Las células piramidales , o neuronas piramidales , son un tipo de neurona multipolar que se encuentra en áreas del cerebro que incluyen la corteza cerebral , el hipocampo y la amígdala . Las células piramidales son las unidades de excitación primarias de la corteza prefrontal de los mamíferos y el tracto corticoespinal . Una de las principales características estructurales de la neurona piramidal es el soma o cuerpo celular de forma cónica, de donde toma su nombre la neurona . Otras características estructurales clave de la célula piramidal son un solo axón , una gran dendrita apical , múltiples dendritas basales y la presencia de espinas dendríticas . [1]
Las neuronas piramidales también son uno de los dos tipos de células donde se encuentra el signo característico , los cuerpos de Negri , en la infección de rabia post mortem . [2] Las neuronas piramidales fueron descubiertas y estudiadas por primera vez por Santiago Ramón y Cajal . [3] [4] Desde entonces, los estudios sobre las neuronas piramidales se han centrado en temas que van desde la neuroplasticidad hasta la cognición .
Una de las principales características estructurales de la neurona piramidal es la forma cónica del soma o cuerpo celular, que le da nombre a la neurona . Otras características estructurales clave de la célula piramidal son un único axón , una gran dendrita apical , múltiples dendritas basales y la presencia de espinas dendríticas . [1]
La dendrita apical se eleva desde el ápice del soma de la célula piramidal. La dendrita apical es una dendrita única, larga y gruesa que se ramifica varias veces a medida que aumenta la distancia desde el soma y se extiende hacia la superficie cortical. [1]
Las dendritas basales surgen de la base del soma. El árbol dendrítico basal consta de tres a cinco dendritas primarias. A medida que aumenta la distancia desde el soma, las dendritas basales se ramifican profusamente. [1]
Las células piramidales se encuentran entre las neuronas más grandes del cerebro. Tanto en humanos como en roedores, los cuerpos de las células piramidales (somas) tienen una longitud media de unos 20 μm. Las dendritas piramidales suelen tener un diámetro que va desde medio micrómetro hasta varios micrómetros. La longitud de una única dendrita suele ser de varios cientos de micrómetros. Debido a la ramificación, la longitud total dendrítica de una célula piramidal puede alcanzar varios centímetros. El axón de la célula piramidal suele ser incluso más largo y ampliamente ramificado, alcanzando muchos centímetros de longitud total.
Las espinas dendríticas reciben la mayoría de los impulsos excitatorios ( EPSP ) que entran en una célula piramidal. Las espinas dendríticas fueron descubiertas por primera vez por Ramón y Cajal en 1888 utilizando el método de Golgi . Ramón y Cajal también fue la primera persona en proponer el papel fisiológico del aumento de la superficie receptiva de la neurona. Cuanto mayor sea la superficie de la célula piramidal, mayor será la capacidad de la neurona para procesar e integrar grandes cantidades de información. Las espinas dendríticas están ausentes en el soma, mientras que el número aumenta a medida que se alejan de él. [4] La dendrita apical típica en una rata tiene al menos 3000 espinas dendríticas. La dendrita apical humana promedio tiene aproximadamente el doble de longitud que la de una rata, por lo que el número de espinas dendríticas presentes en una dendrita apical humana podría ser tan alto como 6000. [5]
La especificación piramidal ocurre durante el desarrollo temprano del cerebro. Las células progenitoras se comprometen con el linaje neuronal en la zona ventricular proliferativa subcortical (ZV) y la zona subventricular (ZSV). Las células piramidales inmaduras experimentan una migración para ocupar la placa cortical , donde se diversifican aún más. Los endocannabinoides (eCB) son una clase de moléculas que se ha demostrado que dirigen el desarrollo de las células piramidales y la búsqueda de rutas axónicas. [6] Se ha demostrado que los factores de transcripción como Ctip2 y Sox5 contribuyen a la dirección en la que las neuronas piramidales dirigen sus axones. [7]
Se ha demostrado que las células piramidales de las ratas experimentan muchos cambios rápidos durante la vida posnatal temprana . Entre los días 3 y 21 posnatales, se ha demostrado que las células piramidales duplican el tamaño del soma, aumentan cinco veces la longitud de la dendrita apical y trece veces la longitud de la dendrita basal. Otros cambios incluyen la disminución del potencial de reposo de la membrana , la reducción de la resistencia de la membrana y un aumento en los valores pico de los potenciales de acción . [8]
Al igual que las dendritas en la mayoría de las demás neuronas, las dendritas son generalmente las áreas de entrada de la neurona, mientras que el axón es la zona de salida de la neurona. Tanto los axones como las dendritas están muy ramificados. La gran cantidad de ramificaciones permite que la neurona envíe y reciba señales hacia y desde muchas neuronas diferentes.
Las neuronas piramidales, al igual que otras neuronas, tienen numerosos canales iónicos dependientes de voltaje . En las células piramidales, hay una abundancia de canales de Na + , Ca2 + y K + en las dendritas, y algunos canales en el soma. [9] [10] Los canales iónicos dentro de las dendritas de las células piramidales tienen propiedades diferentes del mismo tipo de canal iónico dentro del soma de la célula piramidal. [11] [12] Los canales de Ca2 + dependientes de voltaje en las dendritas de las células piramidales se activan por EPSP subumbral y por potenciales de acción de retropropagación . El grado de retropropagación de los potenciales de acción dentro de las dendritas piramidales depende de los canales de K + . Los canales de K + en las dendritas de las células piramidales proporcionan un mecanismo para controlar la amplitud de los potenciales de acción. [13]
La capacidad de las neuronas piramidales para integrar información depende del número y la distribución de las entradas sinápticas que reciben. Una sola célula piramidal recibe alrededor de 30.000 entradas excitatorias y 1.700 entradas inhibidoras ( IPSP ). Las entradas excitatorias (EPSP) terminan exclusivamente en las espinas dendríticas, mientras que las entradas inhibidoras (IPSP) terminan en los ejes dendríticos, el soma e incluso el axón. Las neuronas piramidales pueden ser excitadas por el neurotransmisor glutamato , [1] [14] e inhibidas por el neurotransmisor GABA . [1]
Las neuronas piramidales se han clasificado en diferentes subclases en función de sus respuestas de activación a pulsos de corriente de 400 a 1000 milisegundos. Estas clasificaciones son neuronas RSad, RSna e IB.
Las neuronas piramidales RSad, o neuronas de activación regular adaptativa , activan potenciales de acción (PA) individuales, seguidos de un potencial posterior hiperpolarizante . El potencial posterior aumenta en duración, lo que crea una adaptación de la frecuencia de las espigas (SFA) en la neurona. [15]
Las neuronas piramidales RSna, o neuronas de impulsos regulares no adaptativas, disparan un tren de potenciales de acción después de un pulso. Estas neuronas no muestran signos de adaptación. [15]
Las neuronas piramidales IB, o neuronas intrínsecamente activas, responden a los pulsos umbral con una ráfaga de dos a cinco potenciales de acción rápidos. Las neuronas piramidales IB no muestran adaptación. [15]
Existen varios estudios que muestran que las propiedades morfológicas y eléctricas de las células piramidales podrían deducirse de la expresión génica medida mediante la secuenciación de células individuales . [16] Varios estudios proponen que las clasificaciones de células individuales en neuronas de ratón [17] y humano [18] basadas en la expresión génica podrían explicar varias propiedades neuronales. Los tipos neuronales en estas clasificaciones se dividen en excitatorios, inhibidores y cientos de subtipos correspondientes. Por ejemplo, las células piramidales de la capa 2-3 en humanos se clasifican como tipo FREM3 [16] y a menudo tienen una gran cantidad de corriente Ih [19] generada por el canal HCN .
Las neuronas piramidales son el tipo de célula neuronal principal en el tracto corticoespinal . El control motor normal depende del desarrollo de conexiones entre los axones en el tracto corticoespinal y la médula espinal. Los axones de las células piramidales siguen señales como los factores de crecimiento para hacer conexiones específicas. Con conexiones adecuadas, las células piramidales participan en el circuito responsable de la función motora guiada por la visión. [20]
Las neuronas piramidales de la corteza prefrontal están implicadas en la capacidad cognitiva. En los mamíferos, la complejidad de las células piramidales aumenta desde las regiones cerebrales posteriores a las anteriores . El grado de complejidad de las neuronas piramidales probablemente esté vinculado a las capacidades cognitivas de las diferentes especies antropoides. Las células piramidales de la corteza prefrontal parecen ser responsables del procesamiento de la información procedente de la corteza auditiva primaria, la corteza somatosensorial primaria y la corteza visual primaria, todas las cuales procesan modalidades sensoriales. [21] Estas células también podrían desempeñar un papel fundamental en el reconocimiento de objetos complejos dentro de las áreas de procesamiento visual de la corteza. [3] En relación con otras especies, el mayor tamaño celular y la complejidad de las neuronas piramidales, junto con ciertos patrones de organización y función celular, se correlacionan con la evolución de la cognición humana. [22]
Las células piramidales del hipocampo son esenciales para ciertos tipos de memoria y aprendizaje. Forman sinapsis que ayudan a la integración de voltajes sinápticos a lo largo de sus complejos árboles dendríticos a través de interacciones con fibras musgosas de células granulares . Dado que afecta los voltajes postsinápticos producidos por la activación de las fibras musgosas, la ubicación de las excrecencias espinosas en las dendritas basales y apicales es importante para la formación de la memoria. Al permitir el control dinámico de la sensibilidad de las células piramidales CA3, esta agrupación de sinapsis de fibras musgosas en las células piramidales puede facilitar la iniciación de picos somáticos.
Las interacciones entre las células piramidales y aproximadamente 41 botones de fibras musgosas, cada uno de los cuales se origina en una célula granular única, resaltan el papel de estos botones en el procesamiento de la información y la conectividad sináptica, que son esenciales para la memoria y el aprendizaje. Fundamentalmente, la entrada de las fibras musgosas es recibida por las células piramidales en el hipocampo, que integran voltajes sinápticos dentro de su arquitectura dendrítica. La ubicación de las protuberancias espinosas y la agrupación de las sinapsis influyen en la sensibilidad y contribuyen al procesamiento de la información relacionada con la memoria y el aprendizaje. [23]