stringtranslate.com

Receptor de tropomiosina quinasa C

El receptor de tropomiosina quinasa C ( TrkC ), [5] también conocido como receptor del factor de crecimiento NT-3 , receptor de tirosina quinasa neurotrófico tipo 3 o tirosina quinasa TrkC es una proteína que en los humanos está codificada por el gen NTRK3 . [6]

TrkC es el receptor catalítico de alta afinidad para la neurotrofina NT-3 ( neurotrofina-3 ). Como tal, TrkC media los múltiples efectos de este factor neurotrófico , que incluye la diferenciación neuronal y la supervivencia.

El receptor TrkC forma parte de la gran familia de receptores tirosina quinasas . Una "tirosina quinasa " es una enzima que es capaz de añadir un grupo fosfato a determinadas tirosinas en proteínas diana o "sustratos". Un receptor tirosina quinasa es una "tirosina quinasa" que se encuentra en la membrana celular y se activa mediante la unión de un ligando a través de su dominio extracelular. Otro ejemplo de receptores de tirosina quinasa incluye el receptor de insulina , el receptor de IGF-1 , el receptor de proteína MuSK , el receptor del factor de crecimiento endotelial vascular (VEGF), etc. Las proteínas "sustrato" que son fosforiladas por TrkC incluyen la quinasa PI3 .

Función

TrkC es el receptor catalítico de alta afinidad para la neurotrofina-3 (también conocida como NTF3 o NT-3). Al igual que otros receptores NTRK y receptores tirosina quinasas en general, la unión del ligando induce la dimerización del receptor seguida de transautofosforilación en la tirosina conservada en el dominio intracelular (citoplasmático) del receptor. Estas tirosina conservada sirven como sitios de acoplamiento para proteínas adaptadoras que desencadenan cascadas de señalización posteriores. La señalización a través de PLCG1 , PI3K y RAAS , aguas abajo de NTRK3 activado, regula la supervivencia, proliferación y motilidad celular [7]

Además, TrkC ha sido identificada como una nueva molécula de adhesión sinaptogénica responsable del desarrollo de sinapsis excitadoras. [8]

El locus TrkC codifica al menos ocho isoformas, incluidas formas sin el dominio quinasa o con inserciones de quinasa adyacentes al sitio principal de autofosforilación. Estas formas surgen mediante eventos de empalme alternativos y se expresan en diferentes tejidos y tipos de células. [9] La activación de NT-3 de la isoforma catalítica TrkC promueve tanto la proliferación de células de la cresta neural como la diferenciación neuronal. Por otro lado, la unión de NT-3 a la isoforma no catalítica TrkC induce diferenciación neuronal, pero no proliferación neuronal [10].

Miembros de la familia

Las quinasas receptoras de tropomiosina, también conocidas como receptores de tirosina quinasa neurotróficas (Trk), desempeñan un papel esencial en la biología de las neuronas al mediar la señalización activada por neurotrofinas. Hay tres receptores transmembrana TrkA , TrkB y TrkC (codificados por los genes NTRK1, NTRK2 y NTRK3 respectivamente) que conforman la familia de receptores Trk. [11] Esta familia de receptores es activada por neurotrofinas, incluyendo NGF (para el factor de crecimiento nervioso ), BDNF (para el factor neurotrófico derivado del cerebro ), NT-4 (para la neurotrofina-4 ) y NT-3 (para la neurotrofina-3). . Mientras que TrkA medió los efectos del NGF, TrkB está unido y activado por BDNF , NT-4 y NT-3. Además, TrkC se une y es activado por NT-3. [12] TrkB se une a BDNF y NT-4 con más fuerza que a NT-3. TrkC se une a NT-3 con más fuerza que TrkB.

Existe otra familia de receptores NT-3 además de los Trks (TrkC y TrkB), llamada " LNGFR " (por " receptor del factor de crecimiento nervioso de baja afinidad "). A diferencia de TrkC, el LNGFR desempeña un papel algo menos claro en la biología del NT-3 . Algunos investigadores han demostrado que el LNGFR se une y sirve como "sumidero" de neurotrofinas. Por lo tanto, las células que expresan los receptores LNGFR y Trk podrían tener una mayor actividad, ya que tienen una mayor "microconcentración" de la neurotrofina. Sin embargo, también se ha demostrado que el LNGFR puede indicarle a una célula que muera mediante apoptosis; por lo tanto, las células que expresan el LNGFR en ausencia de receptores Trk pueden morir en lugar de vivir en presencia de una neurotrofina.

Se ha demostrado que NTRK3 es un receptor de dependencia, lo que significa que puede ser capaz de inducir proliferación cuando se une a su ligando NT-3, sin embargo, la ausencia del NT-3 resultará en la inducción de apoptosis por parte de NTRK3. [13]

Papel en la enfermedad

Con el paso de los años, muchos estudios han demostrado que la falta o desregulación de TrkC o del complejo TrkC: NT-3 puede estar asociado con diferentes enfermedades.

Un estudio ha demostrado que los ratones con deficiencia de NT-3 o TrkC presentan defectos sensoriales graves. Estos ratones tienen una nocicepción normal, pero tienen un defecto en la propiocepción , la actividad sensorial encargada de localizar las extremidades en el espacio. [14]

La reducción de la expresión de TrkC se ha observado en enfermedades neurodegenerativas, incluidas las enfermedades de Alzheimer (EA), Parkinson (EP) y Huntington (HD). [15] El papel de NT-3 también se estudió terapéuticamente en modelos de esclerosis lateral amiotrófica ( ELA ) con pérdida de neuronas motoras de la médula espinal que expresan TrkC [16]

Además, se ha demostrado que TrkC desempeña un papel en el cáncer. La expresión y función de los subtipos de Trk dependen del tipo de tumor. Por ejemplo, en el neuroblastoma, la expresión de TrkC se correlaciona con un buen pronóstico, pero en los cánceres de mama, próstata y páncreas, la expresión del mismo subtipo de TrkC se asocia con la progresión del cáncer y la metástasis. [17]

Papel en el cáncer

Aunque originalmente se identificó como una fusión oncogénica en 1982, [18] sólo recientemente ha habido un interés renovado en la familia Trk en relación con su papel en los cánceres humanos debido a la identificación de NTRK1 (TrkA), NTRK2 (TrkB) y NTRK3. (TrkC) fusiones de genes y otras alteraciones oncogénicas en varios tipos de tumores. Varios inhibidores de Trk se encuentran (en 2015) en ensayos clínicos y se han mostrado prometedores en la reducción de tumores humanos. [19] Se ha demostrado que la familia de receptores de neurotrofina, incluido NTRK3, induce una variedad de respuestas pleiotópicas en células malignas, incluida una mayor invasividad de las células tumorales y quimiotoxicidad . [20] Se ha demostrado un aumento de la expresión de NTRK3 en neuroblastoma , [21] en meduloblastoma , [22] y en tumores cerebrales neuroectodérmicos . [23]

Metilación de NTRK3

La región promotora de NTRK3 contiene una densa isla CpG ubicada relativamente adyacente al sitio de inicio de la transcripción (TSS) . Utilizando matrices HumanMethylation450 , PCR cuantitativa específica de metilación (qMSP) y ensayos Mthylight , se ha indicado que NTRK3 está metilado en todas las líneas celulares de CRC y no en las muestras de epitelio normal . A la luz de su metilación preferencial en los CCR y debido a su papel como receptor de neurotrofina, se ha sugerido que tiene un papel funcional en la formación del cáncer colorrectal . [24] También se ha sugerido que el estado de metilación del promotor NTRK3 es capaz de discriminar muestras de tumores CCR del tejido libre de tumores adyacente normal. Por tanto, puede considerarse como un biomarcador para la detección molecular de CCR, especialmente en combinación con otros marcadores como SEPT9 . [25] NTRK3 también se ha indicado como uno de los genes en el panel de nueve sondas de metilación de CpG ubicadas en la región promotora o del exón 1 de ocho genes (incluidos DDIT3 , FES , FLT3 , SEPT5 , SEPT9, SOX1 , SOX17 y NTRK3). para la predicción del pronóstico en pacientes con ESCC (carcinoma de células escamosas de esófago). [26]

Inhibidores de TrkC (gen NTRK3) en desarrollo

Entrectinib (anteriormente RXDX-101) es un fármaco en investigación desarrollado por Ignyta, Inc., que tiene actividad antitumoral potencial. Es un inhibidor oral de pan-TRK, ALK y ROS1 que ha demostrado su actividad antitumoral en líneas celulares tumorales humanas y murinas y en modelos tumorales de xenoinjertos derivados de pacientes. In vitro, entrectinib inhibe a los miembros de la familia Trk, TrkA, TrkB y TrkC, en concentraciones nanomolares bajas. Está altamente unido a las proteínas plasmáticas (99,5%) y puede difundirse fácilmente a través de la barrera hematoencefálica (BHE). [27]

Entrectinib fue aprobado por la FDA el 15 de agosto de 2019 para el tratamiento de pacientes adultos y pediátricos de 12 años o más con tumores sólidos que tienen una fusión del gen del receptor de tirosina quinasa neurotrófica [28]

Interacciones

Se ha demostrado que TrkC interactúa con:

Ligandos

Las pequeñas moléculas peptidomiméticas basadas en el giro β NT-3 , con el objetivo de apuntar al dominio extracelular del receptor TrkC, han demostrado ser agonistas de TrkC. [40] Estudios posteriores han demostrado que los peptidomiméticos con una estructura orgánica y un farmacóforo basado en la estructura NT-3 de giro β también pueden funcionar como antagonistas de TrkC. [41]

Referencias

  1. ^ abc GRCh38: Ensembl lanzamiento 89: ENSG00000140538 - Ensembl , mayo de 2017
  2. ^ abc GRCm38: Ensembl lanzamiento 89: ENSMUSG00000059146 - Ensembl , mayo de 2017
  3. ^ "Referencia humana de PubMed:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  4. ^ "Referencia de PubMed del ratón:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  5. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Capítulo 8: Neurotransmisores atípicos". En Sydor A, Brown RY (eds.). Neurofarmacología molecular: una base para la neurociencia clínica (2ª ed.). Nueva York: McGraw-Hill Medical. ISBN 978-0-07-148127-4. Otra característica común de las neurotrofinas es que producen sus efectos fisiológicos por medio de la familia de receptores de tropomiosina quinasa (Trk) (también conocida como familia de receptores de tirosina quinasa). ... Prueba con los receptores. Todas las neurotrofinas se unen a una clase de receptores tirosina quinasas altamente homólogos conocidos como receptores Trk, de los cuales se conocen tres tipos: TrkA, TrkB y TrkC. Estos receptores transmembrana son glicoproteínas cuyas masas moleculares oscilan entre 140 y 145 kDa. Cada tipo de receptor Trk tiende a unirse a neurotrofinas específicas: TrkA es el receptor de NGF, TrkB el receptor de BDNF y NT-4, y TrkC el receptor de NT-3. Sin embargo, se ha observado cierta superposición en la especificidad de estos receptores. .
  6. ^ McGregor LM, Baylin SB, Griffin CA, Hawkins AL, Nelkin BD (julio de 1994). "Clonación molecular del ADNc para TrkC humano (NTRK3), asignación cromosómica y evidencia de una variante de empalme". Genómica . 22 (2): 267–72. doi : 10.1006/geno.1994.1383 . PMID  7806211.
  7. ^ Tsoulfas, P. (2018). "Señalización por NTRK3 (TRKC)". Reactome: una base de conocimientos seleccionada sobre vías biológicas . sesenta y cinco . doi :10.3180/R-HSA-9034015.1. S2CID  89660152.
  8. ^ Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, Craig AM (enero de 2011). "TrkC postsináptico y PTPσ presináptico funcionan como un complejo organizador sináptico excitador bidireccional". Neurona . 69 (2): 287–303. doi :10.1016/j.neuron.2010.12.024. PMC 3056349 . PMID  21262467. 
  9. ^ Tsoulfas P, Stephens RM, Kaplan DR, Parada LF (marzo de 1996). "Las isoformas de TrkC con inserciones en el dominio quinasa muestran respuestas de señalización deterioradas". La Revista de Química Biológica . 271 (10): 5691–7. doi : 10.1074/jbc.271.10.5691 . PMID  8621434.
  10. ^ Naito Y, Lee AK, Takahashi H (marzo de 2017). "Funciones emergentes del receptor de neurotrofina TrkC en la organización de las sinapsis". Investigación en neurociencia . 116 (2017): 10-17. doi :10.1016/j.neures.2016.09.009. PMID  27697534. S2CID  44805812.
  11. ^ Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD y otros. (febrero de 2018). "Eficacia de larotrectinib en cánceres con fusión TRK positiva en adultos y niños". El diario Nueva Inglaterra de medicina . 378 (8): 731–739. doi :10.1056/NEJMoa1714448. PMC 5857389 . PMID  29466156. 
  12. ^ Benito-Gutiérrez E, García-Fernàndez J, Comella JX (febrero de 2006). "Origen y evolución de la familia de receptores neurotróficos Trk". Neurociencias Moleculares y Celulares . 31 (2): 179–92. doi : 10.1016/j.mcn.2005.09.007. PMID  16253518. S2CID  25232377.
  13. ^ Bouzas-Rodríguez J, Cabrera JR, Delloye-Bourgeois C, Ichim G, Delcros JG, Raquin MA, et al. (Marzo de 2010). "La producción de neurotrofina-3 promueve la supervivencia de las células del neuroblastoma humano al inhibir la apoptosis inducida por TrkC". La Revista de Investigación Clínica . 120 (3): 850–8. doi :10.1172/jci41013. PMC 2827960 . PMID  20160348. 
  14. ^ Barbacid M (abril de 1995). "Factores neurotróficos y sus receptores". Opinión actual en biología celular . 7 (2): 148–55. doi :10.1016/0955-0674(95)80022-0. PMID  7612265. S2CID  12525700.
  15. ^ Jin W (enero de 2020). "Funciones de la señalización de TrkC en la regulación de la tumorigenicidad y metástasis del cáncer". Cánceres . 12 (1): 147. doi : 10.3390/cánceres12010147 . PMC 7016819 . PMID  31936239. .
  16. ^ Saragovi HU, Galán A, Levin LA (31 de enero de 2019). "Neuroprotección: mecanismos pro-supervivencia y anti-neurotóxicos como estrategias terapéuticas en la neurodegeneración". Fronteras de la neurociencia celular . 13 (231): 231. doi : 10.3389/fncel.2019.00231 . PMC 6563757 . PMID  31244606. 
  17. ^ Kue CS, Kamkaew A, Voon SH, Kiew LV, Chung LY, Burgess K, Lee HB (noviembre de 2016). "La administración dirigida al receptor de tropomiosina quinasa C de un conjugado de ligando peptidomimético-fotosensibilizador induce respuestas inmunes antitumorales después de la terapia fotodinámica". Informes científicos . 6 (37209): 37209. Código bibliográfico : 2016NatSR...637209K. doi : 10.1038/srep37209 . PMC 5112560 . PMID  27853305. 
  18. ^ Pulciani S, Santos E, Lauver AV, Long LK, Aaronson SA, Barbacid M (diciembre de 1982). "Oncogenes en tumores humanos sólidos". Naturaleza . 300 (5892): 539–42. Código Bib :1982Natur.300..539P. doi :10.1038/300539a0. PMID  7144906. S2CID  30179526.
  19. ^ Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, et al. (octubre de 2015). "Una fusión oncogénica de NTRK en un paciente con sarcoma de tejidos blandos con respuesta al inhibidor de quinasa relacionado con tropomiosina LOXO-101". Descubrimiento del cáncer . 5 (10): 1049–57. doi :10.1158/2159-8290.CD-15-0443. PMC 4635026 . PMID  26216294. 
  20. ^ Jin W, Kim GM, Kim MS, Lim MH, Yun C, Jeong J, et al. (noviembre de 2010). "TrkC juega un papel esencial en el crecimiento y la metástasis de los tumores de mama". Carcinogénesis . 31 (11): 1939–47. doi :10.1093/carcin/bgq180. PMID  20802235.
  21. ^ Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, et al. (mayo de 2009). "Expresión e inhibición del receptor Trk en neuroblastomas". Investigación clínica del cáncer . 15 (10): 3244–50. doi :10.1158/1078-0432.ccr-08-1815. PMC 4238907 . PMID  19417027. 
  22. ^ Huong LD, Shin JA, Choi ES, Cho NP, Kim HM, Leem DH, Cho SD (julio de 2012). "El isotiocianato de β-fenetilo induce el receptor de muerte 5 para inducir la apoptosis en células cancerosas orales humanas a través de p38". Enfermedades Bucales . 18 (5): 513–9. doi :10.1111/j.1601-0825.2012.01905.x. PMID  22309674.
  23. ^ Grotzer MA, Janss AJ, Fung K, Biegel JA, Sutton LN, Rorke LB y otros. (Marzo de 2000). "La expresión de TrkC predice un buen resultado clínico en tumores cerebrales neuroectodérmicos primitivos". Revista de Oncología Clínica . 18 (5): 1027–35. doi :10.1200/jco.2000.18.5.1027. PMID  10694553.
  24. ^ Luo Y, Kaz AM, Kanngurn S, Welsch P, Morris SM, Wang J, et al. (11 de julio de 2013). "NTRK3 es un potencial gen supresor de tumores comúnmente inactivado por mecanismos epigenéticos en el cáncer colorrectal". PLOS Genética . 9 (7): e1003552. doi : 10.1371/journal.pgen.1003552 . PMC 3708790 . PMID  23874207. 
  25. ^ Behrouz Sharif S, Hashemzadeh S, Mousavi Ardehaie R, Eftekharsadat A, Ghojazadeh M, Mehrtash AH, et al. (Diciembre de 2016). "Detección de genes SEPT9 y NTRK3 metilados aberrantes en pacientes con cáncer colorrectal esporádico como posible biomarcador de diagnóstico". Cartas de Oncología . 12 (6): 5335–5343. doi :10.3892/ol.2016.5327. PMC 5228494 . PMID  28105243. 
  26. ^ Kuo IY, Chang JM, Jiang SS, Chen CH, Chang IS, Sheu BS y otros. (2014). "Biomarcadores de metilación de CpG de pronóstico identificados mediante matriz de metilación en pacientes con carcinoma de células escamosas de esófago". Revista Internacional de Ciencias Médicas . 11 (8): 779–87. doi :10.7150/ijms.7405. PMC 4057483 . PMID  24936140. 
  27. ^ Lee J, Park S, Jung HA, Sun JM, Lee SH, Ahn JS y col. (noviembre de 2020). "Evaluación de entrectinib como opción de tratamiento para el cáncer de pulmón de células no pequeñas". Opinión de expertos sobre farmacoterapia . 21 (16): 1935-1942. doi : 10.1080/14656566.2020.1798932. PMID  32736487. S2CID  220907958.
  28. ^ Marcus L, Donoghue M, Aungst S, Myers CE, Helms WS, Shen G, et al. (febrero de 2021). "Resumen de aprobación de la FDA: entrectinib para el tratamiento de tumores sólidos de fusión del gen NTRK". Investigación clínica del cáncer . 27 (4): 928–932. doi : 10.1158/1078-0432.CCR-20-2771 . PMID  32967940. S2CID  221886243.
  29. ^ Coles CH, Mitakidis N, Zhang P, Elegheert J, Lu W, Stoker AW y col. (noviembre de 2014). "Base estructural de la competencia de señales RPTPσ cis y trans extracelular en la sinaptogénesis". Comunicaciones de la naturaleza . 5 (5209): 5209. Código bibliográfico : 2014NatCo...5.5209C. doi : 10.1038/ncomms6209 . PMC 4239663 . PMID  25385546. 
  30. ^ Lamballe, L; Klein, R; Barbecid, M (6 de septiembre de 1991). "TrkC, un nuevo miembro de la familia TrkC de tirosina proteína quinasas, es un receptor de neurotrofina-3". Celúla . 66 (5): 967–979. doi :10.1016/0092-8674(91)90442-2. PMID  1653651. S2CID  23448391.
  31. ^ Filón, J; Talvenheimo, J; Wen, J; Rosenfeld, R; Welcher, A; Arakawa, T (11 de noviembre de 1994). "Interacciones de la neurotrofina-3 (NT-3), el factor neurotrófico derivado del cerebro (BDNF) y el heterodímero NT-3. BDNF con los dominios extracelulares de los receptores TrkB y TrkC". Revista de Química Biológica . 269 ​​(45): 27840–27846. doi : 10.1016/S0021-9258(18)46863-9 . PMID  7961713.
  32. ^ Tsoulfas P, Stephens RM, Kaplan DR, Parada LF (marzo de 1996). "Las isoformas de TrkC con inserciones en el dominio quinasa muestran respuestas de señalización deterioradas". La Revista de Química Biológica . 271 (10): 5691–7. doi : 10.1074/jbc.271.10.5691 . PMID  8621434.
  33. ^ Huang EJ, Reichardt LF (marzo de 2001). "Neurotrofinas: funciones en el desarrollo y función neuronal". Revista Anual de Neurociencia . 24 : 677–736. doi :10.1146/annurev.neuro.24.1.677. PMC 2758233 . PMID  11520916. 
  34. ^ Werner P, Paluru P, Simpson AM, Latney B, Iyer R, Brodeur GM, Goldmuntz E (diciembre de 2014). "Las mutaciones en NTRK3 sugieren una nueva vía de señalización en la cardiopatía congénita humana". Mutación humana . 35 (12): 1459–68. doi :10.1002/humu.22688. PMC 4247247 . PMID  25196463. 
  35. ^ Jin W, Yun C, Kwak MK, Kim TA, Kim SJ (diciembre de 2007). "TrkC se une al receptor de TGF-beta tipo II para suprimir la señalización de TGF-beta". Oncogén . 26 (55): 7684–91. doi : 10.1038/sj.onc.1210571. PMID  17546043. S2CID  44016529.
  36. ^ Shi L, Yue J, You Y, Yin B, Gong Y, Xu C, et al. (noviembre de 2006). "Dok5 es sustrato de los receptores TrkB y TrkC y participa en la activación de MAPK inducida por neurotrofinas". Señalización Celular . 18 (11): 1995–2003. doi :10.1016/j.cellsig.2006.03.007. PMID  16647839.
  37. ^ Jin W, Yun C, Kim HS, Kim SJ (octubre de 2007). "TrkC se une al receptor de proteína morfogenética ósea tipo II para suprimir la señalización de la proteína morfogenética ósea". Investigación sobre el cáncer . 67 (20): 9869–77. doi : 10.1158/0008-5472.CAN-07-0436 . PMID  17942918.
  38. ^ Marsh HN, Palfrey HC (septiembre de 1996). "La neurotrofina-3 y el factor neurotrófico derivado del cerebro activan múltiples eventos de transducción de señales, pero no son factores de supervivencia para las neuronas piramidales del hipocampo". Revista de neuroquímica . 67 (3): 952–63. doi :10.1046/j.1471-4159.1996.67030952.x. PMID  8752100.
  39. ^ Yuen EC, Mobley WC (septiembre de 1999). "Eventos de señalización tempranos de BDNF, NT-3 y NT-4". Neurología Experimental . 159 (1): 297–308. doi :10.1006/exnr.1999.7148. PMID  10486198. S2CID  31007329.
  40. ^ Zaccaro MC, Lee HB, Pattarawarapan M, Xia Z, Caron A, L'Heureux PJ y col. (Septiembre de 2005). "Los ligandos peptidomiméticos selectivos de molécula pequeña de los receptores TrkC y TrkA proporcionan actividades neurotróficas discretas o completas". Química y Biología . 12 (9): 1015–28. doi : 10.1016/j.chembiol.2005.06.015 . PMID  16183026.
  41. ^ Brahimi F, Malakhov A, Lee HB, Pattarawarapan M, Ivanisevic L, Burgess K, Saragovi HU (octubre de 2009). "Un peptidomimético de NT-3 actúa como antagonista de TrkC". Péptidos . 30 (10): 1833–9. doi :10.1016/j.peptides.2009.07.015. PMC 2755609 . PMID  19647025. 

Otras lecturas