Red de espín

El tiempo puede verse como algo que va en una dirección, por ejemplo, desde la parte inferior a la superior del diagrama, pero para las redes de espín cerradas la dirección del tiempo es irrelevante para los cálculos.Las reglas para calcular las normas y las probabilidades están fuera del alcance de este artículo.Supongamos que un vértice une tres unidades con números de espín a, b y c. Entonces, estos requisitos se establecen como: Por ejemplo, a = 3, b = 4, c = 6 es imposible ya que 3 + 4 + 6 = 13 es impar, y a = 3, b = 4, c = 9 es imposible ya que 9 > 3 + 4.Sin embargo, a = 3, b = 4, c = 5 es posible ya que 3 + 4 + 5 = 12 es par, y la desigualdad del triángulo se cumple.Una característica notable del funcional resultante es que es invariante bajo transformación de gauge local.Por lo tanto, el área bidimensional se "concentra" en las intersecciones con la red de espín.Sin embargo, sobre una variedad, se necesitan suposiciones como la invariancia bajo difeomorfismos para que la dualidad sea exacta (manchar los bucles de Wilson es complicado).Más tarde, fue generalizada por Robert Oeckl a representaciones de grupo cuántico en 2 y 3 dimensiones utilizando la dualidad Tannaka-Krein.Michael A. Levin y Xiao-Gang Wen también han definido redes de cuerdas utilizando categorías tensoriales que son objetos muy similares a las redes de espín.Sin embargo, la conexión exacta con las redes de espín aún no está clara.
Red de espín del tipo de las usadas en gravedad cuántica de lazos .
Gravedad cuántica, redes de espín.