Opción que otorga al propietario el derecho a una permuta financiera
Una swaption es una opción que otorga a su titular el derecho, pero no la obligación, de celebrar un swap subyacente . Aunque las opciones pueden negociarse sobre una variedad de swaps, el término "swaption" generalmente se refiere a opciones sobre swaps de tasas de interés .
Tipos
Existen dos tipos de contratos de swaption (análogos a las opciones de compra y venta): [1]
- Una swaption de pagador le da al propietario de la swaption el derecho a entrar en un swap donde paga la parte fija y recibe la parte flotante.
- Una swaption de receptor le da al propietario de la swaption el derecho de entrar en un swap en el que recibirá la parte fija y pagará la parte flotante.
Además, un "straddle" se refiere a una combinación de una opción de receptor y una de pagador sobre el mismo swap subyacente.
El comprador y el vendedor del swaption acuerdan:
- La prima (precio) de la swaption
- Duración del período de la opción (que generalmente finaliza dos días hábiles antes de la fecha de inicio del swap subyacente),
- Los términos del swap subyacente, incluidos:
- Importe nocional (con importes de amortización, si los hubiera)
- La tasa fija (que es igual al precio de ejercicio del swaption) y la frecuencia de pago para la parte fija
- La frecuencia de observación para la parte flotante del swap (por ejemplo, Libor a 3 meses paga trimestralmente)
Existen dos posibles convenciones de liquidación . Los swaps pueden liquidarse físicamente (es decir, al vencimiento se acuerda el swap entre las dos partes) o en efectivo, donde el valor del swap al vencimiento se paga de acuerdo con una fórmula estándar del mercado.
Mercado de swaps
Los participantes en el mercado de swaptions [2] son predominantemente grandes corporaciones, bancos, instituciones financieras y fondos de cobertura. Los usuarios finales, como corporaciones y bancos, suelen utilizar swaptions para gestionar el riesgo de tipos de interés que surge de su negocio principal o de sus acuerdos de financiación. Por ejemplo, una corporación que desee protegerse de las subidas de los tipos de interés podría comprar una swaption de pagador. Un banco que tenga una cartera de hipotecas podría comprar una swaption de receptor para protegerse de las bajas tasas de interés que podrían llevar a un pago anticipado de las hipotecas. Un fondo de cobertura que crea que los tipos de interés no subirán más de una determinada cantidad podría vender una swaption de pagador con el objetivo de ganar dinero cobrando la prima. Los bancos de inversión crean mercados de swaptions en las principales monedas y estos bancos negocian entre sí en el mercado interbancario de swaptions. Los bancos creadores de mercado suelen gestionar grandes carteras de swaptions que han suscrito con varias contrapartes. Se requiere una inversión significativa en tecnología y capital humano para supervisar adecuadamente y gestionar el riesgo de la exposición resultante. Los mercados de swaptions existen en la mayoría de las principales monedas del mundo, siendo los mercados más grandes los de dólares estadounidenses, euros, libras esterlinas y yenes japoneses.
El mercado de swaptions es principalmente extrabursátil (OTC), es decir, no se compensa ni se negocia en una bolsa. [3] Legalmente, una swaption es un contrato que otorga a una parte el derecho a celebrar un acuerdo con otra contraparte para intercambiar los pagos requeridos. El propietario ("comprador") de la swaption está expuesto a un incumplimiento por parte del "vendedor" de celebrar el swap al vencimiento (o de pagar la compensación acordada en el caso de una swaption liquidada en efectivo). A menudo, esta exposición se mitiga mediante el uso de acuerdos colaterales mediante los cuales se establece un margen de variación para cubrir la exposición futura prevista.
Estilos de ejercicios de intercambio
Existen tres estilos principales que definen el ejercicio de la swaption:
- Swaption europea, en la que el propietario puede entrar en el swap solo al comienzo del mismo. Son la norma en el mercado.
- Swaption bermudeño, en el que se permite al propietario ingresar al swap en múltiples fechas específicas, generalmente fechas de cupón durante la vida del swap subyacente.
- Swaption americano, en el que el propietario puede entrar al swap cualquier día que caiga dentro de un rango de dos fechas.
Las mesas exóticas pueden estar dispuestas a crear tipos personalizados de swaptions, análogos a las opciones exóticas . Estos pueden implicar reglas de ejercicio a medida o un nocional de swap no constante.
Valuación
La valoración de swaptions es complicada porque el nivel de dinero es el tipo de swap forward, que es el tipo forward que se aplicaría entre el vencimiento de la opción (momento m) y el tenor del swap subyacente, de modo que el swap, en el momento m, tendría un " VAN " de cero; véase valoración de swaps . Por lo tanto, el nivel de dinero se determina en función de si el tipo de ejercicio es mayor, menor o está al mismo nivel que el tipo de swap forward.
Para abordar este problema, los analistas cuantitativos valoran las swaptions mediante la construcción de modelos complejos de estructura temporal y de tipos a corto plazo basados en retículas que describen el movimiento de los tipos de interés a lo largo del tiempo. [4] [5] Sin embargo, una práctica estándar, en particular entre los operadores , para quienes la velocidad de cálculo es más importante, es valorar las swaptions europeas utilizando el modelo Black . En el caso de las opciones de estilo americano y bermudeño , en las que se permite el ejercicio antes del vencimiento, solo es aplicable el enfoque basado en retículas.
- Al valorar swaptions europeos utilizando el modelo Black, el subyacente se trata como un contrato a plazo sobre un swap. Aquí, como se mencionó, el precio a plazo es el tipo de swap a plazo. La volatilidad se suele "leer" en una cuadrícula bidimensional de volatilidades en el dinero observadas a partir de los precios en el mercado de swaptions interbancario. En esta cuadrícula, un eje es el tiempo hasta el vencimiento y el otro es la duración del swap subyacente. A continuación, se pueden realizar ajustes para determinar el valor monetario; consulte Sonrisa de volatilidad § Superficie de volatilidad implícita .
- Para utilizar el enfoque basado en celosía, el analista construye un "árbol" de tasas a corto plazo (un paso cero) coherente con la curva de rendimiento actual y la volatilidad de las tasas a corto plazo (caplet) , y donde el paso de tiempo final del árbol corresponde a la fecha de vencimiento del swap subyacente. Los modelos que se utilizan comúnmente aquí son Ho–Lee , Black-Derman-Toy y Hull-White . Utilizando este árbol, (1) el swap se valora en cada nodo "retrocediendo" a través del árbol, donde en cada nodo, su valor es el valor esperado descontado de los nodos ascendentes y descendentes en el paso de tiempo posterior, al que se suma el valor descontado de los pagos realizados durante el paso de tiempo en cuestión, y observando que los pagos flotantes se basan en la tasa a corto plazo en cada nodo del árbol. Luego (2), la opción se valora de manera similar al enfoque para las opciones sobre acciones : en los nodos en el paso de tiempo correspondiente al vencimiento de la opción, el valor se basa en la monetización ; en los nodos anteriores, es el valor esperado descontado de la opción en los nodos ascendente y descendente en el paso de tiempo posterior y, dependiendo del estilo de opción , del valor swap en el nodo. Para ambos pasos, el descuento se realiza a la tasa corta en el nodo del árbol en cuestión. (Tenga en cuenta que el modelo de Hull-White devuelve un árbol trinomial : se aplica la misma lógica, aunque entonces hay tres nodos en cuestión en cada punto). Véase el modelo de celosía (finanzas) § Derivados de tipos de interés .
Véase también
Notas
- ^ Fred D. Arditti (1996). Derivados: un recurso completo para opciones, futuros, swaps de tasas de interés y títulos hipotecarios . Harvard Business Review Press. pág. 298. ISBN 0875845606.
- ^ Banco de Pagos Internacionales - Estadísticas de derivados OTC
- ^ ISDA - Tamaño y usos del mercado de derivados no compensados
- ^ Frank J. Fabozzi, CFA (15 de enero de 1998). Valuación de títulos de renta fija y derivados. John Wiley & Sons. pp. [, página necesaria ], . ISBN 978-1-883249-25-0.
- ^ "Valoración de opciones" (PDF) . Otoño de 2000. Consultado el 12 de mayo de 2014 .[ Se necesita cita completa ]
Referencias
- Damiano Brigo, Fabio Mercurio (2001). Modelos de tasas de interés: teoría y práctica con Smile, Inflation and Credit (2.ª ed., 2006). Springer Verlag. ISBN 978-3-540-22149-4.
- David F. Babbel (1996). Valuación de instrumentos financieros sensibles a los tipos de interés: Monografía SOA M-FI96-1 (1.ª ed.). John Wiley & Sons. ISBN 978-1883249151.
- Frank Fabozzi (1998). Valuación de títulos de renta fija y derivados (3.ª ed.). John Wiley . ISBN 978-1-883249-25-0.
Enlaces externos
- Longstaff, Francis A., Pedro Santa-Clara y Eduardo S. Schwartz. La valoración relativa de los topes y swaptions: teoría y evidencia empírica.
- Blanco, Carlos, Josh Gray y Marc Hazzard. Métodos alternativos de valoración de swaptions: el diablo está en los detalles.
- Cobertura básica de derivados de renta fija. Financial-edu.com .
- Martingalas y medidas: el modelo de Black Dra. Jacqueline Henn-Overbeck, Universidad de Basilea
- Valoración binomial y de swaptions mediante Black-Scholes (Advanced Fixed Income Analytics 4:5), Prof. D. Backus y Prof. S. Zin, New York University Stern School of Business