Recientemente y gracias al desarrollo de la NASA y otras entidades, se ha comenzado también la producción de motores eléctricos para aeronaves que funcionen con energía solar fotovoltaica.La hélice debido a sus palas alabeadas, propulsaba la masa de aire circundante, arrastrando al aeroplano hacia adelante, produciendo el vuelo.En 1903, los hermanos Wright lograron realizar el sueño casi imposible de hacer volar un artefacto más denso que el aire.Debido a la rudimentaria tecnología de finales del siglo XIX, puede atribuirse en parte al desarrollo de los motores el que a comienzos del siglo XX el vuelo propulsado fuera posible.Por ejemplo, el motor que usó el Flyer III de los hermanos Wright hecho con la ayuda del mecánico Charles Taylor, fue un gran éxito debido a su excelente relación peso a potencia, ya que era un motor con un peso de 170 libras que producía una potencia de unos 12 CV a 1.025 RPM.Si el cigüeñal del motor está ubicado encima de los cilindros se le llama un motor en línea invertido, esta configuración permite que la hélice sea montada en una posición más alta, a una mayor distancia del suelo, permitiendo un tren de aterrizaje corto.Una de las desventajas de un motor en línea es que ofrece una relación potencia a peso inferior, debido a que el cárter y el cigüeñal son largos y por tanto más pesados.Sin embargo, las desventajas inherentes del diseño pronto se hicieron evidentes, y el diseño en línea fue abandonado a favor del motor en V, siendo una rareza en la aviación moderna.A principios de la Primera Guerra Mundial, cuando los aviones estaban siendo utilizados para fines militares por primera vez, se hizo evidente que los motores en línea existentes eran demasiado pesados para la cantidad de potencia que ofrecían.Eran motores muy poco fiables, debido a que funcionaban a máxima potencia todo el tiempo sin que pudiera controlarse el paso de gasolina (sólo se podían encender o apagar), sus componentes internos no estaban hechos para resistir varias horas de uso, tendían a sobrecalentarse por encima de 350 °C, temperatura a la cual varios componentes comienzan a fundirse y perforarse permitiendo fugas de aceite que se inflamaba inmediatamente, provocando el incendio del motor y de la aeronave, un hecho que cobró muchas vidas en la Primera Guerra Mundial, época en la cual no se contaba con paracaídas o trajes ignífugos.Cada fila tiene un número impar de cilindros para que el motor tenga un buen funcionamiento.De cuatro tiempos y refrigerados por aire, los motores radiales sólo tienen una muñequilla en el cigüeñal por cada fila de cilindros y por tanto un cárter relativamente pequeño (a veces separado), ofreciendo una buena relación potencia a peso.Sin embargo, esa gran área plana frontal también hace que el avión tenga un perfil aerodinámico ineficiente.A diferencia del motor radial, no padece ningún problema de bloqueo hidrostático.El célebre Messerschmitt Me 262 fue el primer avión no experimental y de producción en ser propulsado por turborreactores.El modelo más avanzado desarrollado durante la guerra fue el Heinkel HeS 011 pero no llegó a tiempo para entrar en servicio.En los años posteriores a la guerra, gradualmente se fueron evidenciando los inconvenientes de los turborreactores.Esos inconvenientes finalmente condujeron a la caída del turborreactor puro, quedando solo un puñado de modelos en producción y dando paso a los turborreactores de doble flujo conocidos como turbofán o turboventiladores.Estos motores son utilizados principalmente en helicópteros y en unidades de energía auxiliar.El turboeje es muy similar al turbohélice, con una diferencia clave: en el turbohélice la hélice está conectada directamente al motor, y el motor está fijado a la estructura de la aeronave; en un turboeje el motor no tiene que ofrecer un soporte físico directo a los rotores del helicóptero, ya que el rotor está conectado a una transmisión fijada a la estructura y el turboeje simplemente transmite la potencia mediante un eje de transmisión.Algunos ven esta distinción poco relevante, de hecho, en algunos casos las compañías fabricantes de motores producen turbohélices y turboejes basados en el mismo diseño (como el motor Pratt & Whitney Canada PT-6 con variante A para aviones y B y C para helicópteros u otras aplicaciones motrices e industriales).En el motor turbofán (turbosoplante o turboventilante) los gases generados por la turbina son empleados mayoritariamente en accionar un ventilador (fan) constituido por álabes y situado en la parte frontal del sistema que produce la mayor parte del empuje, dejando para el chorro de gases de escape solo una parte del trabajo (aproximadamente el 30%).Esto permite que este aire se mantenga frío y avance a una velocidad relativamente igual al aire caliente del interior, haciendo que cuando los dos flujos se encuentren en la tobera de escape, formen un torrente que amplifica la magnitud del flujo de salida y a la vez lo convierte en un flujo más estrecho, aumentando la velocidad total del aire de salida y también reduciendo las emisiones de ruido.Los motores cohete ofrecen gran empuje pero escasa autonomía y no son usados como propulsores de aviones porque su eficiencia es bastante pobre, excepto a altas velocidades.