , 37 , 61 , 127 , 271 , 331 , 397 , 547 , 631 , 919 , 1657 , 1801 , 1951 , 2269 , 2437 , 2791 , 3169 , 3571 , 4219 , 4447 , 5167 , 5419 , 6211 , 7057 , 7351 , 8269 , 9241 , 10267 , 11719 , 12097 , 13267 , 13669 , 16651 , 19441 , 19927 , 22447 , 23497 , 24571 , 25117 , 26227 , 27361 , 33391 , 35317 ( OEIS : A002407 )
De la forma donde x = y + 2.
13 , 109 , 193 , 433 , 769 , 1201 , 1453 , 2029 , 3469 , 3889 , 4801 , 10093 , 12289 , 13873 , 18253 , 20173 , 21169 , 89 , 28813 , 37633 , 43201 , 47629 , 60493 , 63949 , 65713 , 69313 , 73009 , 76801 , 84673 , 106033 , 108301 , 112909 , 115249 ( OEIS : A002648 )
De la forma n ×2 n + 1.
3 , 393050634124102232869567034555427371542904833 ( OEIS : A050920 )
Números primos que al cambiar cualquiera de sus dígitos (base 10) a cualquier otro valor siempre darán como resultado un número compuesto.
294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 ( ES : A050249 )
Primos que permanecen primos cuando se leen al revés o reflejados en una pantalla de siete segmentos .
2 , 5 , 11 , 101 , 181 , 1181 , 1811 , 18181 , 108881 , 110881 , 118081 , 120121 , 121021 , 121151 , 150151 , 151051 , 121 , 180181 , 180811 , 181081 ( OEIS : A134996 )
Enteros de Eisenstein que son irreducibles y números reales (primos de la forma 3 n − 1).
2 , 5 , 11 , 17 , 23 , 29 , 41 , 47 , 53 , 59 , 71 , 83 , 89 , 101 , 107 , 113 , 131 , 137 , 149 , 167 , 173 , 179 , 191 , 197 , 227 , 233 , 239 , 251 , 257 , 263 , 269 , 281 , 293 , 311 , 317 , 347 , 353 , 359 , 383 , 389 , 401 ( OEIS : A003627 )
Primos que se convierten en un primo diferente cuando se invierten sus dígitos decimales. El nombre "emirp" es el reverso de la palabra "prime".
13 , 17 , 31 , 37 , 71 , 73 , 79 , 97 , 107 , 113 , 149 , 157 , 167 , 179 , 199 , 311 , 337 , 347 , 359 , 389 , 701 , 709 , 733 , 739 , 743 , 751 , 761 , 769 , 907 , 937 , 941 , 953 , 967 , 971 , 983 , 991 ( OEIS : A006567 )
De la forma p n # + 1 (un subconjunto de primos primos ).
3 , 7 , 31 , 211 , 2311 , 200560490131 ( OEIS : A018239 [5] )
Un primo que divide el número de Euler por algún .
19 , 31 , 43 , 47 , 61 , 67 , 71 , 79 , 101 , 137 , 139 , 149 , 193 , 223 , 241 , 251 , 263 , 277 , 307 , 311 , 349 , 353 , 359 , 373 , 379 , 419 , 433 , 461 , 463 , 491 , 509 , 541 , 563 , 571 , 577 , 587 ( OEIS : A120337 )
Primos tales que son un par irregular de Euler.
149 , 241 , 2946901 ( OEIS : A198245 )
De la forma n ! − 1 o n ! + 1.
2 , 3 , 5 , 7 , 23 , 719 , 5039 , 39916801 , 479001599 , 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 ( OEIS : A088054 )
De la forma 2 2 n + 1.
3 , 5 , 17 , 257 , 65537 ( OEIS : A019434 )
A partir de junio de 2024, [actualizar]estos son los únicos primos de Fermat conocidos y, conjeturalmente, los únicos primos de Fermat. La probabilidad de que exista otro primo de Fermat es inferior a una en mil millones. [6]
De la forma a 2 n + 1 para entero fijo a .
a = 2: 3 , 5 , 17 , 257 , 65537 ( OEIS : A019434 )
a = 4: 5 , 17 , 257 , 65537
a = 6: 7 , 37 , 1297
a = 8: (no existe)
a = 10: 11 , 101
a =12: 13
a = 14: 197
a = 16: 17 , 257 , 65537
a =18: 19
a = 20: 401 , 160001
a = 22:23
a = 24: 577 , 331777
Primos en la secuencia de Fibonacci F 0 = 0, F 1 = 1, F n = F n −1 + F n −2 .
2 , 3 , 5 , 13 , 89 , 233 , 1597 , 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 ( OEIS : A005478 )
Números afortunados que son primos (se ha conjeturado que todos lo son).
3 , 5 , 7 , 13 , 17 , 19 , 23 , 37 , 47 , 59 , 61 , 67 , 71 , 79 , 89 , 101 , 103 , 107 , 109 , 127 , 151 , 157 , 163 , 7 , 191 , 197 , 199 , 223 , 229 , 233 , 239 , 271 , 277 , 283 , 293 , 307 , 311 , 313 , 331 , 353 , 373 , 379 , 383 , 397 ( OEIS : A046066 )
Elementos primos de los números enteros gaussianos; equivalentemente, primos de la forma 4 n + 3.
3 , 7 , 11 , 19 , 23 , 31 , 43 , 47 , 59 , 67 , 71 , 79 , 83 , 103 , 107 , 127 , 131 , 139 , 151 , 163 , 167 , 179 , 191 199 , 211 , 223 , 227 , 239 , 251 , 263 , 271 , 283 , 307 , 311 , 331 , 347 , 359 , 367 , 379 , 383 , 419 , 431 , 439 , 443 , 463 , 467 , 479 , 487 , 491 , 499 , 503 ( OEIS : A002145 )
Primos p n para los cuales p n 2 > p n − i p n + i para todo 1 ≤ i ≤ n −1, donde p n es el n- ésimo primo.
5 , 11 , 17 , 29 , 37 , 41 , 53 , 59 , 67 , 71 , 97 , 101 , 127 , 149 , 179 , 191 , 223 , 227 , 251 , 257 , 269 , 307 ( OEIS : A028388 )
Números felices que son primos.
7 , 13 , 19 , 23 , 31 , 79 , 97 , 103 , 109 , 139 , 167 , 193 , 239 , 263 , 293 , 313 , 331 , 367 , 379 , 383 , 397 , 409 , 487 , 563 , 617 , 653 , 673 , 683 , 709 , 739 , 761 , 863 , 881 , 907 , 937 , 1009 , 1033 , 1039 , 1093 ( OEIS : A035497 )
Primos p para los cuales no hay soluciones para H k ≡ 0 (mod p ) y H k ≡ − ω p (mod p ) para 1 ≤ k ≤ p −2, donde H k denota el k -ésimo número armónico y ω p denota el cociente de Wolstenholme . [7]
5 , 13 , 17 , 23 , 41 , 67 , 73 , 79 , 107 , 113 , 139 , 149 , 157 , 179 , 191 , 193 , 223 , 239 , 241 , 251 , 263 , 277 , 281 , 293 , 307 , 311 , 317 , 331 , 337 , 349 ( OEIS : A092101 )
Primos p para los cuales p − 1 divide el cuadrado del producto de todos los términos anteriores.
2 , 3 , 5 , 7 , 11 , 13 , 19 , 23 , 29 , 31 , 37 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 79 , 101 , 107 , 127 , 131 , 139 , 49 , 151 , 157 , 173 , 181 , 191 , 197 , 199 , 211 , 223 , 229 , 263 , 269 , 277 , 283 , 311 , 317 , 331 , 347 , 349 ( OEIS :A007459 )
Primos que son cocientes con más frecuencia que cualquier número entero inferior a él, excepto 1.
2 , 23 , 47 , 59 , 83 , 89 , 113 , 167 , 269 , 389 , 419 , 509 , 659 , 839 , 1049 , 1259 , 1889 ( OEIS : A105440 )
Para n ≥ 2 , escriba la factorización prima de n en base 10 y concatene los factores; itere hasta alcanzar un primo.
2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277 ( OEIS : A037274 )
Primos impares p que dividen el número de clase del p -ésimo cuerpo ciclotómico .
37 , 59 , 67 , 101 , 103 , 131 , 149 , 157 , 233 , 257 , 263 , 271 , 283 , 293 , 307 , 311 , 347 , 353 , 379 , 389 , 401 409 , 421 , 433 , 461 , 463 , 467 , 491 , 523 , 541 , 547 , 557 , 577 , 587 , 593 , 607 , 613 ( OEIS : A000928 )
(Ver Wolstenholme prime )
Primos p tales que ( p , p −5) es un par irregular. [8]
37
Primos p tales que ( p , p − 9) es un par irregular. [8]
67 , 877 ( OEIS : A212557 )
Primos p tales que ni p − 2 ni p + 2 son primos.
2 , 23 , 37 , 47 , 53 , 67 , 79 , 83 , 89 , 97 , 113 , 127 , 131 , 157 , 163 , 167 , 173 , 211 , 223 , 233 , 251 , 257 , 263 , 277 , 293 , 307 , 317 , 331 , 337 , 353 , 359 , 367 , 373 , 379 , 383 , 389 , 397 , 401 , 409 , 439 , 443 , 449 , 457 , 467 , 479 , 487 , 491 , 499 , 503 , 509 , 541 , 547 , 557 , 563 , 577 , 587 , 593 , 607 , 613 , 631 , 647 , 653 , 673 , 677 , 683 , 691 , 701 , 709 , 719 , 727 , 733 , 739 , 743 , 751 , 757 , 761 , 769 , 773 , 787 , 797 , 839 , 853 , 863 , 877 , 887 , 907 , 911 , 919 , 929 , 937 , 941 , 947 , 953 , 967 , 971 , 977 , 983 ,991 , 997 ( OEIS : A007510 )
De la forma x y + y x , con 1 < x < y .
17 , 593 , 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600 193 ( OEIS : A094133 )
Primos p para los cuales, en una base dada b , se obtiene un número cíclico . También se denominan primos de repetición completa. Primos p para base 10:
7 , 17 , 19 , 23 , 29 , 47 , 59 , 61 , 97 , 109 , 113 , 131 , 149 , 167 , 179 , 181 , 193 , 223 , 229 , 233 , 257 , 263 , 269 , 313 , 337 , 367 , 379 , 383 , 389 , 419 , 433 , 461 , 487 , 491 , 499 , 503 , 509 , 541 , 571 , 577 , 593 ( OEIS : A001913 )
Primos en la secuencia de números de Lucas L 0 = 2, L 1 = 1, L n = L n −1 + L n −2 .
2 , [9] 3 , 7 , 11 , 29 , 47 , 199 , 521 , 2207 , 3571 , 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 748293801, 688846502588399, 32361122672259149 ( OEIS : A005479 )
Números de la suerte que son primos.
3 , 7 , 13 , 31 , 37 , 43 , 67 , 73 , 79 , 127 , 151 , 163 , 193 , 211 , 223 , 241 , 283 , 307 , 331 , 349 , 367 , 409 , 421 , 433 , 463 , 487 , 541 , 577 , 601 , 613 , 619 , 631 , 643 , 673 , 727 , 739 , 769 , 787 , 823 , 883 , 937 , 991 , 997 ( OEIS : A031157 )
De la forma 2 n − 1.
3 , 7 , 31 , 127 , 8191 , 131071 , 524287 , 2147483647 , 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 ( OEIS : A000668 )
A partir de 2024 [actualizar], se conocen 52 números primos de Mersenne. El 13.º, el 14.º y el 52.º tienen respectivamente 157, 183 y 41 024 320 dígitos. Esto incluye el primo más grande conocido 2 136 279 841 -1, que es el 52.º primo de Mersenne.
Primos p que dividen a 2 n − 1, para algún número primo n.
3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343 ( OEIS : A122094 )
Todos los primos de Mersenne son, por definición, miembros de esta secuencia.
Primos p tales que 2 p − 1 es primo.
2 , 3 , 5 , 7 , 13 , 17 , 19 , 31 , 61 , 89 , 107 , 127 , 521 , 607 , 1279 , 2203 , 2281 , 3217 , 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609 , 57885161 ( OEIS : A000043 )
A partir de octubre de 2024 [actualizar], se sabe que hay cuatro más en la secuencia, pero no se sabe si son los siguientes:
74207281, 77232917, 82589933, 136279841
Un subconjunto de primos de Mersenne de la forma 2 2 p −1 − 1 para el primo p .
7 , 127 , 2147483647 , 170141183460469231731687303715884105727 (primos en OEIS : A077586 )
De la forma ( a n − 1) / ( a − 1) para entero fijo a .
Para a = 2, estos son los primos de Mersenne, mientras que para a = 10 son los primos repunit. Para otros a pequeños , se dan a continuación:
a = 3: 13 , 1093 , 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 ( OEIS : A076481 )
a = 4: 5 (el único primo para a = 4)
a = 5: 31 , 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531 ( OEIS : A086122 )
a = 6: 7 , 43 , 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371 ( OEIS : A165210 )
a = 7: 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457
a = 8: 73 (el único primo para a = 8)
a = 9: no existe ninguno
Se han definido muchas generalizaciones de los números primos de Mersenne, entre ellas las siguientes:
De la forma ⌊θ 3 n ⌋, donde θ es la constante de Mills. Esta forma es prima para todos los números enteros positivos n .
2 , 11 , 1361 , 2521008887, 16022236204009818131831320183 ( OEIS : A051254 )
Primos para los cuales no existe una subsecuencia más corta de los dígitos decimales que forman un primo. Hay exactamente 26 primos mínimos:
2 , 3 , 5 , 7 , 11 , 19 , 41 , 61 , 89 , 409 , 449 , 499 , 881 , 991 , 6469, 6949, 9001 , 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 ( OEIS : A071062 )
Números de Newman–Shanks–Williams que son primos.
7 , 41 , 239 , 9369319, 63018038201, 489133282872437279, 19175002942688032928599 ( OEIS : A088165 )
Primos p para los cuales la raíz primitiva menos positiva no es una raíz primitiva de p 2 . Se conocen tres de estos primos; no se sabe si hay más. [13]
2 , 40487, 6692367337 ( OEIS : A055578 )
Primos que permanecen iguales cuando sus dígitos decimales se leen al revés.
2 , 3 , 5 , 7 , 11 , 101 , 131 , 151 , 181 , 191 , 313 , 353 , 373 , 383 , 727 , 757 , 787 , 797 , 919 , 929 , 10301, 1, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 ( OEIS : A002385 )
Primos de la forma con . [14] Esto significa que todos los dígitos excepto el del medio son iguales.
101 , 131 , 151 , 181 , 191 , 313 , 353 , 373 , 383 , 727 , 757 , 787 , 797 , 919 , 929 , 11311, 11411, 33533, 77377, 7, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 ( OEIS : A077798 )
Valores de la función de partición que son primos.
2 , 3 , 5 , 7 , 11 , 101 , 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 05259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557 ( OEIS : A049575 )
Primos en la secuencia de números de Pell P 0 = 0, P 1 = 1, P n = 2 P n −1 + P n −2 .
2 , 5 , 29 , 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 412563688856254886 8221559797461449 ( OEIS : A086383 )
Cualquier permutación de los dígitos decimales es un número primo.
2 , 3 , 5 , 7 , 11 , 13 , 17 , 31 , 37 , 71 , 73 , 79 , 97 , 113 , 131 , 199 , 311 , 337 , 373, 733 , 919 , 991 , 111111111111, 11111111111111111111111 ( OEIS : A003459 )
Primos en la secuencia de números de Perrin P (0) = 3, P (1) = 0, P (2) = 2, P ( n ) = P ( n −2) + P ( n −3).
2 , 3 , 5 , 7 , 17 , 29 , 277 , 367 , 853 , 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 662411604887 80141071579864797 ( OEIS : A074788 )
De la forma 2 u 3 v + 1 para algunos enteros u , v ≥ 0.
Éstos también son primos de clase 1 .
2 , 3 , 5 , 7 , 13 , 17 , 19 , 37 , 73 , 97 , 109 , 163 , 193 , 257 , 433 , 487 , 577 , 769 , 1153 , 1297 , 1459 , 2593 , 2917 , 3457 , 3889 , 10369, 12289, 17497, 18433, 39367, 52489, 65537 , 139969, 147457 ( OEIS : A005109 )
Primos p para los cuales existen n > 0 tales que p divide a n ! + 1 y n no divide a p − 1.
23 , 29 , 59 , 61 , 67 , 71 , 79 , 83 , 109 , 137 , 139 , 149 , 193 , 227 , 233 , 239 , 251 , 257 , 269 , 271 , 277 , 293 , 307 , 311 , 317 , 359 , 379 , 383 , 389 , 397 , 401 , 419 , 431 , 449 , 461 , 463 , 467 , 479 , 499 ( OEIS : A063980 )
De la forma n 4 + 1. [15] [16]
2 , 17 , 257 , 1297 , 65537 , 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 12177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 ( OEIS : A037896 )
Primos para los cuales hay más permutaciones primas de algunos o todos los dígitos decimales que para cualquier número menor.
2 , 13 , 37 , 107 , 113 , 137 , 1013 , 1237 , 1367 , 10079 ( OEIS : A119535 )
De la forma p n # ± 1.
3 , 5 , 7 , 29 , 31 , 211 , 2309 , 2311 , 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (unión de OEIS : A057705 y OEIS : A018239 [5] )
De la forma k ×2 n + 1, con k impar y k < 2 n .
3 , 5 , 13 , 17 , 41 , 97 , 113 , 193 , 241 , 257 , 353 , 449 , 577 , 641 , 673 , 769 , 929 , 1153 , 1217 , 1409 , 1601 , 2113 , 2689 , 2753 , 3137 , 3329 , 3457 , 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 ( OEIS : A080076 )
De la forma 4 n + 1.
5 , 13 , 17 , 29 , 37 , 41 , 53 , 61 , 73 , 89 , 97 , 101 , 109 , 113 , 137 , 149 , 157 , 173 , 181 , 193 , 197 , 229 , 3 , 241 , 257 , 269 , 277 , 281 , 293 , 313 , 317 , 337 , 349 , 353 , 373 , 389 , 397 , 401 , 409 , 421 , 433 , 449 ( OEIS :A002144 )
Donde ( p , p +2, p +6, p +8) son todos primos.
( 5 , 7 , 11 , 13 ), (11, 13, 17 , 19 ), ( 101 , 103 , 107 , 109 ), ( 191 , 193 , 197 , 199 ), ( 821 , 823 , 827 , 829 ), ( 1481 , 1483 , 1487 , 1489 ), ( 1871 , 1873 , 1877 , 1879 ), ( 2081 , 2083 , 2087 , 2089 ), ( 3251 , 3253 , 3257 , 3259 ), ( 3461 , 3463 , 3467 , 3469 ), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) ( OEIS : A007530 , OEIS : A136720 , OEIS : A136721 , OEIS : A090258 )
De la forma x 4 + y 4 , donde x , y > 0.
2 , 17 , 97 , 257 , 337 , 641 , 881 ( OEIS : A002645 )
Números enteros R n que son los más pequeños para dar al menos n primos desde x /2 hasta x para todo x ≥ R n (todos estos números enteros son primos).
2 , 11 , 17 , 29 , 41 , 47 , 59 , 67 , 71 , 97 , 101 , 107 , 127 , 149 , 151 , 167 , 179 , 181 , 227 , 229 , 233 , 239 , 41 , 263 , 269 , 281 , 307 , 311 , 347 , 349 , 367 , 373 , 401 , 409 , 419 , 431 , 433 , 439 , 461 , 487 , 491 ( OEIS : A104272 )
Primos p que no dividen el número de clase del p -ésimo campo ciclotómico .
3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 41 , 43 , 47 , 53 , 61 , 71 , 73 , 79 , 83 , 89 , 97 , 107 , 109 , 113 , 7 , 137 , 139 , 151 , 163 , 167 , 173 , 179 , 181 , 191 , 193 , 197 , 199 , 211 , 223 , 227 , 229 , 239 , 241 , 251 , 269 , 277 , 281 ( OEIS : A007703 )
Primos que contienen solo el dígito decimal 1.
11 , 1111111111111111111 (19 dígitos), 1111111111111111111111 (23 dígitos) ( OEIS : A004022 )
Los siguientes tienen 317, 1031, 49081, 86453, 109297, 270343 dígitos ( OEIS : A004023 )
De la forma an + d para números enteros fijos a y d . También llamados primos congruentes con d módulo a .
Los primos de la forma 2 n + 1 son los primos impares, incluyendo todos los primos distintos del 2. Algunas sucesiones tienen nombres alternativos: 4 n + 1 son los primos pitagóricos, 4 n + 3 son los primos enteros de Gauss y 6 n + 5 son los primos de Eisenstein (con el 2 omitido). Las clases 10 n + d ( d = 1, 3, 7, 9) son primos que terminan en el dígito decimal d .
2 n +1: 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 ( OEIS : A065091 )
4 n +1: 5, 13, 17, 29, 37, 41, 53, 61, 73 , 89 , 97 , 101 , 109 , 113 , 137 ( OEIS : A002144 )
4 n +3: 3, 7, 11, 19, 23, 31, 43, 47, 59 , 67 , 71 , 79 , 83 , 103 , 107 ( OEIS : A002145 )
6 n +1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127 , 139 ( OEIS : A002476 )
6 n +5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 ( OEIS : A007528 )
8 n +1: 17, 41, 73, 89, 97, 113, 137, 193 , 233 , 241 , 257 , 281 , 313 , 337 , 353 ( OEIS : A007519 )
8 n +3: 3, 11, 19, 43, 59, 67, 83, 107, 131 , 139, 163 , 179 , 211 , 227 , 251 ( OEIS : A007520 )
8 n +5: 5, 13, 29, 37, 53, 61, 101, 109, 149 , 157 , 173 , 181 , 197 , 229 , 269 ( OEIS : A007521 )
8 n +7: 7, 23, 31, 47, 71, 79, 103, 127, 151 , 167 , 191 , 199 , 223 , 239 , 263 ( OEIS: A007522 )
10 n + 1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271 , 281 ( OEIS : A030430 )
10 n + 3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 ( OEIS : A030431 )
10 n + 7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 ( OEIS : A030432 )
10 n +9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349 , 359 ( OEIS : A030433 )
12 n +1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 ( OEIS : A068228 )
12 n +5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269 ( OEIS : A040117 )
12 n +7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 1, 163, 199, 211, 223, 271 ( OEIS : A068229 )
12 n +11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263 ( OEIS :A068231 )
Donde p y ( p −1) / 2 son ambos primos.
5 , 7 , 11 , 23 , 47 , 59 , 83 , 107 , 167 , 179 , 227 , 263 , 347 , 359 , 383 , 467 , 479 , 503 , 563 , 587 , 719 , 839 , 863 , 887 , 983 , 1019 , 1187 , 1283 , 1307 , 1319 , 1367 , 1439 , 1487 , 1523 , 1619 , 1823 , 1907 ( OEIS : A005385 )
Primos que no pueden generarse mediante ningún número entero sumado a la suma de sus dígitos decimales.
3 , 5 , 7 , 31 , 53 , 97 , 211 , 233 , 277 , 367 , 389 , 457 , 479 , 547 , 569 , 613 , 659 , 727 , 839 , 883 , 929 , 1021 , 1087 , 1109 , 1223 , 1289 , 1447 , 1559 , 1627 , 1693 , 1783 , 1873 ( OEIS : A006378 )
Donde ( p , p +6) son ambos primos.
( 5 , 11 ), ( 7 , 13 ), (11, 17 ), (13, 19 ), (17, 23 ), (23, 29 ), ( 31 , 37 ), (37, 43 ), ( 41 , 47 ), (47, 53 ) , ( 53, 59 ), ( 61 , 67 ) , ( 67 , 73 ), (73, 79 ), ( 83 , 89 ), ( 97 , 103 ), ( 101 , 107 ), (103, 109 ), (107, 113 ), ( 131 , 137 ), ( 151 , 157 ), (157, 163 ), ( 167 , 173 ), (173, 179 ), ( 191 , 197 ), ( 193 , 199 ) ( OEIS : A023201 , OEIS : A046117 )
Primos que son la concatenación de los primeros n primos escritos en decimal.
2 , 23 , 2357 ( OEIS : A069151 )
El cuarto primo de Smarandache-Wellin es la concatenación de 355 dígitos de los primeros 128 primos que terminan en 719.
De la forma 2 a ± 2 b ± 1, donde 0 < b < a .
3 , 5 , 7 , 11 , 13 ( OEIS : A165255 )
Donde p y 2 p + 1 son ambos primos. Un primo de Sophie Germain tiene un primo seguro correspondiente.
2 , 3 , 5 , 11 , 23 , 29 , 41 , 53 , 83 , 89 , 113 , 131 , 173 , 179 , 191 , 233 , 239 , 251 , 281 , 293 , 359 , 431 , 443 , 491 , 509 , 593 , 641 , 653 , 659 , 683 , 719 , 743 , 761 , 809 , 911 , 953 ( OEIS : A005384 )
Primos que no son la suma de un primo menor y el doble del cuadrado de un entero distinto de cero.
2 , 3 , 17 , 137 , 227 , 977 , 1187 , 1493 ( OEIS : A042978 )
A partir de 2011 [actualizar], estos son los únicos números primos de Stern conocidos, y posiblemente los únicos existentes.
Primos con índices primos en la secuencia de números primos (el 2º, 3º, 5º, ... primo).
3 , 5 , 11 , 17 , 31 , 41 , 59 , 67 , 83 , 109 , 127 , 157 , 179 , 191 , 211 , 241 , 277 , 283 , 331 , 353 , 367 , 401 , 31 , 461 , 509 , 547 , 563 , 587 , 599 , 617 , 709 , 739 , 773 , 797 , 859 , 877 , 919 , 967 , 991 ( OEIS : A006450 )
Hay exactamente quince primos supersingulares:
2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 41 , 47 , 59 , 71 ( OEIS : A002267 )
De la forma 3×2 n − 1.
2 , 5 , 11 , 23 , 47 , 191 , 383 , 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 ( OEIS : A007505 )
Los primos de la forma 3×2 n + 1 están relacionados.
7 , 13 , 97 , 193 , 769 , 12289, 786433, 3221225473, 206158430209, 6597069766657 ( OEIS : A039687 )
Donde ( p , p +2, p +6) o ( p , p +4, p +6) son todos primos.
( 5 , 7 , 11 ), (7, 11, 13 ), (11, 13, 17 ), (13, 17, 19 ), (17, 19, 23 ), ( 37 , 41 , 43 ), (41 , 43, 47 ), ( 67 , 71 , 73 ), ( 97 , 101 , 103 ), (101, 103, 107 ), (103, 107, 109 ), (107, 109, 113 ), ( 191 , 193 , 197 ), (193, 197, 199 ), ( 223 , 227 , 229 ), (227, 229, 233 ), ( 277 , 281 , 283 ), ( 307 , 311 , 313 ), (311, 313, 317 ), ( 347 , 349 , 353 ) ( OEIS : A007529 , OEIS : A098414 , OEIS : A098415 )
Primos que permanecen primos cuando se elimina sucesivamente el dígito decimal inicial.
2 , 3 , 5 , 7 , 13 , 17 , 23 , 37 , 43 , 47 , 53 , 67 , 73 , 83 , 97 , 113 , 137 , 167 , 173 , 197 , 223 , 283 , 313 , , 337 , 347 , 353 , 367 , 373 , 383 , 397 , 443 , 467 , 523 , 547 , 613 , 617 , 643 , 647 , 653 , 673 , 683 ( OEIS : A024785 )
Primos que permanecen primos cuando se elimina sucesivamente el dígito decimal menos significativo.
2 , 3 , 5 , 7 , 23 , 29 , 31 , 37 , 53 , 59 , 71 , 73 , 79 , 233 , 239 , 293 , 311 , 313 , 317 , 373 , 379 , 593 , 599 , 719 , 733 , 739 , 797 , 2333 , 2339 , 2393 , 2399 , 2939 , 3119 , 3137 , 3733 , 3739 , 3793 , 3797 ( OEIS : A024770 )
Primos que se pueden truncar tanto por la izquierda como por la derecha. Hay exactamente quince primos bilaterales:
2 , 3 , 5 , 7 , 23 , 37 , 53 , 73 , 313 , 317 , 373 , 797 , 3137 , 3797 , 739397 ( OEIS : A020994 )
Donde ( p , p +2) son ambos primos.
( 3 , 5 ), (5, 7 ), ( 11 , 13 ), ( 17 , 19 ), ( 29 , 31 ), ( 41 , 43 ), ( 59 , 61 ), ( 71 , 73 ), ( 101). , 103 ), ( 107 , 109 ), ( 137 , 139 ), ( 149 , 151 ), ( 179 , 181 ), ( 191 , 193 ), ( 197 , 199 ), ( 227 , 229 ), ( 239 , 241 ), ( 269 , 271 ), ( 281 , 283 ), ( 311 , 313 ), ( 347 , 349 ), ( 419 , 421 ), ( 431 , 433 ), ( 461 , 463 ) ( OEIS : A001359 , OEIS : A006512 )
La lista de primos p para los cuales la longitud del período de la expansión decimal de 1/ p es única (ningún otro primo da el mismo período).
3 , 11 , 37 , 101 , 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111, 11111111111111111111111, 900900900900990990990991 ( OEIS : A040017 )
De la forma (2 n + 1) / 3.
3 , 11 , 43 , 683 , 2731 , 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 ( OEIS : A000979 )
Valores de n :
3, 5 , 7 , 11, 13 , 17 , 19 , 23 , 31 , 43 , 61 , 79 , 101 , 127 , 167 , 191 , 199 , 313 , 347 , 701 , 1709 , 2617 , 3539 5807 , 10501 , 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 ( OEIS : A000978 )
Un primo p > 5, si p 2 divide el número de Fibonacci , donde el símbolo de Legendre se define como
Hasta 2018 [update], no se conocen primos Muro-Sol-Sol.
Primos p tales que a p − 1 ≡ 1 (mod p 2 ) para un entero fijo a > 1.
2 p − 1 ≡ 1 (mod p 2 ): 1093 , 3511 ( OEIS : A001220 )
3 p − 1 ≡ 1 (mod p 2 ): 11 , 1006003 ( OEIS : A014127 ) [17] [18] [19]
4 p − 1 ≡ 1 (mod p 2 ): 1093 , 3511
5 p − 1 ≡ 1 (mod p 2 ): 2 , 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 ( OEIS : A123692 )
6 p − 1 ≡ 1 (mod p 2 ): 66161, 534851, 3152573 ( OEIS : A212583 )
7 p − 1 ≡ 1 (mod p 2 ): 5 , 491531 ( OEIS : A123693 )
8 p − 1 ≡ 1 p 2 ): 3 , 1093 , 3511
9 p − 1 ≡ 1 (mod p 2 ): 2 , 11 , 1006003
10 p − 1 ≡ 1 (mod p 2 ): 3 , 487 , 56598313 ( OEIS : A045616 )
11 p − 1 ≡ 1 (mod p 2 ): 71 [20]
12 p − 1 ≡ 1 (mod p 2 ): 2693 , 123653 ( OEIS : A111027 )
13 p − 1 ≡ 1 (mod p 2 ): 2 , 863 , 1747591 ( OEIS : A128667 ) [20]
14 p − 1 ≡ 1 (mod p 2 ): 29 , 353 , 7596952219 ( OEIS : A234810 )
15 p − 1 ≡ 1 (mod p 2 ): 29131, 119327070011 ( OEIS : A242741 )
16 págs. − 1≡ 1 (mod p 2 ): 1093 , 3511
17 p − 1 ≡ 1 (mod p 2 ): 2 , 3 , 46021, 48947 ( OEIS : A128668 ) [20]
18 p − 1 ≡ 1 (mod p 2 ): 5 , 7 , 37 , 331 , 33923, 1284043 ( OEIS : A244260 )
19 p − 1 ≡ 1 (mod p 2 ): 3 , 7 , 13 , 43 , 137 , 63061489 ( OEIS : A090968 ) [20]
20 p − 1 ≡ 1 (mod p 2 ): 281 , 46457, 9377747, 122959073 ( OEIS : A242982 )
21 p − 1 ≡ 1 (mod p 2 ): 2
22 p − 1 ≡ 1 (mod p 2 ): 13 , 673 , 492366587, 9809862296159 ( OEIS : A298951 )
23 p − 1 ≡ 1 (mod p 2 ): 13 , 2481757, 13703077, 15546404183, 2549536629329 ( OEIS : A128669 )
24 p − 1 ≡ 1 (mod p 2 ): 5 , 25633
25 p − 1 ≡ 1 (mod p 2 ): 2 , 20771, 40487, 53471161, 1645333507, 6692367337, 46801
A partir de 2018 [update], todos estos son primos de Wieferich conocidos con un ≤ 25.
Primos p para los cuales p 2 divide a ( p −1)! + 1.
5 , 13 , 563 ( OEIS : A007540 )
A partir de 2018 [update], estos son los únicos números primos de Wilson conocidos.
Primos p para los cuales el coeficiente binomial
16843 , 2124679 ( OEIS : A088164 )
A partir de 2018 [update], estos son los únicos números primos de Wolstenholme conocidos.
De la forma n ×2 n − 1.
( OEIS : A050918 )