stringtranslate.com

Supernova tipo Ia

En el núcleo de una nebulosa planetaria , Henize 2-428 , se espera que dos estrellas enanas blancas ligeramente por debajo de una masa solar cada una se fusionen y creen una supernova de Tipo Ia que destruya a ambas en unos 700 millones de años (impresión artística).

Una supernova de Tipo Ia (léase: "tipo uno-A") es un tipo de supernova que se produce en sistemas binarios (dos estrellas orbitando entre sí) en los que una de las estrellas es una enana blanca . La otra estrella puede ser cualquier cosa, desde una estrella gigante hasta una enana blanca aún más pequeña. [1]

Físicamente, las enanas blancas de carbono y oxígeno con una baja velocidad de rotación están limitadas a menos de 1,44 masas solares ( M ☉ ). [2] [3] Más allá de esta " masa crítica ", se vuelven a encender y en algunos casos desencadenan una explosión de supernova; esta masa crítica a menudo se conoce como masa de Chandrasekhar, pero es marginalmente diferente del límite absoluto de Chandrasekhar , donde la presión de degeneración de electrones no puede evitar un colapso catastrófico. Si una enana blanca gradualmente acumula masa a partir de una compañera binaria, o se fusiona con una segunda enana blanca, la hipótesis general es que el núcleo de una enana blanca alcanzará la temperatura de ignición para la fusión del carbono a medida que se acerque a la masa de Chandrasekhar. A los pocos segundos del inicio de la fusión nuclear, una fracción sustancial de la materia de la enana blanca sufre una reacción descontrolada , liberando suficiente energía (1–2 × 10 44  J ) [4] para desvincular la estrella en una explosión de supernova. [5]

La categoría de supernova Tipo Ia produce un pico de luminosidad bastante consistente debido a la masa crítica fija a la que explotará una enana blanca. Su constante luminosidad máxima permite que estas explosiones se utilicen como velas estándar para medir la distancia a sus galaxias anfitrionas: la magnitud visual de una supernova de tipo Ia, observada desde la Tierra, indica su distancia a la Tierra.

Modelo de consenso

Espectro de SN 1998aq , una supernova de tipo Ia, un día después del máximo de luz en la banda B [6]

La supernova de Tipo Ia es una subcategoría del esquema de clasificación de supernovas de Minkowski-Zwicky, que fue ideado por el astrónomo germano-estadounidense Rudolph Minkowski y el astrónomo suizo Fritz Zwicky . [7] Hay varios medios por los cuales se puede formar una supernova de este tipo, pero comparten un mecanismo subyacente común. Los astrónomos teóricos creyeron durante mucho tiempo que la estrella progenitora de este tipo de supernova es una enana blanca , y en 2014 se encontró evidencia empírica de esto cuando se observó una supernova de Tipo Ia en la galaxia Messier 82 . [8] Cuando una enana blanca de carbono y oxígeno [2] que gira lentamente acumula materia de una compañera, puede exceder el límite de Chandrasekhar de aproximadamente 1,44  M ☉ , más allá del cual ya no puede soportar su peso con la presión de degeneración de electrones. [9] En ausencia de un proceso compensatorio, la enana blanca colapsaría para formar una estrella de neutrones , en un proceso no eyectivo inducido por acreción, [10] como ocurre normalmente en el caso de una enana blanca que está compuesta principalmente por magnesio , neón y oxígeno. [11]

Sin embargo, la opinión actual entre los astrónomos que modelan las explosiones de supernovas de tipo Ia es que este límite nunca se alcanza y el colapso nunca se inicia. En cambio, el aumento de presión y densidad debido al aumento de peso eleva la temperatura del núcleo, [3] y cuando la enana blanca se acerca a aproximadamente el 99% del límite, [12] se produce un período de convección que dura aproximadamente 1.000 años. [13] En algún momento de esta fase de cocción a fuego lento, nace un frente de llama de deflagración , impulsado por la fusión del carbono . Aún se desconocen los detalles del encendido, incluida la ubicación y el número de puntos donde comienza la llama. [14] La fusión del oxígeno se inicia poco después, pero este combustible no se consume tan completamente como el carbono. [15]

G299 Remanente de supernova tipo Ia .

Una vez que comienza la fusión, la temperatura de la enana blanca aumenta. Una estrella de secuencia principal sostenida por presión térmica puede expandirse y enfriarse, lo que regula automáticamente el aumento de energía térmica. Sin embargo, la presión de degeneración es independiente de la temperatura; Las enanas blancas no pueden regular la temperatura como lo hacen las estrellas normales, por lo que son vulnerables a reacciones de fusión descontroladas . La llamarada se acelera dramáticamente, en parte debido a la inestabilidad de Rayleigh-Taylor y las interacciones con la turbulencia . Todavía es un tema de considerable debate si esta llamarada se transforma en una detonación supersónica a partir de una deflagración subsónica . [13] [16]

Independientemente de los detalles exactos de cómo se enciende la supernova, generalmente se acepta que una fracción sustancial del carbono y el oxígeno de la enana blanca se fusiona en elementos más pesados ​​en un período de sólo unos pocos segundos, [ 15] con la consiguiente liberación de energía. aumentando la temperatura interna a miles de millones de grados. La energía liberada (1–2 × 10 44  J ) [4] es más que suficiente para desvincular la estrella; es decir, las partículas individuales que componen la enana blanca ganan suficiente energía cinética para separarse unas de otras. La estrella explota violentamente y libera una onda de choque en la que la materia normalmente es expulsada a velocidades del orden de5.000-20.000 km/s , aproximadamente el 6% de la velocidad de la luz . La energía liberada en la explosión también provoca un aumento extremo de la luminosidad. La magnitud visual absoluta típica de las supernovas de tipo Ia es M v  = −19,3 (aproximadamente 5 mil millones de veces más brillante que el Sol), con poca variación. [13] La supernova de Tipo Ia no deja restos compactos, pero toda la masa de la antigua enana blanca se disipa en el espacio.

La teoría de este tipo de supernovas es similar a la de las novas , en las que una enana blanca acumula materia más lentamente y no se acerca al límite de Chandrasekhar. En el caso de una nova, la materia que cae provoca una explosión en la superficie de fusión de hidrógeno que no altera la estrella. [13]

Las supernovas de tipo Ia se diferencian de las supernovas de tipo II , que son causadas por la explosión cataclísmica de las capas externas de una estrella masiva cuando su núcleo colapsa, impulsada por la liberación de energía potencial gravitacional a través de la emisión de neutrinos . [17]

Formación

Progenitores degenerados únicos

Un modelo para la formación de esta categoría de supernova es un sistema estelar binario cercano . El sistema binario progenitor consta de estrellas de secuencia principal, y la primaria posee más masa que la secundaria. Al tener mayor masa, la primaria es la primera del par en evolucionar hacia la rama gigante asintótica , donde la envoltura de la estrella se expande considerablemente. Si las dos estrellas comparten una envoltura común entonces el sistema puede perder cantidades significativas de masa, reduciendo el momento angular , el radio orbital y el período . Después de que la primaria ha degenerado en una enana blanca, la estrella secundaria evoluciona a una gigante roja y el escenario está listo para la acreción de masa en la primaria. Durante esta fase final de envoltura compartida, las dos estrellas se acercan en espiral a medida que se pierde el momento angular. La órbita resultante puede tener un período tan breve como unas pocas horas. [18] [19] Si la acreción continúa el tiempo suficiente, la enana blanca puede eventualmente acercarse al límite de Chandrasekhar .

La compañera enana blanca también podría acumular materia de otros tipos de compañeras, incluida una subgigante o (si la órbita es lo suficientemente cercana) incluso una estrella de secuencia principal. El proceso evolutivo real durante esta etapa de acreción sigue siendo incierto, ya que puede depender tanto de la tasa de acreción como de la transferencia de momento angular a la compañera enana blanca. [20]

Se ha estimado que los progenitores degenerados únicos representan no más del 20% de todas las supernovas de Tipo Ia. [21]

Progenitores doblemente degenerados

Un segundo mecanismo posible para desencadenar una supernova de Tipo Ia es la fusión de dos enanas blancas cuya masa combinada excede el límite de Chandrasekhar . La fusión resultante se denomina enana blanca de masa súper Chandrasekhar. [22] [23] En tal caso, la masa total no estaría limitada por el límite de Chandrasekhar.

Las colisiones de estrellas solitarias dentro de la Vía Láctea ocurren sólo una vez cada10 7 a10 13  años ; mucho menos frecuente que la aparición de novas. [24] Las colisiones ocurren con mayor frecuencia en las densas regiones centrales de los cúmulos globulares [25] ( cf. rezagados azules ). Un escenario probable es una colisión con un sistema estelar binario o entre dos sistemas binarios que contengan enanas blancas. Esta colisión puede dejar tras de sí un sistema binario cercano de dos enanas blancas. Su órbita decae y se fusionan a través de su envoltura compartida. [26] Un estudio basado en espectros SDSS encontró 15 sistemas dobles de las 4.000 enanas blancas analizadas, lo que implica una fusión doble de enanas blancas cada 100 años en la Vía Láctea: esta tasa coincide con el número de supernovas de Tipo Ia detectadas en nuestra vecindad. [27]

Un escenario de doble degeneración es una de varias explicaciones propuestas para el  progenitor anormalmente masivo (2 M ☉ ) de SN 2003fg . [28] [29] Es la única explicación posible para SNR 0509-67.5 , ya que se han descartado todos los modelos posibles con una sola enana blanca. [30] También se ha sugerido fuertemente para SN 1006 , dado que no se han encontrado restos de estrellas compañeras allí. [21] Las observaciones realizadas con el telescopio espacial Swift de la NASA descartaron estrellas compañeras supergigantes o gigantes existentes de cada supernova de Tipo Ia estudiada. La capa exterior rota de la supergigante compañera debería emitir rayos X , pero este brillo no fue detectado por el XRT (telescopio de rayos X) de Swift en los 53 restos de supernova más cercanos. Para 12 supernovas de Tipo Ia observadas dentro de los 10 días posteriores a la explosión, el UVOT (telescopio óptico/ultravioleta) del satélite no mostró radiación ultravioleta originada en la superficie calentada de la estrella compañera golpeada por la onda de choque de la supernova, lo que significa que no había gigantes rojas ni estrellas más grandes orbitando esos progenitores de supernova. En el caso de SN 2011fe , la estrella compañera debió ser más pequeña que el Sol , si existiera. [31] El Observatorio de rayos X Chandra reveló que la radiación de rayos X de cinco galaxias elípticas y el abultamiento de la galaxia de Andrómeda es entre 30 y 50 veces más débil de lo esperado. La radiación de rayos X debería ser emitida por los discos de acreción de los progenitores de supernovas de tipo Ia. La radiación faltante indica que pocas enanas blancas poseen discos de acreción , descartando el modelo común basado en la acreción de supernovas Ia. [32] Los pares de enanas blancas que giran en espiral hacia adentro son fuentes candidatas fuertemente inferidas de ondas gravitacionales , aunque no han sido observadas directamente.

Los escenarios de doble degeneración plantean dudas sobre la aplicabilidad de las supernovas de tipo Ia como velas estándar , ya que la masa total de las dos enanas blancas fusionadas varía significativamente, lo que significa que la luminosidad también varía.

Tipo Iax

Se ha propuesto que un grupo de supernovas subluminosas que se producen cuando el helio se acumula en una enana blanca debería clasificarse como Tipo Iax . [33] [34] Es posible que este tipo de supernova no siempre destruya completamente a la progenitora enana blanca, sino que deje atrás una estrella zombi . [35] Se cree que la supernova SN 1181 está asociada con el remanente de supernova Pa 30 y su estrella central IRAS 00500+6713 , que es el resultado de una fusión de una enana blanca de CO y una enana blanca de ONe. Esto convierte a Pa 30 e IRAS 00500+6713 en los únicos remanentes de SN Iax en la Vía Láctea . [36]

Observación

Resto de supernova N103B captado por el Telescopio Espacial Hubble. [37]

A diferencia de los otros tipos de supernovas, las supernovas de Tipo Ia generalmente ocurren en todo tipo de galaxias, incluidas las elípticas. No muestran preferencia por las regiones de formación estelar actual. [38] Como las estrellas enanas blancas se forman al final del período evolutivo de la secuencia principal de una estrella, un sistema estelar de tan larga vida puede haberse alejado mucho de la región donde se formó originalmente. A partir de entonces, un sistema binario cercano puede pasar otro millón de años en la etapa de transferencia de masa (posiblemente formando estallidos de nova persistentes) antes de que se den las condiciones para que se produzca una supernova de Tipo Ia. [39]

Un problema de larga data en astronomía ha sido la identificación de los progenitores de supernovas. La observación directa de un progenitor proporcionaría limitaciones útiles a los modelos de supernova. En 2006, la búsqueda de tal progenitor llevaba más de un siglo en marcha. [40] La observación de la supernova SN 2011fe ha proporcionado limitaciones útiles. Observaciones anteriores con el Telescopio Espacial Hubble no mostraron ninguna estrella en la posición del evento, excluyendo así a una gigante roja como fuente. Se descubrió que el plasma en expansión de la explosión contenía carbono y oxígeno, por lo que es probable que el progenitor fuera una enana blanca compuesta principalmente de estos elementos. [41] De manera similar, las observaciones del cercano SN PTF 11kx, [42] descubierto el 16 de enero de 2011 (UT) por Palomar Transient Factory (PTF), llevan a la conclusión de que esta explosión surge de un progenitor degenerado único, con un rojo compañero gigante, lo que sugiere que no existe una única ruta progenitora hacia SN Ia. Las observaciones directas de la estrella progenitora de PTF 11kx, publicadas en la edición del 24 de agosto de Science, respaldan esta conclusión y también muestran que la estrella progenitora experimentó erupciones periódicas de nova antes de la supernova, otro descubrimiento sorprendente. [42] [43] Sin embargo, análisis posteriores revelaron que el material circunestelar es demasiado masivo para el escenario degenerado único y se adapta mejor al escenario degenerado del núcleo. [44]

En mayo de 2015, la NASA informó que el observatorio espacial Kepler observó KSN 2011b, una supernova de Tipo Ia en proceso de explosión. Los detalles de los momentos prenova pueden ayudar a los científicos a juzgar mejor la calidad de las supernovas de Tipo Ia como velas estándar, lo cual es un vínculo importante en el argumento a favor de la energía oscura . [45]

En septiembre de 2021, los astrónomos informaron que el Telescopio Espacial Hubble había tomado tres imágenes de una supernova de Tipo Ia a través de una lente gravitacional . Esta supernova apareció en tres momentos diferentes en la evolución de su brillo debido a la diferente longitud del camino de la luz en las tres imágenes; a -24, 92 y 107 días desde la luminosidad máxima. En 2037 aparecerá una cuarta imagen que permitirá observar todo el ciclo de luminosidad de la supernova. [46]

Curva de luz

Este gráfico de luminosidad (en relación con el Sol, L 0 ) frente al tiempo muestra la curva de luz característica de una supernova de Tipo Ia. El pico se debe principalmente a la desintegración del níquel (Ni), mientras que la etapa posterior se alimenta del cobalto (Co).
Curva de luz para tipo Ia SN 2018gv

Las supernovas de tipo Ia tienen una curva de luz característica , su gráfica de luminosidad en función del tiempo después de la explosión. Cerca del momento de máxima luminosidad, el espectro contiene líneas de elementos de masa intermedia, desde oxígeno hasta calcio ; estos son los principales constituyentes de las capas exteriores de la estrella. Meses después de la explosión, cuando las capas exteriores se han expandido hasta el punto de la transparencia, el espectro está dominado por la luz emitida por el material cercano al núcleo de la estrella, elementos pesados ​​sintetizados durante la explosión; sobre todo isótopos cercanos a la masa del hierro ( elementos con pico de hierro ). La desintegración radiactiva del níquel-56 a través del cobalto-56 al hierro-56 produce fotones de alta energía , que dominan la producción de energía de la eyección en tiempos intermedios y tardíos. [13]

El uso de supernovas de Tipo Ia para medir distancias precisas fue iniciado por una colaboración de astrónomos chilenos y estadounidenses, el Calán/Tololo Supernova Survey . [47] En una serie de artículos de la década de 1990, el estudio demostró que si bien no todas las supernovas de Tipo Ia alcanzan la misma luminosidad máxima, se puede utilizar un solo parámetro medido a partir de la curva de luz para corregir las supernovas de Tipo Ia no enrojecidas a valores de vela estándar. La corrección original del valor de vela estándar se conoce como relación de Phillips [48] y este grupo demostró que es capaz de medir distancias relativas con una precisión del 7%. [49] La causa de esta uniformidad en el brillo máximo está relacionada con la cantidad de níquel-56 producida en enanas blancas que presumiblemente explotan cerca del límite de Chandrasekhar. [50]

La similitud en los perfiles de luminosidad absoluta de casi todas las supernovas de Tipo Ia conocidas ha llevado a su uso como vela estándar secundaria en astronomía extragaláctica. [51] Las calibraciones mejoradas de la escala de distancia variable de las Cefeidas [52] y las mediciones de distancia geométrica directa a NGC 4258 a partir de la dinámica de la emisión máser [53] cuando se combinan con el diagrama de Hubble de las distancias de las supernovas de Tipo Ia han llevado a un valor mejorado de la constante de Hubble .

En 1998, observaciones de supernovas distantes de Tipo Ia indicaron el resultado inesperado de que el universo parece experimentar una expansión acelerada . [54] [55] Posteriormente, tres miembros de dos equipos recibieron premios Nobel por este descubrimiento. [56]

Subtipos

El remanente de supernova SNR 0454-67.2 es probablemente el resultado de una explosión de supernova de tipo Ia. [57]

Existe una diversidad significativa dentro de la clase de supernovas de Tipo Ia. Como reflejo de esto, se han identificado una gran cantidad de subclases. Dos ejemplos prominentes y bien estudiados incluyen los similares a 1991T, una subclase excesivamente luminosa que exhibe líneas de absorción de hierro particularmente fuertes y características de silicio anormalmente pequeñas, [58] y los similares a 1991bg, una subclase excepcionalmente tenue caracterizada por fuertes características tempranas de absorción de titanio y rápida fotometría. y evolución espectral. [59] A pesar de sus luminosidades anormales , los miembros de ambos grupos peculiares pueden estandarizarse mediante el uso de la relación de Phillips para determinar la distancia . [60]

Ver también

Referencias

  1. ^ HubbleSite - Energía oscura - Supernovas tipo Ia
  2. ^ ab Yoon, SC; Langer, L. (2004). "Evolución presupernova de enanas blancas en acreción con rotación". Astronomía y Astrofísica . 419 (2): 623–644. arXiv : astro-ph/0402287 . Código Bib : 2004A&A...419..623Y. doi :10.1051/0004-6361:20035822. S2CID  2963085. Archivado desde el original el 25 de octubre de 2007 . Consultado el 30 de mayo de 2007 .
  3. ^ ab Mazzali, PA; Röpke, FK; Benetti, S.; Hillebrandt, W. (2007). "Un mecanismo de explosión común para supernovas de tipo Ia". Ciencia . 315 (5813): 825–828. arXiv : astro-ph/0702351 . Código Bib : 2007 Ciencia... 315.. 825M. doi : 10.1126/ciencia.1136259. PMID  17289993. S2CID  16408991.
  4. ^ ab Khokhlov, A.; Müller, E.; Höflich, P. (1993). "Curvas de luz de modelos de supernova de tipo Ia con diferentes mecanismos de explosión". Astronomía y Astrofísica . 270 (1–2): 223–248. Código Bib : 1993A y A...270..223K.
  5. ^ "Introducción a los restos de supernovas". NASA Goddard/SAO. 2006-09-07 . Consultado el 1 de mayo de 2007 .
  6. ^ Matheson, Thomas; Kirshner, Robert; Challis, Pete; Jha, Saurabh; et al. (2008). "Espectroscopia óptica de supernovas de tipo Ia". Revista Astronómica . 135 (4): 1598-1615. arXiv : 0803.1705 . Código bibliográfico : 2008AJ....135.1598M. doi :10.1088/0004-6256/135/4/1598. S2CID  33156459.
  7. ^ da Silva, LAL (1993). "La clasificación de las supernovas". Astrofísica y Ciencias Espaciales . 202 (2): 215–236. Código Bib : 1993Ap&SS.202..215D. doi :10.1007/BF00626878. S2CID  122727067.
  8. ^ Supernovas tipo 1a: por qué nuestra vela estándar no es realmente estándar
  9. ^ Lieb, EH; Yau, H.-T. (1987). "Un examen riguroso de la teoría del colapso estelar de Chandrasekhar". Revista Astrofísica . 323 (1): 140-144. Código Bib : 1987ApJ...323..140L. doi :10.1086/165813.
  10. ^ Canal, R.; Gutiérrez, J. (1997). "La posible conexión entre una enana blanca y una estrella de neutrones". Enanas Blancas . Biblioteca de Astrofísica y Ciencias Espaciales. vol. 214, págs. 49–55. arXiv : astro-ph/9701225 . Código Bib : 1997ASSL..214...49C. doi :10.1007/978-94-011-5542-7_7. ISBN 978-0-7923-4585-5. S2CID  9288287.
  11. ^ Freidora, CL; Nuevo, KCB (24 de enero de 2006). "2.1 Escenario de colapso". Ondas gravitacionales por colapso gravitacional . Max-Planck-Gesellschaft . Consultado el 7 de junio de 2007 .
  12. ^ Wheeler, J. Craig (15 de enero de 2000). Catástrofes cósmicas: supernovas, explosiones de rayos gamma y aventuras en el hiperespacio. Cambridge, Reino Unido: Cambridge University Press . pag. 96.ISBN _ 978-0-521-65195-0.
  13. ^ abcde Hillebrandt, W.; Niemeyer, JC (2000). "Modelos de explosión de supernova tipo Ia". Revista Anual de Astronomía y Astrofísica . 38 (1): 191–230. arXiv : astro-ph/0006305 . Código Bib : 2000ARA&A..38..191H. doi :10.1146/annurev.astro.38.1.191. S2CID  10210550.
  14. ^ "Resumen científico". ASC / Centro de Alianzas para Flashes Termonucleares Astrofísicos. 2004. Archivado desde el original el 5 de mayo de 2017 . Consultado el 25 de abril de 2017 .
  15. ^ ab Röpke, FK; Hillebrandt, W. (2004). "El caso en contra de la relación carbono-oxígeno del progenitor como fuente de variaciones máximas de luminosidad en las supernovas de tipo Ia". Astronomía y Astrofísica . 420 (1): L1–L4. arXiv : astro-ph/0403509 . Código Bib : 2004A y A...420L...1R. doi :10.1051/0004-6361:20040135. S2CID  2849060.
  16. ^ Gamezo, VN; Khokhlov, AM; Orán, ES; Chtchelkanova, AY; Rosenberg, RO (3 de enero de 2003). "Supernovas termonucleares: simulaciones de la etapa de deflagración y sus implicaciones". Ciencia . 299 (5603): 77–81. arXiv : astro-ph/0212054 . Código Bib : 2003 Ciencia... 299... 77G. CiteSeerX 10.1.1.257.3251 . doi : 10.1126/ciencia.1078129. PMID  12446871. S2CID  6111616. 
  17. ^ Gilmore, Gerry (2004). "La corta y espectacular vida de una superestrella". Ciencia . 304 (5697): 1915-1916. doi : 10.1126/ciencia.1100370. PMID  15218132. S2CID  116987470.
  18. ^ Paczynski, B. (28 de julio - 1 de agosto de 1975). "Binarios de sobre común". Estructura y evolución de sistemas binarios cercanos . Cambridge, Inglaterra: Dordrecht, D. Reidel Publishing Co. págs. 75–80. Código bibliográfico : 1976IAUS...73...75P.
  19. ^ Postnov, KA; Yungelson, LR (2006). "La evolución de los sistemas estelares binarios compactos". Reseñas vivas en relatividad . 9 (1): 6. arXiv : astro-ph/0701059 . Código Bib : 2006LRR.....9....6P. doi :10.12942/lrr-2006-6. PMC 5253975 . PMID  28163653. Archivado desde el original el 26 de septiembre de 2007 . Consultado el 8 de enero de 2007 . 
  20. ^ Langer, N.; Yoon, S.-C.; Wellstein, S.; Scheithauer, S. (2002). "Sobre la evolución de binarios interactivos que contienen una enana blanca". En Gänsicke, BT; Beuermann, K.; Rein, K. (eds.). La física de las variables cataclísmicas y objetos relacionados, Actas de la conferencia ASP . San Francisco, California: Sociedad Astronómica del Pacífico. pag. 252. Código Bib : 2002ASPC..261..252L.
  21. ^ ab González Hernández, JI; Ruiz-Lapuente, P.; Tabernero, HM; Montes, D.; Canal, R.; Méndez, J.; Bedin, LR (2012). "No hay compañeros evolucionados supervivientes del progenitor de SN 1006". Naturaleza . 489 (7417): 533–536. arXiv : 1210.1948 . Código Bib :2012Natur.489..533G. doi : 10.1038/naturaleza11447. hdl : 10261/56885. PMID  23018963. S2CID  4431391.Véase también referencia laica: Matson, John (diciembre de 2012). "Ninguna estrella se queda atrás". Científico americano . vol. 307, núm. 6. pág. dieciséis.
  22. ^ "Progenitores de supernovas tipo Ia". Universidad de Swinburne . Consultado el 20 de mayo de 2007 .
  23. ^ "El descubrimiento de la supernova más brillante insinúa una colisión estelar". Científico nuevo . 2007-01-03 . Consultado el 6 de enero de 2007 .
  24. ^ Whipple, Fred L. (1939). "Supernovas y colisiones estelares". Procedimientos de la Academia Nacional de Ciencias . 25 (3): 118-125. Código bibliográfico : 1939PNAS...25..118W. doi : 10.1073/pnas.25.3.118 . PMC 1077725 . PMID  16577876. 
  25. ^ Rubin, VC; Ford, WKJ (1999). "Mil soles ardientes: la vida interior de los cúmulos globulares". Mercurio . 28 (4): 26. Bibcode : 1999Mercu..28d..26M. Archivado desde el original el 21 de mayo de 2006 . Consultado el 2 de junio de 2006 .
  26. ^ Middleditch, J. (2004). "Un paradigma de fusión de enanas blancas para supernovas y explosiones de rayos gamma". La revista astrofísica . 601 (2): L167-L170. arXiv : astro-ph/0311484 . Código Bib : 2004ApJ...601L.167M. doi :10.1086/382074. S2CID  15092837.
  27. ^ "Pista importante descubierta sobre los orígenes de un tipo de explosión de supernova, gracias a un equipo de investigación de la Universidad de Pittsburgh". Universidad de Pittsburgh . Consultado el 23 de marzo de 2012 .
  28. ^ "La supernova de tipo Ia más extraña hasta ahora". Laboratorio Nacional Lawrence Berkeley . 2006-09-20. Archivado desde el original el 8 de octubre de 2017 . Consultado el 2 de noviembre de 2006 .
  29. ^ "Bizarre Supernova rompe todas las reglas". Científico nuevo. 2006-09-20 . Consultado el 8 de enero de 2007 .
  30. ^ Schaefer, Bradley E.; Pagnotta, Ashley (2012). "Ausencia de ex estrellas compañeras en el remanente de supernova de tipo Ia SNR 0509-67.5". Naturaleza . 481 (7380): 164–166. Código Bib :2012Natur.481..164S. doi : 10.1038/naturaleza10692. PMID  22237107. S2CID  4362865.
  31. ^ "Swift de la NASA reduce el origen de una importante clase de supernova". NASA. Archivado desde el original el 12 de junio de 2020 . Consultado el 24 de marzo de 2012 .
  32. ^ "Chandra de la NASA revela el origen de explosiones cósmicas clave". Sitio web del Observatorio de rayos X Chandra . Consultado el 28 de marzo de 2012 .
  33. ^ Wang, Bo; Justham, Stephen; Han, Zhanwen (2013). "Explosiones de doble detonación como progenitoras de supernovas de tipo Iax". arXiv : 1301.1047v1 [astro-ph.SR].
  34. ^ Foley, Ryan J.; Challis, PJ; Chornock, R.; Ganeshalingam, M.; Li, W.; Marion, GH; Morrell, NI; Pignata, G.; Stritzinger, MD; Silverman, JM; Wang, X.; Anderson, JP; Filippenko, AV; Freedman, WL; Hamuy, M.; Jha, SW; Kirshner, RP; McCully, C.; Persson, SE; Phillips, MM; Reichart, DE; Soderberg, AM (2012). "Supernovas tipo Iax: una nueva clase de explosión estelar". La revista astrofísica . 767 (1): 57. arXiv : 1212.2209 . Código Bib : 2013ApJ...767...57F. doi :10.1088/0004-637X/767/1/57. S2CID  118603977.
  35. ^ "Hubble encuentra un sistema estelar de supernova vinculado a una posible 'estrella zombi'". Espacio diario. 6 de agosto de 2014.
  36. ^ Ritter, Andrés; Parker, Quentin A.; Lykou, Foteini; Zijlstra, Albert A.; Guerrero, Martín A.; Le Du, Pascal (7 de noviembre de 2023). "De un candidato aficionado a la PN a la investigación Rosetta Stone de SN Iax". Actas de la conferencia IAU 384 : 6. arXiv : 2311.03700 . Código Bib : 2023arXiv231103700R.
  37. ^ "Búsqueda de superviviente estelar de la explosión de una supernova". www.spacetelescope.org . Consultado el 30 de marzo de 2017 .
  38. ^ van Dyk, Schuyler D. (1992). "Asociación de supernovas con regiones de formación estelar reciente en galaxias de tipo tardío". Revista Astronómica . 103 (6): 1788–1803. Código bibliográfico : 1992AJ....103.1788V. doi :10.1086/116195.
  39. ^ Hoeflich, N.; Deutschmann, A.; Wellstein, S.; Höflich, P. (1999). "La evolución de los sistemas binarios estrella de secuencia principal + enana blanca hacia supernovas de tipo Ia". Astronomía y Astrofísica . 362 : 1046-1064. arXiv : astro-ph/0008444 . Código Bib : 2000A y A...362.1046L.
  40. ^ Kotak, R. (diciembre de 2008). "Progenitores de supernovas de tipo Ia". En Evans, A.; Bode, MF; O'Brien, TJ; Darnley, MJ (eds.). RS Ophiuchi (2006) y el fenómeno de la nova recurrente . Serie de conferencias ASP. vol. 401. San Francisco: Sociedad Astronómica del Pacífico. pag. 150. Código Bib : 2008ASPC..401..150K.Actas de la conferencia celebrada del 12 al 14 de junio de 2007 en la Universidad de Keele, Keele, Reino Unido.
  41. ^ Nugent, Peter E.; Sullivan, Marcos; Cenko, S. Bradley; Thomas, Rollin C.; Kasen, Daniel; Howell, D. Andrés; Bersier, David; Bloom, Josué S.; Kulkarni, SR; Kandrashoff, Michael T.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard T.; Maguire, Kate; Suzuki, Nao; Tarlton, James E.; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamín J.; Padre, Jerod T.; Arena, David; Podsiadlowski, Philipp; Bianco, Federica B.; Dilday, Benjamín; Graham, Melissa L.; Lyman, Joe; James, Phil; et al. (Diciembre de 2011). "Supernova 2011fe de una estrella enana blanca en explosión de carbono y oxígeno". Naturaleza . 480 (7377): 344–347. arXiv : 1110.6201 . Código Bib :2011Natur.480..344N. doi : 10.1038/naturaleza10644. PMID  22170680. S2CID  205227021.
  42. ^ ab Dilday, B.; Howell, fiscal del distrito; Cenko, SB; Silverman, JM; Nugent, PE; Sullivan, M.; Ben-Ami, S.; Bildsten, L.; Bolté, M.; Endl, M.; Filippenko, AV; Mosquito, O.; Horesh, A.; Hsiao, E.; Kasliwal, MM; Kirkman, D.; Maguire, K.; Marcy, GW; Moore, K.; Pan, Y.; Padre, JT; Podsiadlowski, P.; Quimby, RM; Sternberg, A.; Suzuki, N.; Tyler, DR; Xu, D.; Bloom, JS; Gal-Yam, A.; et al. (2012). "PTF11kx: una supernova de tipo Ia con un progenitor de nova simbiótica". Ciencia . 337 (6097): 942–945. arXiv : 1207.1306 . Código Bib : 2012 Ciencia... 337.. 942D. doi : 10.1126/ciencia.1219164. PMID  22923575. S2CID  38997016.
  43. ^ "Las primeras observaciones directas de un sistema progenitor de supernova tipo 1a". Diario Scitech . 2012-08-24.
  44. ^ Soker, Noam; Kashi, Amit; García Berro, Enrique; Torres, Santiago; Camacho, Judit (2013). "Explicando la supernova de tipo Ia PTF 11kx con un escenario de fusión rápida y violenta". Avisos mensuales de la Real Sociedad Astronómica . 431 (2): 1541-1546. arXiv : 1207.5770 . Código bibliográfico : 2013MNRAS.431.1541S. doi :10.1093/mnras/stt271. S2CID  7846647.
  45. ^ Johnson, Michele; Chandler, Lynn (20 de mayo de 2015). "La nave espacial de la NASA captura los primeros momentos raros de bebés supernovas". NASA . Archivado desde el original el 8 de noviembre de 2020 . Consultado el 21 de mayo de 2015 .
  46. ^ Rodney, Steven A.; Brammer, Gabriel B.; Pierel, Justin DR; Ricardo, Johan; Toft, Sune; O'Connor, Kyle F.; Akhshik, Mohammad; Whitaker, Katherine E. (13 de septiembre de 2021). "Una supernova con lentes gravitacionales con un retraso observable de dos décadas". Astronomía de la Naturaleza . 5 (11): 1118-1125. arXiv : 2106.08935 . Código Bib : 2021NatAs...5.1118R. doi :10.1038/s41550-021-01450-9. S2CID  235446995.
  47. ^ Hamuy, M.; et al. (1993). "La búsqueda de supernovas de Calan/Tololo de 1990" (PDF) . Revista Astronómica . 106 (6): 2392. Código bibliográfico : 1993AJ....106.2392H. doi :10.1086/116811.
  48. ^ Phillips, MM (1993). "Las magnitudes absolutas de las supernovas de tipo Ia". Cartas de diarios astrofísicos . 413 (2): L105. Código bibliográfico : 1993ApJ...413L.105P. doi :10.1086/186970.
  49. ^ Hamuy, M.; Phillips, MM; Suntzeff, Nicolás B.; Schommer, Robert A.; Maza, José; Avilés, R. (1996). "Las luminosidades absolutas de las supernovas de tipo IA de Calan / Tololo". Revista Astronómica . 112 : 2391. arXiv : astro-ph/9609059 . Código bibliográfico : 1996AJ....112.2391H. doi :10.1086/118190. S2CID  15157846.
  50. ^ Colgate, SA (1979). "Las supernovas como vela estándar para la cosmología". Revista Astrofísica . 232 (1): 404–408. Código bibliográfico : 1979ApJ...232..404C. doi :10.1086/157300.
  51. ^ Hamuy, M.; Phillips, MM; Maza, José; Suntzeff, Nicolás B.; Schommer, RA; Avilés, R. (1996). "Un diagrama de Hubble de supernovas distantes de tipo IA". Revista Astronómica . 109 : 1. Código bibliográfico : 1995AJ....109....1H. doi :10.1086/117251.
  52. ^ Freedman, W.; et al. (2001). "Resultados finales del proyecto clave del telescopio espacial Hubble para medir la constante de Hubble". Revista Astrofísica . 553 (1): 47–72. arXiv : astro-ph/0012376 . Código Bib : 2001ApJ...553...47F. doi :10.1086/320638. S2CID  119097691.
  53. ^ Macri, LM; Stanek, KZ; Bersier, D.; Greenhill, LJ; Reid, MJ (2006). "Una nueva distancia cefeida a la galaxia máser-anfitriona NGC 4258 y sus implicaciones para la constante de Hubble". Revista Astrofísica . 652 (2): 1133-1149. arXiv : astro-ph/0608211 . Código bibliográfico : 2006ApJ...652.1133M. doi :10.1086/508530. S2CID  15728812.
  54. ^ Perlmutter, S .; Proyecto de cosmología de supernovas ; et al. (1999). "Medidas de Omega y Lambda de 42 supernovas de alto corrimiento al rojo". Revista Astrofísica . 517 (2): 565–86. arXiv : astro-ph/9812133 . Código Bib : 1999ApJ...517..565P. doi :10.1086/307221. S2CID  118910636.
  55. ^ Riess, Adam G .; Equipo de búsqueda de supernovas ; et al. (1998). "Evidencia observacional de supernovas de un Universo en aceleración y una constante cosmológica". Revista Astronómica . 116 (3): 1009-1038. arXiv : astro-ph/9805201 . Código bibliográfico : 1998AJ....116.1009R. doi :10.1086/300499. S2CID  15640044.
  56. ^ Cosmología , Steven Weinberg, Oxford University Press, 2008.
  57. ^ "Enredados - edición cósmica". www.spacetelescope.org . Consultado el 26 de noviembre de 2018 .
  58. ^ Sasdelli, Michele; Mazzali, Pensilvania; Pian, E.; Nomoto, K.; Hachinger, S.; Cappellaro, E.; Benetti, S. (30 de septiembre de 2014). "Estratificación de la abundancia en supernovas de tipo Ia - IV. El luminoso y peculiar SN 1991T". Avisos mensuales de la Real Sociedad Astronómica . 445 (1): 711–725. arXiv : 1409.0116 . Código Bib : 2014MNRAS.445..711S. doi :10.1093/mnras/stu1777. ISSN  0035-8711. S2CID  59067792.
  59. ^ Mazzali, Paolo A.; Hachinger, Stephan (21 de agosto de 2012). "Los espectros nebulares de la supernova de tipo Ia 1991bg: más evidencia de una explosión no estándar: los espectros nebulares de SN 1991bg". Avisos mensuales de la Real Sociedad Astronómica . 424 (4): 2926–2935. doi : 10.1111/j.1365-2966.2012.21433.x .
  60. ^ Taubenberger, S.; Hachinger, S.; Pignata, G.; Mazzali, Pensilvania; Contreras, C.; Valenti, S.; Pastorello, A.; Elías-Rosa, N.; Bärnbantner, O.; Barwig, H.; Benetti, S. (1 de marzo de 2008). "La supernova poco luminosa de Tipo Ia 2005bl y la clase de objetos similares a SN 1991bg". MNRAS . 385 (1): 75–96. arXiv : 0711.4548 . Código Bib : 2008MNRAS.385...75T. doi :10.1111/j.1365-2966.2008.12843.x. ISSN  0035-8711. S2CID  18434976.

enlaces externos