stringtranslate.com

Constante de Planck

La constante de Planck , o constante de Planck , denotada por , [1] es una constante física fundamental [1] de importancia fundamental en la mecánica cuántica : la energía de un fotón es igual a su frecuencia multiplicada por la constante de Planck, y la longitud de onda de una onda de materia es igual a la constante de Planck dividida por el momento de la partícula asociada. La constante de Planck reducida estrechamente relacionada , igual a y denotada por , se usa comúnmente en ecuaciones de física cuántica.

La constante fue postulada por Max Planck en 1900 como una constante de proporcionalidad necesaria para explicar la radiación experimental del cuerpo negro . [2] Planck se refirió más tarde a la constante como el "cuanto de acción ". [3] En 1905, Albert Einstein asoció el "cuanto" o elemento mínimo de la energía a la propia onda electromagnética. Max Planck recibió el Premio Nobel de Física de 1918 "en reconocimiento a los servicios que prestó al avance de la Física con su descubrimiento de los cuantos de energía".

En metrología , la constante de Planck se utiliza, junto con otras constantes, para definir el kilogramo , la unidad de masa del SI. [4] Las unidades del SI se definen de tal manera que, cuando la constante de Planck se expresa en unidades del SI, tiene el valor exacto =6.626 070 15 × 10 −34  J⋅Hz −1 . [5] [6]

Historia

Origen de la constante

Placa en la Universidad Humboldt de Berlín : "En este edificio enseñó Max Planck, el descubridor del cuanto elemental de acción h , de 1889 a 1928".
Intensidad de la luz emitida por un cuerpo negro . Cada curva representa el comportamiento a diferentes temperaturas corporales. La constante de Planck h se utiliza para explicar la forma de estas curvas.

La constante de Planck fue formulada como parte del exitoso esfuerzo de Max Planck por producir una expresión matemática que predijera con precisión la distribución espectral observada de la radiación térmica de un horno cerrado ( radiación de cuerpo negro ). [7] Esta expresión matemática ahora se conoce como la ley de Planck.

En los últimos años del siglo XIX, Max Planck estaba investigando el problema de la radiación del cuerpo negro planteado por primera vez por Kirchhoff unos 40 años antes. Todo cuerpo físico emite radiación electromagnética de forma espontánea y continua . No había expresión o explicación para la forma general del espectro de emisión observado. En ese momento, la ley de Wien se ajustaba a los datos para longitudes de onda cortas y altas temperaturas, pero fallaba para longitudes de onda largas. [7] : 141  También en esta época, pero sin que Planck lo supiera, Lord Rayleigh había derivado teóricamente una fórmula, ahora conocida como la ley de Rayleigh-Jeans , que podía predecir razonablemente longitudes de onda largas pero fallaba dramáticamente en longitudes de onda cortas.

Al abordar este problema, Planck planteó la hipótesis de que las ecuaciones de movimiento de la luz describen un conjunto de osciladores armónicos , uno para cada frecuencia posible. Examinó cómo variaba la entropía de los osciladores con la temperatura del cuerpo, tratando de cumplir con la ley de Wien, y pudo derivar una función matemática aproximada para el espectro del cuerpo negro, [2] que proporcionó una fórmula empírica simple para longitudes de onda largas.

Planck intentó encontrar una expresión matemática que pudiera reproducir la ley de Wien (para longitudes de onda cortas) y la fórmula empírica (para longitudes de onda largas). Esta expresión incluía una constante, , que se cree que es para Hilfsgrösse (variable auxiliar), [8] y posteriormente se la conoció como la constante de Planck. La expresión formulada por Planck mostró que la radiancia espectral por unidad de frecuencia de un cuerpo para la frecuencia ν a la temperatura absoluta T está dada por

,

donde es la constante de Boltzmann , es la constante de Planck, y es la velocidad de la luz en el medio, ya sea material o vacío. [9] [10] [11]

La radiancia espectral de un cuerpo, , describe la cantidad de energía que emite a diferentes frecuencias de radiación. Es la potencia emitida por unidad de área del cuerpo, por unidad de ángulo sólido de emisión, por unidad de frecuencia. La radiancia espectral también se puede expresar por unidad de longitud de onda en lugar de por unidad de frecuencia. Sustituyendo en la relación anterior obtenemos

,

mostrando cómo la energía radiada emitida en longitudes de onda más cortas aumenta más rápidamente con la temperatura que la energía emitida en longitudes de onda más largas. [12]

La ley de Planck también puede expresarse en otros términos, como el número de fotones emitidos a una determinada longitud de onda o la densidad de energía en un volumen de radiación. La unidad del SI de es W · sr −1 · m −2 · Hz −1 , mientras que la de es W·sr −1 ·m −3 .

Planck pronto se dio cuenta de que su solución no era única. Había varias soluciones diferentes, cada una de las cuales daba un valor diferente para la entropía de los osciladores. [2] Para salvar su teoría, Planck recurrió a la teoría de la mecánica estadística , entonces controvertida , [2] que describió como "un acto de desesperación". [13] Una de sus nuevas condiciones de contorno era

interpretar U N [ la energía vibracional de los osciladores N ] no como una cantidad continua, infinitamente divisible, sino como una cantidad discreta compuesta de un número entero de partes iguales finitas. Llamemos a cada una de esas partes el elemento de energía ε ;

—  Planck, "Sobre la ley de distribución de energía en el espectro normal" [2]

Con esta nueva condición, Planck había impuesto la cuantificación de la energía de los osciladores, "una suposición puramente formal... en realidad no pensé mucho en ello...", según sus propias palabras, [14] pero que revolucionaría la física. La aplicación de este nuevo enfoque a la ley de desplazamiento de Wien demostró que el "elemento de energía" debe ser proporcional a la frecuencia del oscilador, la primera versión de lo que ahora se denomina a veces " relación de Planck-Einstein ":

Planck fue capaz de calcular el valor de a partir de datos experimentales sobre la radiación del cuerpo negro: su resultado,6,55 × 10 −34  J⋅s , está dentro del 1,2% del valor definido actualmente. [2] También hizo la primera determinación de la constante de Boltzmann a partir de los mismos datos y teoría. [15]

Las curvas de Planck observadas a diferentes temperaturas y la divergencia de la curva teórica de Rayleigh-Jeans (negra) de la curva de Planck observada a 5000 K.

Desarrollo y aplicación

El problema del cuerpo negro fue retomado en 1905, cuando Lord Rayleigh y James Jeans (juntos) y Albert Einstein demostraron de forma independiente que el electromagnetismo clásico nunca podría explicar el espectro observado. Estas pruebas se conocen comúnmente como la " catástrofe ultravioleta ", un nombre acuñado por Paul Ehrenfest en 1911. Contribuyeron en gran medida (junto con el trabajo de Einstein sobre el efecto fotoeléctrico ) a convencer a los físicos de que el postulado de Planck de niveles de energía cuantizados era más que un mero formalismo matemático. La primera Conferencia Solvay en 1911 se dedicó a "la teoría de la radiación y los cuantos". [16]

Efecto fotoeléctrico

El efecto fotoeléctrico es la emisión de electrones (llamados "fotoelectrones") desde una superficie cuando se proyecta luz sobre ella. Fue observado por primera vez por Alexandre Edmond Becquerel en 1839, aunque el crédito generalmente se reserva para Heinrich Hertz , [17] quien publicó la primera investigación exhaustiva en 1887. Otra investigación particularmente exhaustiva fue publicada por Philipp Lenard (Lénárd Fülöp) en 1902. [18] El artículo de 1905 de Einstein [19] que analiza el efecto en términos de cuantos de luz le valdría el Premio Nobel en 1921, [17] después de que sus predicciones hubieran sido confirmadas por el trabajo experimental de Robert Andrews Millikan . [20] El comité Nobel le otorgó el premio por su trabajo sobre el efecto fotoeléctrico, en lugar de la relatividad, tanto por un sesgo contra la física puramente teórica no basada en descubrimientos o experimentos, como por el disenso entre sus miembros en cuanto a la prueba real de que la relatividad era real. [21] [22]

Antes del artículo de Einstein, se consideraba que la radiación electromagnética, como la luz visible, se comportaba como una onda: de ahí el uso de los términos "frecuencia" y "longitud de onda" para caracterizar los diferentes tipos de radiación. La energía transferida por una onda en un tiempo determinado se llama intensidad . La luz de un foco de teatro es más intensa que la luz de una bombilla doméstica; es decir, el foco emite más energía por unidad de tiempo y por unidad de espacio (y, por lo tanto, consume más electricidad) que la bombilla común, aunque el color de la luz pueda ser muy similar. Otras ondas, como el sonido o las olas que se estrellan contra el paseo marítimo, también tienen su intensidad. Sin embargo, la explicación energética del efecto fotoeléctrico no parecía concordar con la descripción ondulatoria de la luz.

Los "fotoelectrones" emitidos como resultado del efecto fotoeléctrico tienen una cierta energía cinética , que se puede medir. Esta energía cinética (para cada fotoelectrón) es independiente de la intensidad de la luz, [18] pero depende linealmente de la frecuencia; [20] y si la frecuencia es demasiado baja (correspondiente a una energía del fotón que es menor que la función de trabajo del material), no se emiten fotoelectrones en absoluto, a menos que una pluralidad de fotones, cuya suma energética sea mayor que la energía de los fotoelectrones, actúe virtualmente simultáneamente (efecto multifotón). [23] Suponiendo que la frecuencia es lo suficientemente alta como para causar el efecto fotoeléctrico, un aumento en la intensidad de la fuente de luz hace que se emitan más fotoelectrones con la misma energía cinética, en lugar de que se emita el mismo número de fotoelectrones con mayor energía cinética. [18]

La explicación de Einstein para estas observaciones fue que la luz misma está cuantizada; que la energía de la luz no se transfiere de forma continua como en una onda clásica, sino solo en pequeños "paquetes" o cuantos. El tamaño de estos "paquetes" de energía, que más tarde se denominarían fotones , debía ser el mismo que el "elemento de energía" de Planck, lo que dio lugar a la versión moderna de la relación de Planck-Einstein:

El postulado de Einstein fue posteriormente demostrado experimentalmente: se demostró que la constante de proporcionalidad entre la frecuencia de la luz incidente y la energía cinética de los fotoelectrones era igual a la constante de Planck . [20]

Estructura atómica

Esquematización del modelo de Bohr del átomo de hidrógeno. La transición que se muestra del nivel n = 3 al nivel n = 2 da lugar a luz visible de longitud de onda 656 nm (roja), tal como predice el modelo.

En 1912, John William Nicholson desarrolló [24] un modelo atómico y descubrió que el momento angular de los electrones en el modelo estaba relacionado por h /2 π . [25] [26] El modelo atómico cuántico nuclear de Nicholson influyó en el desarrollo del modelo atómico de Niels Bohr [27] [28] [26] y Bohr lo citó en su artículo de 1913 sobre el modelo atómico de Bohr. [29] El modelo de Bohr fue más allá del concepto abstracto de oscilador armónico de Planck: un electrón en un átomo de Bohr solo podía tener ciertas energías definidas.

donde es la velocidad de la luz en el vacío, es una constante determinada experimentalmente (la constante de Rydberg ) y . Este enfoque también le permitió a Bohr explicar la fórmula de Rydberg , una descripción empírica del espectro atómico del hidrógeno, y explicar el valor de la constante de Rydberg en términos de otras constantes fundamentales. Al discutir el momento angular de los electrones en su modelo, Bohr introdujo la cantidad , ahora conocida como la constante de Planck reducida como el cuanto de momento angular . [29]

Principio de incertidumbre

La constante de Planck también aparece en los enunciados del principio de incertidumbre de Werner Heisenberg . Dadas numerosas partículas preparadas en el mismo estado, la incertidumbre en su posición, , y la incertidumbre en su momento, , obedecen

donde la incertidumbre se da como la desviación estándar del valor medido respecto de su valor esperado . Existen otros pares de variables conjugadas medibles físicamente que obedecen a una regla similar. Un ejemplo es el tiempo frente a la energía. La relación inversa entre la incertidumbre de las dos variables conjugadas obliga a un equilibrio en los experimentos cuánticos, ya que medir una cantidad con mayor precisión da como resultado que la otra cantidad se vuelva imprecisa.

Además de algunas suposiciones que fundamentan la interpretación de ciertos valores en la formulación mecánica cuántica, uno de los pilares fundamentales de toda la teoría reside en la relación de conmutación entre el operador de posición y el operador de momento :

¿Dónde está el delta de Kronecker ?

Energía fotónica

La relación de Planck conecta la energía particular del fotón E con su frecuencia de onda asociada f :

Esta energía es extremadamente pequeña en términos de los objetos cotidianos percibidos normalmente.

Since the frequency f, wavelength λ, and speed of light c are related by , the relation can also be expressed as

de Broglie wavelength

In 1923, Louis de Broglie generalized the Planck–Einstein relation by postulating that the Planck constant represents the proportionality between the momentum and the quantum wavelength of not just the photon, but the quantum wavelength of any particle. This was confirmed by experiments soon afterward. This holds throughout the quantum theory, including electrodynamics. The de Broglie wavelength λ of the particle is given by

where p denotes the linear momentum of a particle, such as a photon, or any other elementary particle.

The energy of a photon with angular frequency ω = 2πf is given by

while its linear momentum relates to

where k is an angular wavenumber.

These two relations are the temporal and spatial parts of the special relativistic expression using 4-vectors.

Statistical mechanics

Classical statistical mechanics requires the existence of h (but does not define its value).[30] Eventually, following upon Planck's discovery, it was speculated that physical action could not take on an arbitrary value, but instead was restricted to integer multiples of a very small quantity, the "[elementary] quantum of action", now called the Planck constant.[31] This was a significant conceptual part of the so-called "old quantum theory" developed by physicists including Bohr, Sommerfeld, and Ishiwara, in which particle trajectories exist but are hidden, but quantum laws constrain them based on their action. This view has been replaced by fully modern quantum theory, in which definite trajectories of motion do not even exist; rather, the particle is represented by a wavefunction spread out in space and in time.[32]: 373 Related to this is the concept of energy quantization which existed in old quantum theory and also exists in altered form in modern quantum physics. Classical physics cannot explain quantization of energy.

Dimension and value

The Planck constant has the same dimensions as action and as angular momentum. In SI units, the Planck constant is expressed with the unit joule per hertz (J⋅Hz−1) or joule-second (J⋅s).

= 6.62607015×10−34 J⋅Hz−1[5]
= 1.054571817...×10−34 J⋅s[33] = 6.582119569...×10−16 eV⋅s.[34]

The above values have been adopted as fixed in the 2019 revision of the SI.

Since 2019, the numerical value of the Planck constant has been fixed, with a finite decimal representation. This fixed value is used to define the SI unit of mass, the kilogram: "the kilogram [...] is defined by taking the fixed numerical value of h to be 6.62607015×10−34 when expressed in the unit J⋅s, which is equal to kg⋅m2⋅s−1, where the metre and the second are defined in terms of speed of light c and duration of hyperfine transition of the ground state of an unperturbed caesium-133 atom ΔνCs."[35] Technologies of mass metrology such as the Kibble balance measure refine the value of kilogram applying fixed value of the Planck constant.

Significance of the value

The Planck constant is one of the smallest constants used in physics. This reflects the fact that on a scale adapted to humans, where energies are typical of the order of kilojoules and times are typical of the order of seconds or minutes, the Planck constant is very small. When the product of energy and time for a physical event approaches the Planck constant, quantum effects dominate.[36]

Equivalently, the order of the Planck constant reflects the fact that everyday objects and systems are made of a large number of microscopic particles. For example, in green light (with a wavelength of 555 nanometres or a frequency of 540 THz) each photon has an energy E = hf = 3.58×10−19 J. That is a very small amount of energy in terms of everyday experience, but everyday experience is not concerned with individual photons any more than with individual atoms or molecules. An amount of light more typical in everyday experience (though much larger than the smallest amount perceivable by the human eye) is the energy of one mole of photons; its energy can be computed by multiplying the photon energy by the Avogadro constant, NA = 6.02214076×1023 mol−1[37], with the result of 216 kJ, about the food energy in three apples.[citation needed]

Reduced Planck constant

Many equations in quantum physics are customarily written using the reduced Planck constant, [38]: 104 equal to and denoted (pronounced h-bar[39]: 336 ).[40]

The fundamental equations look simpler when written using as opposed to , and it is usually rather than that gives the most reliable results when used in order-of-magnitude estimates. For example, using dimensional analysis to estimate the ionization energy of a hydrogen atom, the relevant parameters that determine the ionization energy are the mass of the electron , the electron charge , and either the Planck constant or the reduced Planck constant :Since both constants have the same dimensions, they will enter the dimensional analysis in the same way, but with the estimate is within a factor of two, while with the error is closer to .[41]: 8–9 

Names and symbols

The reduced Planck constant is known by many other names: reduced Planck's constant[42]: 5  [43]: 788 ), the rationalized Planck constant[44]: 726  [45]: 10  [46]: -  (or rationalized Planck's constant[47]: 334  [48]: ix  ,[49]: 112  the Dirac constant[50]: 275  [44]: 726  [51]: xv  (or Dirac's constant[52]: 148  [53]: 604  [54]: 313 ), the Dirac [55][56]: xviii  (or Dirac's [57]: 17  ), the Dirac [58]: 187  (or Dirac's [59]: 273  [60]: 14  ), and h-bar.[61]: 558 [62]: 561  It is also common to refer to this as "Planck's constant"[63]: 55  [a] while retaining the relationship .

By far the most common symbol for the reduced Planck constant is . However, there are some sources that denote it by instead, in which case they usually refer to it as the "Dirac "[89]: 43  [90] (or "Dirac's "[91]: 21 ).

History

The combination appeared in Niels Bohr's 1913 paper,[92]: 15  where it was denoted by .[26]: 169 [b] For the next 15 years, the combination continued to appear in the literature, but normally without a separate symbol.[93]: 180 [c] Then, in 1926, in their seminal papers, Schrödinger and Dirac again introduced special symbols for it: in the case of Schrödinger,[105] and in the case of Dirac.[106] Dirac continued to use in this way until 1930,[107]: 291  when he introduced the symbol in his book The Principles of Quantum Mechanics.[107]: 291  [108]

See also

Notes

  1. ^ Notable examples of such usage include Landau and Lifshitz[64]: 20  and Griffiths,[65]: 3  but there are many others, e.g.[66][67]: 449  [68]: 284  [69]: 3  [70]: 365  [71]: 14  [72]: 18  [73]: 4  [74]: 138  [75]: 251  [76]: 1  [77]: 622  [78]: xx  [79]: 20  [80]: 4  [81]: 36  [82]: 41  [83]: 199  [84]: 846  [85][86][87]: 25  [88]: 653 
  2. ^ Bohr denoted by the angular momentum of the electron around the nucleus, and wrote the quantization condition as , where is a positive integer. (See the Bohr model.)
  3. ^ Here are some papers that are mentioned in[93] and in which appeared without a separate symbol: [94]: 428  [95]: 549  [96]: 508  [97]: 230  [98]: 458  [99][100]: 276  [101][102][103].[104]

References

Citations

  1. ^ a b "Planck constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Archived from the original on 2022-05-27. Retrieved 2023-09-03.
  2. ^ a b c d e f Planck, Max (1901), "Ueber das Gesetz der Energieverteilung im Normalspectrum" (PDF), Ann. Phys., 309 (3): 553–63, Bibcode:1901AnP...309..553P, doi:10.1002/andp.19013090310, archived (PDF) from the original on 2012-06-10, retrieved 2008-12-15. English translation: "On the Law of Distribution of Energy in the Normal Spectrum". Archived from the original on 2008-04-18.". "On the Law of Distribution of Energy in the Normal Spectrum" (PDF). Archived from the original (PDF) on 2011-10-06. Retrieved 2011-10-13.
  3. ^ "Max Planck Nobel Lecture". Archived from the original on 2023-07-14. Retrieved 2023-07-14.
  4. ^ The International System of Units (PDF) (9th ed.), International Bureau of Weights and Measures, Dec 2022, p. 131, ISBN 978-92-822-2272-0
  5. ^ a b "2022 CODATA Value: Planck constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  6. ^ "Resolutions of the 26th CGPM" (PDF). BIPM. 2018-11-16. Archived from the original (PDF) on 2018-11-19. Retrieved 2018-11-20.
  7. ^ a b Bitter, Francis; Medicus, Heinrich A. (1973). Fields and particles. New York: Elsevier. pp. 137–144.
  8. ^ Boya, Luis J. (2004). "The Thermal Radiation Formula of Planck (1900)". arXiv:physics/0402064v1.
  9. ^ Planck, M. (1914). The Theory of Heat Radiation. Masius, M. (transl.) (2nd ed.). P. Blakiston's Son. pp. 6, 168. OL 7154661M.
  10. ^ Chandrasekhar, S. (1960) [1950]. Radiative Transfer (Revised reprint ed.). Dover. p. 8. ISBN 978-0-486-60590-6.
  11. ^ Rybicki, G. B.; Lightman, A. P. (1979). Radiative Processes in Astrophysics. Wiley. p. 22. ISBN 978-0-471-82759-7. Archived from the original on 2020-07-27. Retrieved 2020-05-20.
  12. ^ Shao, Gaofeng; et al. (2019). "Improved oxidation resistance of high emissivity coatings on fibrous ceramic for reusable space systems". Corrosion Science. 146: 233–246. arXiv:1902.03943. Bibcode:2019Corro.146..233S. doi:10.1016/j.corsci.2018.11.006. S2CID 118927116.
  13. ^ Kragh, Helge (1 December 2000), Max Planck: the reluctant revolutionary, PhysicsWorld.com, archived from the original on 2009-01-08
  14. ^ Kragh, Helge (1999), Quantum Generations: A History of Physics in the Twentieth Century, Princeton University Press, p. 62, ISBN 978-0-691-09552-3, archived from the original on 2021-12-06, retrieved 2021-10-31
  15. ^ Planck, Max (2 June 1920), The Genesis and Present State of Development of the Quantum Theory (Nobel Lecture), archived from the original on 15 July 2011, retrieved 13 December 2008
  16. ^ Previous Solvay Conferences on Physics, International Solvay Institutes, archived from the original on 16 December 2008, retrieved 12 December 2008
  17. ^ a b See, e.g., Arrhenius, Svante (10 December 1922), Presentation speech of the 1921 Nobel Prize for Physics, archived from the original on 4 September 2011, retrieved 13 December 2008
  18. ^ a b c Lenard, P. (1902), "Ueber die lichtelektrische Wirkung", Annalen der Physik, 313 (5): 149–98, Bibcode:1902AnP...313..149L, doi:10.1002/andp.19023130510, archived from the original on 2019-08-18, retrieved 2019-07-03
  19. ^ Einstein, Albert (1905), "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" (PDF), Annalen der Physik, 17 (6): 132–48, Bibcode:1905AnP...322..132E, doi:10.1002/andp.19053220607, archived (PDF) from the original on 2011-07-09, retrieved 2009-12-03
  20. ^ a b c Millikan, R. A. (1916), "A Direct Photoelectric Determination of Planck's h", Physical Review, 7 (3): 355–88, Bibcode:1916PhRv....7..355M, doi:10.1103/PhysRev.7.355
  21. ^ Isaacson, Walter (2007-04-10), Einstein: His Life and Universe, Simon and Schuster, ISBN 978-1-4165-3932-2, archived from the original on 2020-01-09, retrieved 2021-10-31, pp. 309–314.
  22. ^ "The Nobel Prize in Physics 1921". Nobelprize.org. Archived from the original on 2018-07-03. Retrieved 2014-04-23.
  23. ^ *Smith, Richard (1962). "Two Photon Photoelectric Effect". Physical Review. 128 (5): 2225. Bibcode:1962PhRv..128.2225S. doi:10.1103/PhysRev.128.2225.
    • Smith, Richard (1963). "Two-Photon Photoelectric Effect". Physical Review. 130 (6): 2599. Bibcode:1963PhRv..130.2599S. doi:10.1103/PhysRev.130.2599.4.
  24. ^
    • Nicholson, J. W. (1912). "The Constitution of the Solar Corona II". Monthly Notices of the Royal Astronomical Society. 72 (8): 677–693. doi:10.1093/mnras/72.8.677.
  25. ^ Heilbron, John L. (2013). "The path to the quantum atom". Nature. 498 (7452): 27–30. doi:10.1038/498027a. PMID 23739408. S2CID 4355108.
  26. ^ a b c McCormmach, Russell (1966). "The Atomic Theory of John William Nicholson". Archive for History of Exact Sciences. 3 (2): 160–184. doi:10.1007/BF00357268. JSTOR 41133258. S2CID 120797894.
  27. ^ Hirosige, Tetu; Nisio, Sigeko (1964). "Formation of Bohr's theory of atomic constitution". Japanese Studies in History of Science. 3: 6–28.
  28. ^ J. L. Heilbron, A History of Atomic Models from the Discovery of the Electron to the Beginnings of Quantum Mechanics, diss. (University of California, Berkeley, 1964).
  29. ^ a b Bohr, N. (1913). "On the constitution of atoms and molecules". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 6th series. 26 (151): 1–25. Bibcode:1913PMag...26..476B. doi:10.1080/14786441308634955. Archived from the original on 2023-03-07. Retrieved 2023-07-23.
  30. ^ Giuseppe Morandi; F. Napoli; E. Ercolessi (2001), Statistical mechanics: an intermediate course, World Scientific, p. 84, ISBN 978-981-02-4477-4, archived from the original on 2021-12-06, retrieved 2021-10-31
  31. ^ ter Haar, D. (1967). The Old Quantum Theory. Pergamon Press. p. 133. ISBN 978-0-08-012101-7.
  32. ^ Einstein, Albert (2003), "Physics and Reality" (PDF), Daedalus, 132 (4): 24, doi:10.1162/001152603771338742, S2CID 57559543, archived from the original (PDF) on 2012-04-15, The question is first: How can one assign a discrete succession of energy values Hσ to a system specified in the sense of classical mechanics (the energy function is a given function of the coordinates qr and the corresponding momenta pr)? The Planck constant h relates the frequency Hσ/h to the energy values Hσ. It is therefore sufficient to give to the system a succession of discrete frequency values.
  33. ^ "2022 CODATA Value: reduced Planck constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  34. ^ "CODATA Value: reduced Planck constant in eV s". physics.nist.gov.
  35. ^ The International System of Units (PDF) (9th ed.), International Bureau of Weights and Measures, Dec 2022, ISBN 978-92-822-2272-0
  36. ^ "The Feynman Lectures on Physics Vol. II Ch. 19: The Principle of Least Action". www.feynmanlectures.caltech.edu. Retrieved 2023-11-03.
  37. ^ "2022 CODATA Value: Avogadro constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  38. ^ Schwarz, Patricia M.; Schwarz, John H. (25 March 2004). Special Relativity: From Einstein to Strings. Cambridge University Press. ISBN 978-1-139-44950-2.
  39. ^ Chabay, Ruth W.; Sherwood, Bruce A. (20 November 2017). Matter and Interactions. John Wiley & Sons. ISBN 978-1-119-45575-2.
  40. ^ "reduced Planck constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Archived from the original on 2023-04-08. Retrieved 2023-09-03.
  41. ^ Lévy-Leblond, Jean-Marc (2002). "The meanings of Planck's constant" (PDF). In Beltrametti, E.; Rimini, A.; Robotti, Nadia (eds.). One Hundred Years of H: Pavia, 14-16 September 2000. Italian Physical Society. ISBN 978-88-7438-003-9. Archived from the original (PDF) on 2023-10-14.
  42. ^ Huang, Kerson (26 April 2010). Quantum Field Theory: From Operators to Path Integrals. John Wiley & Sons. ISBN 978-3-527-40846-7.
  43. ^ Schmitz, Kenneth S. (11 November 2016). Physical Chemistry: Concepts and Theory. Elsevier. ISBN 978-0-12-800600-9.
  44. ^ a b Rennie, Richard; Law, Jonathan, eds. (2017). "Planck constant". A Dictionary of Physics. Oxford Quick Reference (7th ed.). Oxford, UK: OUP Oxford. ISBN 978-0198821472.
  45. ^ The International Encyclopedia of Physical Chemistry and Chemical Physics. Pergamon Press. 1960.
  46. ^ Vértes, Attila; Nagy, Sándor; Klencsár, Zoltán; Lovas, Rezso György; Rösch, Frank (10 December 2010). Handbook of Nuclear Chemistry. Springer Science & Business Media. ISBN 978-1-4419-0719-6.
  47. ^ Bethe, Hans A.; Salpeter, Edwin E. (1957). "Quantum Mechanics of One- and Two-Electron Atoms". In Flügge, Siegfried (ed.). Handbuch der Physik: Atome I-II. Springer.
  48. ^ Lang, Kenneth (11 November 2013). Astrophysical Formulae: A Compendium for the Physicist and Astrophysicist. Springer Science & Business Media. ISBN 978-3-662-11188-8.
  49. ^ Galgani, L.; Carati, A.; Pozzi, B. (December 2002). "The Problem of the Rate of Thermalization, and the Relations between Classical and Quantum Mechanics". In Fabrizio, Mauro; Morro, Angelo (eds.). Mathematical Models and Methods for Smart Materials, Cortona, Italy, 25 – 29 June 2001. pp. 111–122. doi:10.1142/9789812776273_0011. ISBN 978-981-238-235-1.
  50. ^ Fox, Mark (14 June 2018). A Student's Guide to Atomic Physics. Cambridge University Press. ISBN 978-1-316-99309-5.
  51. ^ Kleiss, Ronald (10 June 2021). Quantum Field Theory: A Diagrammatic Approach. Cambridge University Press. ISBN 978-1-108-78750-5.
  52. ^ Zohuri, Bahman (5 January 2021). Thermal Effects of High Power Laser Energy on Materials. Springer Nature. ISBN 978-3-030-63064-5.
  53. ^ Balian, Roger (26 June 2007). From Microphysics to Macrophysics: Methods and Applications of Statistical Physics. Volume II. Springer Science & Business Media. ISBN 978-3-540-45480-9.
  54. ^ Chen, C. Julian (15 August 2011). Physics of Solar Energy. John Wiley & Sons. ISBN 978-1-118-04459-9.
  55. ^ "Dirac h". Britannica. Archived from the original on 2023-02-17. Retrieved 2023-09-27.
  56. ^ Shoenberg, D. (3 September 2009). Magnetic Oscillations in Metals. Cambridge University Press. ISBN 978-1-316-58317-3.
  57. ^ Powell, John L.; Crasemann, Bernd (5 May 2015). Quantum Mechanics. Courier Dover Publications. ISBN 978-0-486-80478-1.
  58. ^ Dresden, Max (6 December 2012). H.A. Kramers Between Tradition and Revolution. Springer Science & Business Media. ISBN 978-1-4612-4622-0.
  59. ^ Johnson, R. E. (6 December 2012). Introduction to Atomic and Molecular Collisions. Springer Science & Business Media. ISBN 978-1-4684-8448-9.
  60. ^ Garcia, Alejandro; Henley, Ernest M. (13 July 2007). Subatomic Physics (3rd ed.). World Scientific Publishing Company. ISBN 978-981-310-167-8.
  61. ^ Holbrow, Charles H.; Lloyd, James N.; Amato, Joseph C.; Galvez, Enrique; Parks, M. Elizabeth (14 September 2010). Modern Introductory Physics. New York: Springer Science & Business Media. ISBN 978-0-387-79080-0.
  62. ^ Polyanin, Andrei D.; Chernoutsan, Alexei (18 October 2010). A Concise Handbook of Mathematics, Physics, and Engineering Sciences. CRC Press. ISBN 978-1-4398-0640-1.
  63. ^ Dowling, Jonathan P. (24 August 2020). Schrödinger's Web: Race to Build the Quantum Internet. CRC Press. ISBN 978-1-000-08017-9.
  64. ^ Landau, L. D.; Lifshitz, E. M. (22 October 2013). Quantum Mechanics: Non-Relativistic Theory. Elsevier. ISBN 978-1-4831-4912-7.
  65. ^ Griffiths, David J.; Schroeter, Darrell F. (20 November 2019). Introduction to Quantum Mechanics. Cambridge University Press. ISBN 978-1-108-10314-5.
  66. ^ "Planck's constant". The Great Soviet Encyclopedia (1970–1979, 3rd ed.). The Gale Group.
  67. ^ Itzykson, Claude; Zuber, Jean-Bernard (20 September 2012). Quantum Field Theory. Courier Corporation. ISBN 978-0-486-13469-7.
  68. ^ Kaku, Michio (1993). Quantum Field Theory: A Modern Introduction. Oxford University Press. ISBN 978-0-19-507652-3.
  69. ^ Bogoli︠u︡bov, Nikolaĭ Nikolaevich; Shirkov, Dmitriĭ Vasilʹevich (1982). Quantum Fields. Benjamin/Cummings Publishing Company, Advanced Book Program/World Science Division. ISBN 978-0-8053-0983-6.
  70. ^ Aitchison, Ian J. R.; Hey, Anthony J. G. (17 December 2012). Gauge Theories in Particle Physics: A Practical Introduction: From Relativistic Quantum Mechanics to QED, Fourth Edition. CRC Press. ISBN 978-1-4665-1299-3.
  71. ^ de Wit, B.; Smith, J. (2 December 2012). Field Theory in Particle Physics, Volume 1. Elsevier. ISBN 978-0-444-59622-2.
  72. ^ Brown, Lowell S. (1992). Quantum Field Theory. Cambridge University Press. ISBN 978-0-521-46946-3.
  73. ^ Buchbinder, Iosif L.; Shapiro, Ilya (March 2021). Introduction to Quantum Field Theory with Applications to Quantum Gravity. Oxford University Press. ISBN 978-0-19-883831-9.
  74. ^ Jaffe, Arthur (25 March 2004). "9. Where does quantum field theory fit into the big picture?". In Cao, Tian Yu (ed.). Conceptual Foundations of Quantum Field Theory. Cambridge University Press. ISBN 978-0-521-60272-3.
  75. ^ Cabibbo, Nicola; Maiani, Luciano; Benhar, Omar (28 July 2017). An Introduction to Gauge Theories. CRC Press. ISBN 978-1-4987-3452-3.
  76. ^ Casalbuoni, Roberto (6 April 2017). Introduction To Quantum Field Theory (Second ed.). World Scientific Publishing Company. ISBN 978-981-314-668-6.
  77. ^ Das, Ashok (24 July 2020). Lectures On Quantum Field Theory (2nd ed.). World Scientific. ISBN 978-981-12-2088-3.
  78. ^ Desai, Bipin R. (2010). Quantum Mechanics with Basic Field Theory. Cambridge University Press. ISBN 978-0-521-87760-2.
  79. ^ Donoghue, John; Sorbo, Lorenzo (8 March 2022). A Prelude to Quantum Field Theory. Princeton University Press. ISBN 978-0-691-22348-3.
  80. ^ Folland, Gerald B. (3 February 2021). Quantum Field Theory: A Tourist Guide for Mathematicians. American Mathematical Soc. ISBN 978-1-4704-6483-7.
  81. ^ Fradkin, Eduardo (23 March 2021). Quantum Field Theory: An Integrated Approach. Princeton University Press. ISBN 978-0-691-14908-0.
  82. ^ Gelis, François (11 July 2019). Quantum Field Theory. Cambridge University Press. ISBN 978-1-108-48090-1.
  83. ^ Greiner, Walter; Reinhardt, Joachim (9 March 2013). Quantum Electrodynamics. Springer Science & Business Media. ISBN 978-3-662-05246-4.
  84. ^ Liboff, Richard L. (2003). Introductory Quantum Mechanics (4th ed.). San Francisco: Pearson Education. ISBN 978-81-317-0441-7.
  85. ^ Barut, A. O. (1 August 1978). "The Creation of a Photon: A Heuristic Calculation of Planck's Constant ħ or the Fine Structure Constant α". Zeitschrift für Naturforschung A. 33 (8): 993–994. Bibcode:1978ZNatA..33..993B. doi:10.1515/zna-1978-0819. S2CID 45829793.
  86. ^ Kocia, Lucas; Love, Peter (12 July 2018). "Measurement contextuality and Planck's constant". New Journal of Physics. 20 (7): 073020. arXiv:1711.08066. Bibcode:2018NJPh...20g3020K. doi:10.1088/1367-2630/aacef2. S2CID 73623448.
  87. ^ Humpherys, David (28 November 2022). "The Implicit Structure of Planck's Constant". European Journal of Applied Physics. 4 (6): 22–25. doi:10.24018/ejphysics.2022.4.6.227. S2CID 254359279.
  88. ^ Bais, F. Alexander; Farmer, J. Doyne (2008). "The Physics of Information". In Adriaans, Pieter; van Benthem, Johan (eds.). Philosophy of Information. Handbook of the Philosophy of Science. Vol. 8. Amsterdam: North-Holland. arXiv:0708.2837. ISBN 978-0-444-51726-5.
  89. ^ Hirota, E.; Sakakima, H.; Inomata, K. (9 March 2013). Giant Magneto-Resistance Devices. Springer Science & Business Media. ISBN 978-3-662-04777-4.
  90. ^ Gardner, John H. (1988). "An Invariance Theory". Encyclia. 65: 139.
  91. ^ Levine, Raphael D. (4 June 2009). Molecular Reaction Dynamics. Cambridge University Press. ISBN 978-1-139-44287-9.
  92. ^ Bohr, N. (July 1913). "I. On the constitution of atoms and molecules". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 26 (151): 1–25. Bibcode:1913PMag...26....1B. doi:10.1080/14786441308634955.
  93. ^ a b Mehra, Jagdish; Rechenberg, Helmut (3 August 1982). The Historical Development of Quantum Theory. Vol. 1. Springer New York. ISBN 978-0-387-90642-3.
  94. ^ Sommerfeld, A. (1915). "Zur Theorie der Balmerschen Serie" (PDF). Sitzungsberichte der mathematisch-physikalischen Klasse der K. B. Akademie der Wissenschaften zu München. 33 (198): 425–458. doi:10.1140/epjh/e2013-40053-8.
  95. ^ Schwarzschild, K. (1916). "Zur Quantenhypothese". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin: 548–568.
  96. ^ Ehrenfest, P. (June 1917). "XLVIII. Adiabatic invariants and the theory of quanta". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 33 (198): 500–513. doi:10.1080/14786440608635664.
  97. ^ Landé, A. (June 1919). "Das Serienspektrum des Heliums". Physikalische Zeitschrift. 20: 228–234.
  98. ^ Bohr, N. (October 1920). "Über die Serienspektra der Elemente". Zeitschrift für Physik. 2 (5): 423–469. Bibcode:1920ZPhy....2..423B. doi:10.1007/BF01329978.
  99. ^ Stern, Otto (December 1921). "Ein Weg zur experimentellen Prüfung der Richtungsquantelung im Magnetfeld". Zeitschrift für Physik. 7 (1): 249–253. Bibcode:1921ZPhy....7..249S. doi:10.1007/BF01332793.
  100. ^ Heisenberg, Werner (December 1922). "Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneflekte". Zeitschrift für Physik. 8 (1): 273–297. Bibcode:1922ZPhy....8..273H. doi:10.1007/BF01329602.
  101. ^ Kramers, H. A.; Pauli, W. (December 1923). "Zur Theorie der Bandenspektren". Zeitschrift für Physik. 13 (1): 351–367. Bibcode:1923ZPhy...13..351K. doi:10.1007/BF01328226.
  102. ^ Born, M.; Jordan, P. (December 1925). "Zur Quantenmechanik". Zeitschrift für Physik. 34 (1): 858–888. Bibcode:1925ZPhy...34..858B. doi:10.1007/BF01328531.
  103. ^ Dirac, P. A. M. (December 1925). "The fundamental equations of quantum mechanics". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 109 (752): 642–653. Bibcode:1925RSPSA.109..642D. doi:10.1098/rspa.1925.0150.
  104. ^ Born, M.; Heisenberg, W.; Jordan, P. (August 1926). "Zur Quantenmechanik. II". Zeitschrift für Physik. 35 (8–9): 557–615. Bibcode:1926ZPhy...35..557B. doi:10.1007/BF01379806.
  105. ^ Schrödinger, E. (1926). "Quantisierung als Eigenwertproblem". Annalen der Physik. 384 (4): 361–376. Bibcode:1926AnP...384..361S. doi:10.1002/andp.19263840404.
  106. ^ Dirac, P. A. M. (October 1926). "On the theory of quantum mechanics". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 112 (762): 661–677. Bibcode:1926RSPSA.112..661D. doi:10.1098/rspa.1926.0133.
  107. ^ a b Mehra, Jagdish; Rechenberg, Helmut (2000). The Historical Development of Quantum Theory. Vol. 6. New York: Springer.
  108. ^ Dirac, P. A. M. (1930). The Principles of Quantum Mechanics (1st ed.). Oxford, U.K.: Clarendon.

Sources

External links