La coloración estructural en los animales y algunas plantas es la producción de color por superficies microscópicamente estructuradas lo suficientemente finas como para interferir con la luz visible en lugar de pigmentos , aunque cierta coloración estructural ocurre en combinación con pigmentos. Por ejemplo, las plumas de la cola del pavo real están pigmentadas de marrón, pero su estructura microscópica hace que también reflejen luz azul, turquesa y verde, y a menudo son iridiscentes .
La coloración estructural fue descrita por primera vez por los científicos ingleses Robert Hooke e Isaac Newton , y su principio —interferencia de ondas— fue explicado por Thomas Young un siglo después. Young describió la iridiscencia como el resultado de la interferencia entre los reflejos de dos o más superficies de películas delgadas , combinada con la refracción cuando la luz entra y sale de dichas películas. La geometría determina entonces que en ciertos ángulos, la luz reflejada desde ambas superficies interfiere de manera constructiva, mientras que en otros ángulos, la luz interfiere de manera destructiva. Por lo tanto, aparecen diferentes colores en diferentes ángulos.
En animales como en las plumas de las aves y las escamas de las mariposas , la interferencia es creada por una gama de mecanismos fotónicos , incluyendo rejillas de difracción , espejos selectivos, cristales fotónicos , fibras de cristal, matrices de nanocanales y proteínas que pueden variar su configuración. Algunos cortes de carne también muestran coloración estructural debido a la exposición de la disposición periódica de las fibras musculares. Muchos de estos mecanismos fotónicos corresponden a estructuras elaboradas visibles por microscopía electrónica . En las pocas plantas que explotan la coloración estructural, los colores brillantes son producidos por estructuras dentro de las células. La coloración azul más brillante conocida en cualquier tejido vivo se encuentra en las bayas de mármol de Pollia condensata , donde una estructura espiral de fibrillas de celulosa produce la dispersión de la luz de la ley de Bragg . El brillo brillante de los ranúnculos es producido por la reflexión de película delgada por la epidermis complementada por pigmentación amarilla y una fuerte dispersión difusa por una capa de células de almidón inmediatamente debajo.
La coloración estructural tiene potencial para aplicaciones industriales, comerciales y militares, con superficies biomiméticas que podrían proporcionar colores brillantes, camuflaje adaptativo , interruptores ópticos eficientes y vidrio de baja reflectancia.
En su libro Micrographia de 1665 , Robert Hooke describió los colores "fantásticos" de las plumas del pavo real : [1]
Las partes de las plumas de esta gloriosa ave aparecen, a través del microscopio, no menos llamativas que las plumas enteras; porque, a simple vista, es evidente que el tallo o caña de cada pluma de la cola envía multitud de ramas laterales, ... así que cada uno de esos hilos en el microscopio parece un cuerpo grande y largo, que consiste en una multitud de partes brillantes y reflectantes.
... sus lados superiores me parecen consistir en una multitud de cuerpos delgados, que son extremadamente delgados y se encuentran muy cerca unos de otros, y por lo tanto, como las conchas de nácar , no solo reflejan una luz muy viva, sino que tiñen esa luz de una manera muy curiosa; y por medio de varias posiciones, con respecto a la luz, reflejan ahora un color, y luego otro, y esos más vívidamente. Ahora bien, como estos colores son únicamente fantásticos, es decir, los que surgen inmediatamente de las refracciones de la luz, descubrí que el agua, al mojar estas partes coloreadas, destruía sus colores, que parecían proceder de la alteración de la reflexión y la refracción. [1]
En su libro Opticks de 1704 , Isaac Newton describió el mecanismo de los colores distintos del pigmento marrón de las plumas de la cola del pavo real. [2] Newton señaló que [3]
Las plumas finamente coloreadas de algunas aves, y particularmente las de las colas de los pavos reales, en la misma parte de la pluma, aparecen de varios colores en varias posiciones del ojo, de la misma manera que se encontró que las placas delgadas lo hacían en las observaciones 7 y 19, y por lo tanto sus colores surgen de la delgadez de las partes transparentes de las plumas; es decir, de la delgadez de los pelos muy finos, o Capillamenta, que crecen de los lados de las ramas laterales más gruesas o fibras de esas plumas. [3]
Thomas Young (1773-1829) amplió la teoría de partículas de la luz de Newton al demostrar que la luz también podía comportarse como una onda. En 1803, demostró que la luz podía difractarse a partir de bordes afilados o rendijas, creando patrones de interferencia . [4] [5]
En su libro Animal Coloration de 1892 , Frank Evers Beddard (1858-1925) reconoció la existencia de colores estructurales:
Los colores de los animales se deben o bien únicamente a la presencia de pigmentos definidos en la piel, o bien debajo de la piel; o bien son causados en parte por efectos ópticos debidos a la dispersión, difracción o refracción desigual de los rayos de luz. Los colores de este último tipo se denominan a menudo colores estructurales; son causados por la estructura de las superficies coloreadas. El brillo metálico de las plumas de muchas aves, como los colibríes , se debe a la presencia de estrías excesivamente finas sobre la superficie de las plumas. [6] : 1
Pero Beddard luego desestimó en gran medida la coloración estructural, primero por subordinarla a los pigmentos: "en todos los casos, el color [estructural] necesita para su exhibición un fondo de pigmento oscuro" [6] : 2 y luego al afirmar su rareza: "Con mucho, la fuente más común de color en los animales invertebrados es la presencia en la piel de pigmentos definidos", [6] : 2 aunque luego admite que el topo dorado del Cabo tiene "peculiaridades estructurales" en su pelo que "dan lugar a colores brillantes". [6] : 32
La coloración estructural es causada por efectos de interferencia más que por pigmentos. [7] [8] Los colores se producen cuando un material está marcado con líneas finas paralelas, o formado por una o más capas delgadas paralelas, o de otra manera compuesto de microestructuras en la escala de la longitud de onda del color . [9]
La coloración estructural es responsable de los azules y verdes de las plumas de muchas aves (el abejaruco , el martín pescador y el rodillo , por ejemplo), así como de muchas alas de mariposas , de los élitros de los escarabajos y (aunque es raro entre las flores ) del brillo de los pétalos del botón de oro . [10] [11] Estos suelen ser iridiscentes , como en las plumas de pavo real y en las conchas nacaradas como las de las ostras perleras ( Pteriidae ) y los nautilus . Esto se debe a que el color reflejado depende del ángulo de visión, que a su vez rige el espaciado aparente de las estructuras responsables. [12] Los colores estructurales se pueden combinar con colores de pigmentos: las plumas de pavo real están pigmentadas de marrón con melanina , [1] [10] [13] [14] mientras que los pétalos del botón de oro tienen pigmentos carotenoides para el amarilleo y películas delgadas para la reflectividad. [11]
La iridiscencia, como explicó Thomas Young en 1803, se crea cuando películas extremadamente delgadas reflejan parte de la luz que cae sobre ellas desde sus superficies superiores. El resto de la luz pasa a través de las películas y otra parte se refleja desde sus superficies inferiores. Los dos conjuntos de ondas reflejadas viajan de regreso hacia arriba en la misma dirección. Pero como las ondas reflejadas desde abajo viajaron un poco más lejos (controlado por el grosor y el índice de refracción de la película, y el ángulo en el que cayó la luz), los dos conjuntos de ondas están desfasados . Cuando las ondas están separadas por una o más longitudes de onda completas (en otras palabras, en ciertos ángulos específicos), se suman (interfieren constructivamente), dando lugar a una fuerte reflexión. En otros ángulos y diferencias de fase, pueden restarse, dando lugar a reflexiones débiles. Por lo tanto, la película delgada refleja selectivamente solo una longitud de onda (un color puro) en cualquier ángulo dado, pero otras longitudes de onda (colores diferentes) en diferentes ángulos. Por lo tanto, cuando una estructura de película delgada, como el ala de una mariposa o la pluma de un pájaro, parece cambiar de color. [2]
Varias estructuras fijas pueden crear colores estructurales mediante mecanismos que incluyen rejillas de difracción, espejos selectivos, cristales fotónicos, fibras de cristal y matrices deformadas. [8] Las estructuras pueden ser mucho más elaboradas que una sola película delgada: las películas se pueden apilar para dar una fuerte iridiscencia, para combinar dos colores o para equilibrar el inevitable cambio de color con el ángulo para dar un efecto más difuso y menos iridiscente. [10] Cada mecanismo ofrece una solución específica al problema de crear un color brillante o una combinación de colores visibles desde diferentes direcciones.
Una rejilla de difracción construida con capas de quitina y aire da lugar a los colores iridiscentes de varias escamas de las alas de las mariposas, así como a las plumas de la cola de aves como el pavo real. Hooke y Newton tenían razón en su afirmación de que los colores del pavo real se crean por interferencia, pero las estructuras responsables, al estar cerca de la longitud de onda de la luz en escala (ver micrografías), eran más pequeñas que las estructuras estriadas que podían ver con sus microscopios ópticos . Otra forma de producir una rejilla de difracción es con matrices de quitina en forma de árbol, como en las escamas de las alas de algunas de las mariposas tropicales Morpho de colores brillantes (ver dibujo). Existe otra variante en Parotia lawesii , la parotia de Lawes , un ave del paraíso. Las bárbulas de las plumas de su parche pectoral de colores brillantes tienen forma de V, lo que crea microestructuras de película delgada que reflejan fuertemente dos colores diferentes, azul verdoso brillante y amarillo anaranjado. Cuando el ave se mueve, el color cambia bruscamente entre estos dos colores, en lugar de variar iridiscentemente. Durante el cortejo, el pájaro macho realiza sistemáticamente pequeños movimientos para atraer a las hembras, por lo que las estructuras deben haber evolucionado a través de la selección sexual . [10] [15]
Los cristales fotónicos se pueden formar de diferentes maneras. [16] En Parides sesostris , la mariposa corazón de ganado con parches esmeralda, [17] los cristales fotónicos están formados por conjuntos de agujeros de tamaño nanométrico en la quitina de las escamas del ala. Los agujeros tienen un diámetro de unos 150 nanómetros y están aproximadamente a la misma distancia entre sí. Los agujeros están dispuestos regularmente en pequeños parches; los parches vecinos contienen conjuntos con diferentes orientaciones. El resultado es que estas escamas corazón de ganado con parches esmeralda reflejan la luz verde de manera uniforme en diferentes ángulos en lugar de ser iridiscentes. [10] [18] En Lamprocyphus augustus , un gorgojo de Brasil , el exoesqueleto de quitina está cubierto de escamas ovaladas verdes iridiscentes. Estas contienen redes cristalinas basadas en diamantes orientadas en todas las direcciones para dar una coloración verde brillante que apenas varía con el ángulo. Las escamas se dividen efectivamente en píxeles de aproximadamente un micrómetro de ancho. Cada uno de estos píxeles es un cristal único y refleja la luz en una dirección diferente a la de sus vecinos. [19] [20]
Los espejos selectivos para crear efectos de interferencia están formados por hoyos en forma de cuenco de tamaño micrométrico revestidos con múltiples capas de quitina en las escamas de las alas de Papilio palinurus , la mariposa cola de golondrina esmeralda . Estos actúan como espejos altamente selectivos para dos longitudes de onda de luz. La luz amarilla se refleja directamente desde los centros de los hoyos; la luz azul se refleja dos veces por los lados de los hoyos. La combinación parece verde, pero se puede ver como una serie de puntos amarillos rodeados de círculos azules bajo un microscopio. [10]
Las fibras de cristal , formadas por matrices hexagonales de nanofibras huecas, crean los brillantes colores iridiscentes de las cerdas de Aphrodita , el ratón marino , un género de anélidos marinos no parecidos a los gusanos. [10] Los colores son aposemáticos , advirtiendo a los depredadores que no ataquen. [21] Las paredes de quitina de las cerdas huecas forman un cristal fotónico hexagonal en forma de panal; los agujeros hexagonales están separados por 0,51 μm. La estructura se comporta ópticamente como si consistiera en una pila de 88 rejillas de difracción, lo que convierte a Aphrodita en uno de los organismos marinos más iridiscentes. [22]
Las matrices deformadas , que consisten en nanocanales orientados aleatoriamente en una matriz de queratina similar a una esponja , crean el color azul difuso no iridiscente de Ara ararauna , el guacamayo azul y amarillo . Dado que los reflejos no están todos dispuestos en la misma dirección, los colores, aunque siguen siendo magníficos, no varían mucho con el ángulo, por lo que no son iridiscentes. [10] [23]
Las espirales , formadas por microfibrillas de celulosa apiladas helicoidalmente , crean la reflexión de Bragg en las "bayas de mármol" de la hierba africana Pollia condensata , lo que da como resultado la coloración azul más intensa conocida en la naturaleza. [24] La superficie de la baya tiene cuatro capas de células con paredes gruesas, que contienen espirales de celulosa transparente espaciadas de manera que permiten una interferencia constructiva con la luz azul. Debajo de estas células hay una capa de dos o tres células de espesor que contiene taninos de color marrón oscuro . Pollia produce un color más fuerte que las alas de las mariposas Morpho , y es uno de los primeros ejemplos de coloración estructural conocidos de cualquier planta. Cada célula tiene su propio grosor de fibras apiladas, lo que hace que refleje un color diferente de sus vecinas y produzca un efecto pixelado o puntillista con diferentes azules moteados con puntos verdes, morados y rojos brillantes. Las fibras en cualquier célula son zurdas o diestras, por lo que cada célula polariza circularmente la luz que refleja en una dirección u otra. Pollia es el primer organismo conocido que muestra tal polarización aleatoria de la luz, que, sin embargo, no tiene una función visual, ya que los pájaros que se alimentan de semillas que visitan esta especie de planta no son capaces de percibir la luz polarizada. [25] También se encuentran microestructuras espirales en los escarabajos , donde producen colores iridiscentes.
Película delgada con reflector difuso , basada en las dos capas superiores de los pétalos de un ranúnculo. El brillo amarillo brillante se deriva de una combinación, rara entre las plantas, de pigmento amarillo y coloración estructural. La epidermis superior muy lisa actúa como una película delgada reflectante e iridiscente; por ejemplo, en Ranunculus acris , la capa tiene 2,7 micrómetros de espesor. Las inusuales células de almidón forman un reflector difuso pero fuerte, que realza el brillo de la flor. Los pétalos curvados forman un plato paraboloide que dirige el calor del sol a las partes reproductivas en el centro de la flor, manteniéndola algunos grados Celsius por encima de la temperatura ambiente. [11]
Rejillas superficiales , que consisten en características superficiales ordenadas debido a la exposición de células musculares ordenadas en cortes de carne . La coloración estructural en cortes de carne aparece solo después de que se expone el patrón ordenado de fibrillas musculares y la luz es difractada por las proteínas en las fibrillas. La coloración o longitud de onda de la luz difractada depende del ángulo de observación y se puede mejorar cubriendo la carne con láminas translúcidas. Hacer rugosa la superficie o eliminar el contenido de agua mediante secado hace que la estructura colapse, por lo tanto, la coloración estructural desaparece. [26]
La interferencia de múltiples reflexiones internas totales puede ocurrir en estructuras a microescala, como gotitas de agua sésiles y gotitas bifásicas de aceite en agua [27], así como en superficies microestructuradas de polímeros. [28] En este mecanismo de coloración estructural, los rayos de luz que viajan por diferentes caminos de reflexión interna total a lo largo de una interfaz interfieren para generar un color iridiscente.
Algunos animales, incluidos los cefalópodos como el calamar, pueden variar sus colores rápidamente tanto para camuflarse como para enviar señales. Los mecanismos incluyen proteínas reversibles que pueden cambiar entre dos configuraciones. La configuración de las proteínas reflectinas en las células cromatóforas de la piel del calamar Doryteuthis pealeii está controlada por la carga eléctrica. Cuando no hay carga, las proteínas se apilan juntas de forma apretada, formando una capa delgada y más reflectante; cuando hay carga, las moléculas se apilan de forma más suelta, formando una capa más gruesa. Dado que los cromatóforos contienen múltiples capas de reflectina, el cambio cambia el espaciado de las capas y, por lo tanto, el color de la luz que se refleja. [10]
Los pulpos de anillos azules pasan gran parte de su tiempo escondidos en grietas mientras exhiben patrones de camuflaje efectivos con sus células cromatóforas dérmicas . Si se los provoca, cambian rápidamente de color, volviéndose de un amarillo brillante y cada uno de los 50-60 anillos destella de un azul iridiscente brillante en un tercio de segundo. En el pulpo de anillos azules mayor ( Hapalochlaena lunulata ), los anillos contienen iridóforos multicapa . Estos están dispuestos para reflejar la luz azul-verde en una amplia dirección de visión. Los destellos rápidos de los anillos azules se logran utilizando músculos bajo control neural. En circunstancias normales, cada anillo está oculto por la contracción de los músculos por encima de los iridóforos. Cuando estos se relajan y los músculos fuera del anillo se contraen, los anillos azules brillantes quedan expuestos. [29]
Gabriel Lippmann ganó el Premio Nobel de Física en 1908 por su trabajo sobre un método de coloración estructural de la fotografía en color, la placa de Lippmann . Esta utilizaba una emulsión fotosensible lo suficientemente fina como para que la interferencia causada por las ondas de luz que se reflejaban en la parte posterior de la placa de vidrio se registrara en el espesor de la capa de emulsión, en un proceso fotográfico monocromático (blanco y negro). Al hacer brillar luz blanca a través de la placa se reconstruyen eficazmente los colores de la escena fotografiada. [30] [31]
En 2010, la modista Donna Sgro hizo un vestido con Morphotex de Teijin Fibers, un tejido sin teñir tejido a partir de fibras coloreadas estructuralmente, imitando la microestructura de las escamas de las alas de la mariposa Morpho . [32] [33] [34] Las fibras están compuestas por 61 capas alternas planas, de entre 70 y 100 nanómetros de espesor, de dos plásticos con diferentes índices de refracción, nailon y poliéster , en una funda de nailon transparente con una sección transversal ovalada. Los materiales están dispuestos de manera que el color no varíe con el ángulo. [35] Las fibras se han producido en rojo, verde, azul y violeta. [36]
Varios países y regiones, incluidos los EE. UU., la Unión Europea y Brasil, utilizan billetes que incluyen tinta ópticamente variable , que tiene un color estructural, como medida de seguridad. Estas tintas perladas aparecen en diferentes colores según el ángulo desde el que se mire el billete. Debido a que la tinta es difícil de obtener y a que una fotocopiadora o un escáner (que funcionan desde un solo ángulo) no pueden reproducir o incluso percibir el efecto de cambio de color, la tinta sirve para dificultar la falsificación.
La coloración estructural podría explotarse aún más a nivel industrial y comercial, y ya se están realizando investigaciones que podrían conducir a tales aplicaciones. Un paralelo directo sería la creación de telas de camuflaje militar activas o adaptativas que varíen sus colores y patrones para adaptarse a su entorno, tal como lo hacen los camaleones y los cefalópodos . La capacidad de variar la reflectividad a diferentes longitudes de onda de la luz también podría conducir a interruptores ópticos eficientes que podrían funcionar como transistores , lo que permitiría a los ingenieros fabricar computadoras y enrutadores ópticos rápidos. [10]
La superficie del ojo compuesto de la mosca doméstica está densamente llena de proyecciones microscópicas que tienen el efecto de reducir la reflexión y, por lo tanto, aumentar la transmisión de la luz incidente. [37] De manera similar, los ojos de algunas polillas tienen superficies antirreflectantes, nuevamente utilizando conjuntos de pilares más pequeños que la longitud de onda de la luz. Las nanoestructuras de "ojo de polilla" podrían usarse para crear vidrio de baja reflectancia para ventanas, células solares, dispositivos de visualización y tecnologías militares furtivas. [38] Las superficies biomiméticas antirreflectantes que utilizan el principio del "ojo de polilla" se pueden fabricar creando primero una máscara mediante litografía con nanopartículas de oro y luego realizando un grabado de iones reactivos . [39]
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)MORPHOTEX, la primera fibra coloreada estructuralmente del mundo, presenta una estructura de pila con varias decenas de capas de nanoorden de fibras de poliéster y nailon con diferentes índices de refracción, lo que facilita el control del color mediante tomografía de coherencia óptica. El control estructural significa que una sola fibra siempre mostrará los mismos colores independientemente de su ubicación.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)