Las unidades gaussianas constituyen un sistema métrico de unidades físicas . Este sistema es el más común de los diversos sistemas de unidades electromagnéticas basados en unidades cgs (centímetro-gramo-segundo) . También se denomina sistema de unidades gaussianas , unidades gaussianas-cgs o, a menudo, simplemente unidades cgs . [a] El término "unidades cgs" es ambiguo y, por lo tanto, debe evitarse si es posible: existen varias variantes de cgs con definiciones contradictorias de cantidades y unidades electromagnéticas.
Las unidades del SI predominan en la mayoría de los campos y siguen aumentando en popularidad a expensas de las unidades gaussianas. [1] [b] También existen sistemas de unidades alternativos. Las conversiones entre cantidades en unidades gaussianas y del SI no son conversiones de unidades directas, porque las cantidades en sí mismas se definen de manera diferente en cada sistema. Esto significa que las ecuaciones que expresan las leyes físicas del electromagnetismo (como las ecuaciones de Maxwell ) cambiarán según el sistema de unidades empleado. A modo de ejemplo, cantidades que son adimensionales en un sistema pueden tener dimensión en el otro.
El sistema de unidades gaussiano es solo uno de los varios sistemas de unidades electromagnéticas dentro del CGS. Otros sistemas incluyen " unidades electrostáticas ", " unidades electromagnéticas " y unidades Heaviside-Lorentz .
Algunos otros sistemas de unidades se denominan " unidades naturales ", una categoría que incluye unidades atómicas , unidades de Planck y otras.
El Sistema Internacional de Unidades (SI), con el Sistema Internacional de Cantidades (ISQ) asociado, es por lejos el sistema de unidades más común en la actualidad. En ingeniería y áreas prácticas, el SI es casi universal y lo ha sido durante décadas. [1] En la literatura técnica y científica (como la física teórica y la astronomía ), las unidades gaussianas fueron predominantes hasta las últimas décadas, pero ahora lo son cada vez menos. [1] [b] El octavo folleto del SI reconoce que el sistema de unidades CGS-Gaussiano tiene ventajas en la electrodinámica clásica y relativista , [2] pero el noveno folleto del SI no menciona los sistemas CGS.
Las unidades naturales pueden utilizarse en campos más teóricos y abstractos de la física, particularmente en la física de partículas y la teoría de cuerdas .
Una diferencia entre las unidades gaussianas y del SI está en los factores de 4 π en varias fórmulas. Con las unidades electromagnéticas del SI, llamadas racionalizadas , [3] [4] las ecuaciones de Maxwell no tienen factores explícitos de 4 π en las fórmulas, mientras que las leyes de fuerza del cuadrado inverso ( la ley de Coulomb y la ley de Biot-Savart ) sí tienen un factor de 4 π adjunto a r 2 . Con las unidades gaussianas, llamadas no racionalizadas (y a diferencia de las unidades de Heaviside-Lorentz ), la situación se invierte: dos de las ecuaciones de Maxwell tienen factores de 4 π en las fórmulas, mientras que ambas leyes de fuerza del cuadrado inverso, la ley de Coulomb y la ley de Biot-Savart, no tienen un factor de 4 π adjunto a r 2 en el denominador.
(La cantidad 4 π aparece porque 4 πr 2 es el área de superficie de la esfera de radio r , lo que refleja la geometría de la configuración. Para más detalles, consulte los artículos Relación entre la ley de Gauss y la ley de Coulomb y Ley del cuadrado inverso .)
Una diferencia importante entre el sistema gaussiano y el ISQ está en las respectivas definiciones de la cantidad carga. En el ISQ, una dimensión base separada, la corriente eléctrica, con la unidad SI asociada, el amperio , se asocia con fenómenos electromagnéticos, con la consecuencia de que una unidad de carga eléctrica (1 culombio = 1 amperio × 1 segundo) es una cantidad física que no se puede expresar puramente en términos de unidades mecánicas (kilogramo, metro, segundo). Por otro lado, en el sistema gaussiano, la unidad de carga eléctrica (el statculombio , statC) se puede escribir completamente como una combinación dimensional de las unidades base no eléctricas (gramo, centímetro, segundo), como:
Por ejemplo, la ley de Coulomb en unidades gaussianas no tiene constante:
donde F es la fuerza repulsiva entre dos cargas eléctricas, QG1
y QG2
son las dos cargas en cuestión, y r es la distancia que las separa. Si QG1
y QG2
se expresan en statC y r en centímetros , entonces la unidad de F que es coherente con estas unidades es la dina .
La misma ley en el ISQ es: donde ε 0 es la permitividad del vacío , una cantidad que no es adimensional: tiene dimensión ( carga ) 2 ( tiempo ) 2 ( masa ) −1 ( longitud ) −3 . Sin ε 0 , la ecuación sería dimensionalmente inconsistente con las cantidades definidas en el ISQ, mientras que la cantidad ε 0 no aparece en las ecuaciones gaussianas. Este es un ejemplo de cómo algunas constantes físicas dimensionales pueden eliminarse de las expresiones de la ley física mediante la elección de la definición de cantidades. En el ISQ, convierte o escala la densidad de flujo , D , al campo eléctrico correspondiente , E (este último tiene dimensión de fuerza por carga ), mientras que en el sistema gaussiano, la densidad de flujo eléctrico es la misma cantidad que la intensidad del campo eléctrico en el espacio libre aparte de un factor constante adimensional.
En el sistema gaussiano, la velocidad de la luz c aparece directamente en fórmulas electromagnéticas como las ecuaciones de Maxwell (ver más abajo), mientras que en el ISQ aparece a través del producto .
En el sistema gaussiano, a diferencia del ISQ, el campo eléctrico E G y el campo magnético B G tienen la misma dimensión. Esto equivale a un factor de c entre cómo se define B en los dos sistemas de unidades, además de las otras diferencias. [3] (El mismo factor se aplica a otras cantidades magnéticas como el campo magnético , H , y la magnetización , M ). Por ejemplo, en una onda de luz plana en el vacío , | E G ( r , t ) | = | B G ( r , t ) | en unidades gaussianas, mientras que | E I ( r , t ) | = c | B I ( r , t ) | en el ISQ.
Existen otras diferencias entre el sistema gaussiano y el ISQ en la forma en que se definen las magnitudes relacionadas con la polarización y la magnetización. Por un lado, en el sistema gaussiano, todas las magnitudes siguientes tienen la misma dimensión: E G , D G , P G , B G , H G y M G . Otro aspecto es que la susceptibilidad eléctrica y magnética de un material es adimensional tanto en el sistema gaussiano como en el ISQ, pero un material determinado tendrá una susceptibilidad numérica diferente en los dos sistemas. (La ecuación se proporciona a continuación).
Esta sección contiene una lista de las fórmulas básicas del electromagnetismo, dadas tanto en el sistema gaussiano como en el Sistema Internacional de Cantidades (ISQ) . La mayoría de los nombres de los símbolos no se incluyen; para obtener explicaciones y definiciones completas, haga clic en el artículo dedicado correspondiente a cada ecuación. En Garg (2012) se puede encontrar un esquema de conversión simple para usar cuando no hay tablas disponibles. [5] Todas las fórmulas, salvo que se indique lo contrario, son de la referencia [3] .
A continuación se presentan las ecuaciones de Maxwell, tanto en forma macroscópica como microscópica. Solo se proporciona la "forma diferencial" de las ecuaciones, no la "forma integral"; para obtener las formas integrales se aplica el teorema de divergencia o el teorema de Kelvin-Stokes .
A continuación se presentan las expresiones para los distintos campos en un medio dieléctrico. Para simplificar, se supone que el medio es homogéneo, lineal, isótropo y no dispersivo, de modo que la permitividad es una constante simple.
dónde
Las magnitudes y son adimensionales y tienen el mismo valor numérico. Por el contrario, la susceptibilidad eléctrica y son adimensionales, pero tienen valores numéricos diferentes para el mismo material:
A continuación, se presentan las expresiones para los distintos campos en un medio magnético. Nuevamente, se supone que el medio es homogéneo, lineal, isótropo y no dispersivo, de modo que la permeabilidad es una constante simple.
dónde
Las magnitudes y son adimensionales y tienen el mismo valor numérico. Por el contrario, la susceptibilidad magnética y son adimensionales, pero tienen valores numéricos diferentes en los dos sistemas para el mismo material:
Los campos eléctrico y magnético se pueden escribir en términos de un potencial vectorial A y un potencial escalar ϕ :
dónde
Nota : Las cantidades SI y satisfacen
Los factores de conversión se escriben tanto simbólicamente como numéricamente. Los factores de conversión numéricos se pueden derivar de los factores de conversión simbólicos mediante análisis dimensional . Por ejemplo, la fila superior dice , una relación que se puede verificar con análisis dimensional, expandiendo y culombios (C) en unidades base del SI , y expandiendo estatculombios (o franklins, Fr) en unidades base gaussianas.
Resulta sorprendente pensar en medir la capacidad en centímetros. Un ejemplo útil es que un centímetro de capacidad es la capacidad entre una esfera de radio de 1 cm en el vacío y el infinito.
Otra unidad sorprendente es la medida de la resistividad en unidades de segundos. Un ejemplo físico es el siguiente: tomemos un condensador de placas paralelas , que tiene un dieléctrico "con fugas" con permitividad 1 pero una resistividad finita. Después de cargarlo, el condensador se descargará a sí mismo con el tiempo, debido a la corriente que se filtra a través del dieléctrico. Si la resistividad del dieléctrico es t segundos, la vida media de la descarga es ~0,05 t segundos. Este resultado es independiente del tamaño, la forma y la carga del condensador y, por lo tanto, este ejemplo ilumina la conexión fundamental entre la resistividad y las unidades de tiempo.
Varias de las unidades definidas en la tabla tienen nombres diferentes, pero en realidad son dimensionalmente equivalentes, es decir, tienen la misma expresión en términos de las unidades base cm, g, s. (Esto es análogo a la distinción en el SI entre becquerel y Hz , o entre newton-metro y joule ). Los diferentes nombres ayudan a evitar ambigüedades y malentendidos en cuanto a qué cantidad física se está midiendo. En particular, todas las siguientes cantidades son dimensionalmente equivalentes en unidades gaussianas, pero, no obstante, se les dan diferentes nombres de unidad, como se indica a continuación: [8]
Cualquier fórmula se puede convertir entre unidades gaussianas y SI utilizando los factores de conversión simbólica de la Tabla 1 anterior.
Por ejemplo, el campo eléctrico de una carga puntual estacionaria tiene la fórmula ISQ , donde r es la distancia y el superíndice " I " indica que el campo eléctrico y la carga se definen como en la ISQ. Si queremos que la fórmula utilice las definiciones gaussianas de campo eléctrico y carga, buscamos cómo se relacionan utilizando la Tabla 1, que dice:
Por lo tanto, después de sustituir y simplificar, obtenemos la fórmula del sistema gaussiano: que es la fórmula correcta del sistema gaussiano, como se mencionó en una sección anterior.
Para mayor comodidad, la siguiente tabla contiene una compilación de los factores de conversión simbólicos de la Tabla 1. Para convertir cualquier fórmula del sistema gaussiano al ISQ utilizando esta tabla, reemplace cada símbolo en la columna gaussiana por la expresión correspondiente en la columna SI (viceversa para convertir en sentido inverso). Esto reproducirá cualquiera de las fórmulas específicas que se dan en la lista anterior, como las ecuaciones de Maxwell, así como cualquier otra fórmula que no se encuentre en la lista. [9] [10] [11] [c]
Una vez que todas las ocurrencias del producto hayan sido reemplazadas por , no debería haber cantidades restantes en la ecuación que tengan una dimensión electromagnética ISQ (o, equivalentemente, que tengan una unidad electromagnética SI).