Lados y ángulos correspondientes

En geometría, las condiciones que determinan la congruencia y la semejanza de dos polígonos implican comparar secuencialmente sus lados correspondientes y sus ángulos correspondientes, de manera que cada arista y cada ángulo de un polígono se emparejen con un lado o un ángulo del segundo polígono, teniendo cuidado de mantener la secuencia de los elementos adyacentes.

Por otro lado, si además de que b corresponde a w, se tiene que c corresponde a v, entonces el elemento in de abcde corresponde al elemento in de la secuencia inversa xwvzy.

[2]​ Las pruebas de congruencia exigen que todos los pares de lados correspondientes tengan la misma longitud, aunque, excepto en el caso del triángulo, esto no es suficiente para establecer la congruencia (como lo ejemplifican un cuadrado y un rombo que tienen la misma longitud de lado).

En cualquier caso, también es necesaria la igualdad de los ángulos correspondientes.

La igualdad (o proporcionalidad) de los lados correspondientes combinada con la igualdad de los ángulos correspondientes es condición necesaria y suficiente para la congruencia (o la semejanza en su caso).

Los cuadriláteros naranja y verde son congruentes; pero el azul no es congruente con ellos. La congruencia entre la forma naranja y la verde se establece por el hecho de que el lado BC corresponde a (en el caso de congruencia, se exige igual longitud) JK; CD corresponde a KL; DA corresponde a LI; y AB corresponde a IJ; mientras que el ángulo C corresponde al ángulo (igual) K; D corresponde a L; A corresponde a I; y B corresponde a J