stringtranslate.com

Adrenalina

La adrenalina , también conocida como epinefrina , es una hormona y un medicamento [7] [8] que participa en la regulación de las funciones viscerales (p. ej., la respiración). [7] [9] Aparece como un gránulo microcristalino blanco. [10] La adrenalina normalmente es producida por las glándulas suprarrenales y por una pequeña cantidad de neuronas en el bulbo raquídeo . [11] Desempeña un papel esencial en la respuesta de lucha o huida al aumentar el flujo sanguíneo a los músculos, el gasto cardíaco al actuar sobre el nódulo SA , [12] la respuesta de dilatación de la pupila y el nivel de azúcar en sangre . [13] [14] Lo hace uniéndose a los receptores alfa y beta . [14] Se encuentra en muchos animales, incluidos los humanos, y en algunos organismos unicelulares . [15] [16] También se ha aislado de la planta Scoparia dulcis que se encuentra en el norte de Vietnam. [17]

Usos médicos

Como medicamento, se usa para tratar varias afecciones, incluida la anafilaxia por reacción alérgica , el paro cardíaco y el sangrado superficial. [5] La adrenalina inhalada se puede utilizar para mejorar los síntomas del crup . [18] También se puede utilizar para el asma cuando otros tratamientos no son eficaces. Se administra por vía intravenosa , mediante inyección en un músculo , por inhalación o mediante inyección justo debajo de la piel . [5] Los efectos secundarios comunes incluyen temblores, ansiedad y sudoración. Puede producirse un ritmo cardíaco rápido y presión arterial alta. Ocasionalmente puede resultar en un ritmo cardíaco anormal . Si bien no está clara la seguridad de su uso durante el embarazo y la lactancia , se deben tener en cuenta los beneficios para la madre. [5]

Se ha defendido el uso de infusión de adrenalina en lugar del tratamiento ampliamente aceptado con inotrópicos para bebés prematuros con compromiso cardiovascular clínico. Aunque hay datos suficientes que recomiendan firmemente las infusiones de adrenalina como tratamiento viable, se necesitan más ensayos para determinar de manera concluyente que estas infusiones reducirán con éxito las tasas de morbilidad y mortalidad entre los bebés prematuros con problemas cardiovasculares. [19]

La epinefrina también se puede utilizar para tratar el glaucoma de ángulo abierto, ya que se ha descubierto que reduce la salida de humor acuoso en el ojo. Esto reduce la presión intraocular en el ojo y, por tanto, ayuda en el tratamiento. [20]

Efectos fisiológicos

La médula suprarrenal contribuye de manera importante al total de catecolaminas circulantes ( la L -DOPA se encuentra en una concentración más alta en el plasma ), [21] aunque contribuye con más del 90% de la adrenalina circulante. Se encuentra poca adrenalina en otros tejidos, principalmente en células cromafines dispersas y en una pequeña cantidad de neuronas que utilizan la adrenalina como neurotransmisor . [22] Después de la adrenalectomía , la adrenalina desaparece por debajo del límite de detección en el torrente sanguíneo. [23]

Las dosis farmacológicas de adrenalina estimulan los adrenoceptores α 1 , α 2 , β 1 , β 2 y β 3 del sistema nervioso simpático . Los receptores nerviosos simpáticos se clasifican en adrenérgicos según su capacidad de respuesta a la adrenalina. [24] El término "adrenérgico" a menudo se malinterpreta porque el principal neurotransmisor simpático es la noradrenalina , en lugar de la adrenalina, como lo descubrió Ulf von Euler en 1946. [25] [26] La adrenalina tiene un efecto mediado por los receptores adrenérgicos β 2 sobre el metabolismo. y las vías respiratorias , sin conexión neuronal directa desde los ganglios simpáticos a las vías respiratorias . [27] [28] [29]

Walter Bradford Cannon propuso originalmente el concepto de que la médula suprarrenal y el sistema nervioso simpático estaban involucrados en la respuesta de huida, lucha y miedo. [30] Pero la médula suprarrenal, a diferencia de la corteza suprarrenal, no es necesaria para la supervivencia. En pacientes suprarrenalectomizados, las respuestas hemodinámicas y metabólicas a estímulos como la hipoglucemia y el ejercicio permanecen normales. [31] [32]

Ejercicio

Un estímulo fisiológico para la secreción de adrenalina es el ejercicio. Esto se demostró por primera vez midiendo la dilatación de una pupila (desnervada) de un gato en una cinta rodante, [33] y luego se confirmó mediante un ensayo biológico de muestras de orina. [34] Los métodos bioquímicos para medir las catecolaminas en plasma se publicaron a partir de 1950. [35] Aunque se han publicado muchos trabajos valiosos utilizando ensayos fluorimétricos para medir las concentraciones totales de catecolaminas, el método es demasiado inespecífico e insensible para determinar con precisión las cantidades muy pequeñas de adrenalina en plasma. El desarrollo de métodos de extracción y ensayos radioenzimáticos de derivados de enzimas-isótopos (REA) transformó el análisis hasta una sensibilidad de 1 pg para adrenalina. [36] Los primeros ensayos de plasma REA indicaron que la adrenalina y las catecolaminas totales aumentan tarde en el ejercicio, principalmente cuando comienza el metabolismo anaeróbico. [37] [38] [39]

Durante el ejercicio, la concentración de adrenalina en sangre aumenta en parte debido al aumento de la secreción de la médula suprarrenal y en parte a la disminución del metabolismo de la adrenalina debido a la reducción del flujo sanguíneo al hígado. [40] La infusión de adrenalina para reproducir las concentraciones circulantes de adrenalina durante el ejercicio en sujetos en reposo tiene poco efecto hemodinámico aparte de una ligera caída mediada por β 2 en la presión arterial diastólica. [41] [42] La infusión de adrenalina dentro del rango fisiológico suprime la hiperreactividad de las vías respiratorias humanas lo suficiente como para antagonizar los efectos constrictores de la histamina inhalada. [43]

En 1887 se demostró un vínculo entre el sistema nervioso simpático y los pulmones cuando Grossman demostró que la estimulación de los nervios del acelerador cardíaco revertía la constricción de las vías respiratorias inducida por la muscarina. [44] En experimentos con perros, donde se cortó la cadena simpática al nivel del diafragma, Jackson demostró que no había inervación simpática directa al pulmón, pero la broncoconstricción se revertía mediante la liberación de adrenalina de la médula suprarrenal. [45] No se ha informado una mayor incidencia de asma en pacientes adrenalectomizados; aquellos con predisposición al asma tendrán cierta protección contra la hiperreactividad de las vías respiratorias gracias a su terapia de reemplazo de corticosteroides. El ejercicio induce una dilatación progresiva de las vías respiratorias en sujetos normales que se correlaciona con la carga de trabajo y no se previene con el betabloqueo. [46] La dilatación progresiva de las vías respiratorias con el aumento del ejercicio está mediada por una reducción progresiva del tono vagal en reposo. El bloqueo beta con propranolol provoca un rebote en la resistencia de las vías respiratorias después del ejercicio en sujetos normales durante el mismo período de tiempo que la broncoconstricción observada en el asma inducida por el ejercicio. [47] La ​​reducción de la resistencia de las vías respiratorias durante el ejercicio reduce el trabajo respiratorio. [48]

Respuestas emocionales

Toda respuesta emocional tiene un componente conductual, autonómico y hormonal. El componente hormonal incluye la liberación de adrenalina, una respuesta adrenomedular al estrés controlada por el sistema nervioso simpático . La principal emoción estudiada en relación con la adrenalina es el miedo. En un experimento, los sujetos a los que se les inyectó adrenalina expresaron más expresiones faciales negativas y menos positivas ante las películas de miedo en comparación con un grupo de control. Estos sujetos también informaron de un miedo más intenso a las películas y una mayor intensidad media de recuerdos negativos que los sujetos de control. [49] Los hallazgos de este estudio demuestran que existen asociaciones aprendidas entre los sentimientos negativos y los niveles de adrenalina. En general, una mayor cantidad de adrenalina se correlaciona positivamente con un estado de excitación de emociones negativas . Estos hallazgos pueden ser en parte un efecto de que la adrenalina provoca respuestas simpáticas fisiológicas, incluido un aumento de la frecuencia cardíaca y temblores de rodillas, que pueden atribuirse a la sensación de miedo, independientemente del nivel real de miedo provocado por el vídeo. Aunque los estudios han encontrado una relación definitiva entre la adrenalina y el miedo, otras emociones no han tenido tales resultados. En el mismo estudio, los sujetos no expresaron mayor diversión ante una película de entretenimiento ni mayor enfado ante una película de ira. [49] Hallazgos similares también fueron respaldados en un estudio que involucró a roedores que podían o no podían producir adrenalina. Los hallazgos respaldan la idea de que la adrenalina desempeña un papel a la hora de facilitar la codificación de eventos emocionalmente excitantes, contribuyendo a mayores niveles de excitación debido al miedo. [50]

Memoria

Se ha descubierto que las hormonas adrenérgicas, como la adrenalina, pueden producir una mejora retrógrada de la memoria a largo plazo en los seres humanos. La liberación de adrenalina debido a eventos emocionalmente estresantes, que es adrenalina endógena, puede modular la consolidación de la memoria de los eventos, asegurando una fortaleza de la memoria que es proporcional a la importancia de la memoria. La actividad de adrenalina post-aprendizaje también interactúa con el grado de excitación asociado con la codificación inicial. [51] Existe evidencia que sugiere que la adrenalina tiene un papel en la adaptación al estrés a largo plazo y en la codificación de la memoria emocional específicamente. La adrenalina también puede desempeñar un papel en la elevación de la excitación y la memoria del miedo en condiciones patológicas particulares, incluido el trastorno de estrés postraumático . [50] En general, "extensa evidencia indica que la epinefrina (EPI) modula la consolidación de la memoria para tareas emocionalmente excitantes en animales y seres humanos". [52] Los estudios también han encontrado que la memoria de reconocimiento que involucra adrenalina depende de un mecanismo que depende de los adrenoceptores β. [52] La adrenalina no cruza fácilmente la barrera hematoencefálica, por lo que sus efectos sobre la consolidación de la memoria son iniciados, al menos en parte, por los adrenoceptores β en la periferia. Los estudios han encontrado que el sotalol , un antagonista de los receptores adrenérgicos β que tampoco ingresa fácilmente al cerebro, bloquea los efectos potenciadores de la adrenalina administrada periféricamente sobre la memoria. [53] Estos hallazgos sugieren que los adrenoceptores β son necesarios para que la adrenalina tenga un impacto en la consolidación de la memoria. [ cita necesaria ]

Patología

Se observa un aumento de la secreción de adrenalina en el feocromocitoma , la hipoglucemia , el infarto de miocardio y, en menor grado, en el temblor esencial (también conocido como temblor benigno, familiar o idiopático). Un aumento general de la actividad neural simpática suele ir acompañado de un aumento de la secreción de adrenalina, pero hay selectividad durante la hipoxia y la hipoglucemia, cuando la proporción entre adrenalina y noradrenalina aumenta considerablemente. [54] [55] [56] Por lo tanto, debe haber cierta autonomía de la médula suprarrenal del resto del sistema simpático.

El infarto de miocardio se asocia con niveles elevados de adrenalina y noradrenalina circulantes, particularmente en el shock cardiogénico. [57] [58]

El temblor familiar benigno (BFT) responde a los bloqueadores β adrenérgicos periféricos y se sabe que la estimulación β 2 causa temblor. Se encontró que los pacientes con BFT tenían un aumento de la adrenalina plasmática pero no de la noradrenalina. [59] [60]

Se pueden observar concentraciones bajas o ausentes de adrenalina en la neuropatía autonómica o después de una adrenalectomía. La falla de la corteza suprarrenal, como ocurre con la enfermedad de Addison , puede suprimir la secreción de adrenalina ya que la actividad de la enzima sintetizadora, feniletanolamina -N -metiltransferasa , depende de la alta concentración de cortisol que drena de la corteza a la médula. [61] [62] [63]

Terminología

En 1901, Jōkichi Takamine patentó un extracto purificado de las glándulas suprarrenales , que fue registrado como marca registrada por Parke, Davis & Co en Estados Unidos. [64] El nombre aprobado británico y el término de la Farmacopea Europea para este fármaco es, por tanto, adrenalina (del latín ad , "sobre", y rēnālis , "del riñón", de ren , "riñón"). [sesenta y cinco]

Sin embargo, el farmacólogo John Abel ya había preparado un extracto de glándulas suprarrenales ya en 1897, y acuñó el nombre de epinefrina para describirla (del griego antiguo ἐπῐ́ ( epí ), "sobre", y νεφρός ( nephrós ), "riñón". ). [64] Como el término Adrenalina era una marca registrada en los EE. UU., [64] y en la creencia de que el extracto de Abel era el mismo que el de Takamine (una creencia desde entonces cuestionada), la epinefrina se convirtió en [ ¿cuándo? ] el nombre genérico utilizado en los EE. UU. [64] y sigue siendo el nombre adoptado del producto farmacéutico en los Estados Unidos y la denominación común internacional (aunque el nombre adrenalina se usa con frecuencia [66] ).

La terminología es ahora una de las pocas diferencias entre los sistemas de nombres INN y BAN. [67] Aunque los profesionales de la salud y los científicos europeos utilizan preferentemente el término adrenalina , ocurre lo contrario entre los profesionales de la salud y los científicos estadounidenses. Sin embargo, incluso entre estos últimos, los receptores de esta sustancia se denominan receptores adrenérgicos o adrenoceptores , y los fármacos que imitan sus efectos suelen denominarse adrenérgicos . Rao revisa la historia de la adrenalina y la epinefrina. [68]

Mecanismo de acción

Video timelapse de 7x de velocidad de melanóforos de peces respondiendo a 200μM de adrenalina

Como hormona, la adrenalina actúa en casi todos los tejidos del cuerpo uniéndose a los receptores adrenérgicos . Sus efectos sobre diversos tejidos dependen del tipo de tejido y de la expresión de formas específicas de receptores adrenérgicos . Por ejemplo, los niveles altos de adrenalina provocan la relajación del músculo liso de las vías respiratorias, pero provocan la contracción del músculo liso que recubre la mayoría de las arteriolas .

La adrenalina es un agonista no selectivo de todos los receptores adrenérgicos, incluidos los subtipos principales α 1 , α 2 , β 1 , β 2 y β 3 . [69] La unión de la adrenalina a estos receptores desencadena una serie de cambios metabólicos. La unión a los receptores α-adrenérgicos inhibe la secreción de insulina por el páncreas , estimula la glucogenólisis en el hígado y el músculo , [70] y estimula la glucólisis e inhibe la glucogénesis mediada por insulina en el músculo. [71] [72] La unión del receptor adrenérgico β desencadena la secreción de glucagón en el páncreas, un aumento de la secreción de hormona adrenocorticotrópica (ACTH) por parte de la glándula pituitaria y un aumento de la lipólisis por el tejido adiposo . Juntos, estos efectos aumentan la glucosa en sangre y los ácidos grasos , proporcionando sustratos para la producción de energía dentro de las células de todo el cuerpo. [72] La unión del receptor adrenérgico β también aumenta la producción de AMP cíclico. [73]

La adrenalina hace que las células del hígado liberen glucosa en la sangre, actuando a través de los receptores adrenérgicos alfa y beta para estimular la glucogenólisis. La adrenalina se une a los receptores β2 de las células del hígado, lo que cambia su conformación y ayuda a la Gs , una proteína G heterotrimérica , a intercambiar GDP por GTP. Esta proteína G trimérica se disocia en las subunidades G s alfa y G s beta/gamma. G s alfa estimula la adenilil ciclasa , convirtiendo así el trifosfato de adenosina en monofosfato de adenosina cíclico (AMP). "El AMP cíclico activa la proteína quinasa A ". La proteína quinasa A fosforila y activa parcialmente la fosforilasa quinasa . La adrenalina también se une a los receptores adrenérgicos α 1 , provocando un aumento del trifosfato de inositol , lo que induce la entrada de iones de calcio al citoplasma. Los iones de calcio se unen a la calmodulina , lo que conduce a una mayor activación de la fosforilasa quinasa. La fosforilasa quinasa fosforila la glucógeno fosforilasa , que luego descompone el glucógeno y conduce a la producción de glucosa. [74]

La adrenalina también tiene efectos importantes sobre el sistema cardiovascular. Aumenta la resistencia periférica a través de la vasoconstricción dependiente del receptor α 1 y aumenta el gasto cardíaco al unirse a los receptores β 1 . El objetivo de reducir la circulación periférica es aumentar las presiones de perfusión coronaria y cerebral y, por tanto, aumentar el intercambio de oxígeno a nivel celular. [75] [76] Si bien la adrenalina aumenta la presión de la circulación aórtica, cerebral y carotídea, reduce el flujo sanguíneo carotídeo y los niveles de CO 2 o ET CO 2 al final de la espiración . Parece que la adrenalina mejora la microcirculación a expensas de los lechos capilares donde se produce la perfusión. [77]

Medición en fluidos biológicos.

La adrenalina se puede cuantificar en sangre, plasma o suero como ayuda de diagnóstico, para controlar la administración terapéutica o para identificar el agente causal en una posible víctima de intoxicación. Las concentraciones endógenas de adrenalina plasmática en adultos en reposo suelen ser inferiores a 10 ng/l, pero pueden aumentar 10 veces durante el ejercicio y 50 veces o más durante momentos de estrés. Los pacientes con feocromocitoma suelen tener niveles plasmáticos de adrenalina de 1 000 a 10 000 ng/l. La administración parenteral de adrenalina a pacientes cardíacos en cuidados intensivos puede producir concentraciones plasmáticas de 10 000 a 100 000 ng/l. [78] [79]

Biosíntesis

La biosíntesis de adrenalina implica una serie de reacciones enzimáticas.

En términos químicos, la adrenalina pertenece a un grupo de monoaminas llamadas catecolaminas . La adrenalina se sintetiza en las células cromafines de la médula suprarrenal de la glándula suprarrenal y en un pequeño número de neuronas del bulbo raquídeo del cerebro a través de una vía metabólica que convierte los aminoácidos fenilalanina y tirosina en una serie de intermediarios metabólicos y, en última instancia, adrenalina. [7] [9] [80] La tirosina hidroxilasa primero oxida la tirosina a L -DOPA ; este es el paso limitante de la tasa. Luego se descarboxila posteriormente para dar dopamina mediante la DOPA descarboxilasa ( L -aminoácido descarboxilasa aromática ). Luego, la dopamina se convierte en noradrenalina mediante la dopamina beta-hidroxilasa , que utiliza ácido ascórbico ( vitamina C ) y cobre. El último paso en la biosíntesis de adrenalina es la metilación de la amina primaria de la noradrenalina. Esta reacción está catalizada por la enzima feniletanolamina N -metiltransferasa (PNMT), que utiliza S -adenosil metionina (SAMe) como donante de metilo . [81] Si bien la PNMT se encuentra principalmente en el citosol de las células endocrinas de la médula suprarrenal (también conocidas como células cromafines ), se ha detectado en niveles bajos tanto en el corazón como en el cerebro . [82]

Regulación

Los principales desencadenantes fisiológicos de la liberación de adrenalina se centran en el estrés , como la amenaza física, la excitación, el ruido, las luces brillantes y la temperatura ambiente alta o baja. Todos estos estímulos se procesan en el sistema nervioso central . [86]

La hormona adrenocorticotrópica (ACTH) y el sistema nervioso simpático estimulan la síntesis de precursores de adrenalina al mejorar la actividad de la tirosina hidroxilasa y la dopamina β-hidroxilasa , dos enzimas clave involucradas en la síntesis de catecolaminas. [ cita necesaria ] La ACTH también estimula la corteza suprarrenal para que libere cortisol , lo que aumenta la expresión de PNMT en las células cromafines, mejorando la síntesis de adrenalina. Esto se hace con mayor frecuencia en respuesta al estrés. [ cita necesaria ] El sistema nervioso simpático, que actúa a través de los nervios esplácnicos hacia la médula suprarrenal, estimula la liberación de adrenalina. La acetilcolina liberada por las fibras simpáticas preganglionares de estos nervios actúa sobre los receptores nicotínicos de acetilcolina , provocando la despolarización celular y una entrada de calcio a través de canales de calcio dependientes de voltaje . El calcio desencadena la exocitosis de los gránulos de cromafina y, por tanto, la liberación de adrenalina (y noradrenalina) al torrente sanguíneo. [ cita necesaria ] Para que PNMT actúe sobre la noradrenalina en el citosol, primero debe salir de los gránulos de las células cromafines. Esto puede ocurrir a través del intercambiador de catecolaminas-H + VMAT1 . VMAT1 también es responsable de transportar la adrenalina recién sintetizada desde el citosol a los gránulos de cromafina en preparación para su liberación. [87]

A diferencia de muchas otras hormonas, la adrenalina (al igual que otras catecolaminas) no ejerce retroalimentación negativa para regular negativamente su propia síntesis. Los niveles anormales de adrenalina pueden ocurrir en diversas condiciones, como la administración subrepticia de adrenalina, feocromocitoma y otros tumores de los ganglios simpáticos .

Su acción finaliza con la recaptación en las terminaciones nerviosas, una pequeña dilución y el metabolismo por la monoaminooxidasa [88] y la catecol -O -metiltransferasa en ácido 3,4-dihidroximandélico y metanefrina .

Historia

Los extractos de la glándula suprarrenal fueron obtenidos por primera vez por el fisiólogo polaco Napoleón Cybulski en 1895. [89] Estos extractos, a los que llamó nadnerczyna ("adrenalina"), contenían adrenalina y otras catecolaminas. [90] El oftalmólogo estadounidense William H. Bates descubrió el uso de la adrenalina para cirugías oculares antes del 20 de abril de 1896. [91] En 1897, John Jacob Abel (1857-1938), el padre de la farmacología moderna, encontró una sustancia natural producida por las glándulas suprarrenales. glándulas a las que llamó epinefrina. Fue la primera hormona identificada y sigue siendo un tratamiento crucial de primera línea para paros cardíacos, reacciones alérgicas graves y otras afecciones. En 1901, Jokichi Takamine aisló y purificó con éxito la hormona de las glándulas suprarrenales de ovejas y bueyes. [92] La adrenalina fue sintetizada por primera vez en el laboratorio por Friedrich Stolz y Henry Drysdale Dakin , de forma independiente, en 1904. [93]

Aunque la secretina se menciona como la primera hormona, la adrenalina es la primera hormona desde que se observó el descubrimiento de la actividad del extracto suprarrenal sobre la presión arterial en 1895 antes de la de la secretina en 1902. [68] En 1895, George Oliver (1841-1915) , un médico general en North Yorkshire, y Edward Albert Schäfer (1850-1935), un fisiólogo del University College de Londres, publicaron un artículo sobre el componente activo del extracto de la glándula suprarrenal que causaba el aumento de la presión arterial y la frecuencia cardíaca en la médula. pero no la corteza de la glándula suprarrenal. [94] En 1897, John Jacob Abel (1857-1938) de la Universidad Johns Hopkins , el primer presidente del primer departamento de farmacología de EE. UU., encontró un compuesto llamado epinefrina con la fórmula molecular de C 17 H 15 NO 4 . [68] Abel afirmó que su principio del extracto de la glándula suprarrenal estaba activo.

En 1900, Jōkichi Takamine (1854-1922), un químico japonés, trabajó con su asistente, Keizo Uenaka  [ja] (1876-1960), para purificar un principio activo 2000 veces más que la epinefrina de la glándula suprarrenal, llamado adrenalina con el fórmula molecular C 10 H 15 NO 3 . [68] [94] Además, en 1900 Thomas Aldrich del Laboratorio Científico Parke-Davis también purificó la adrenalina de forma independiente. Más tarde, en 1901, Takamine y Parke-Davis obtuvieron la patente de la adrenalina. La lucha por la terminología entre adrenalina y epinefrina no terminó hasta el primer descubrimiento estructural de la adrenalina por Hermann Pauly (1870-1950) en 1903 y la primera síntesis de adrenalina por Friedrich Stolz (1860-1936), un químico alemán en 1904. Ambos creían que el compuesto de Takamine era el principio activo mientras que el compuesto de Abel era el inactivo. [ cita necesaria ] Stolz sintetizó adrenalina a partir de su forma cetona (adrenalona). [95]

sociedad y Cultura

Adicto a la adrenalina

Un adicto a la adrenalina es alguien que se involucra en un comportamiento de búsqueda de sensaciones a través de "la búsqueda de experiencias novedosas e intensas sin tener en cuenta los riesgos físicos, sociales, legales o financieros". [96] Tales actividades incluyen deportes extremos y de riesgo, abuso de sustancias, relaciones sexuales sin protección y delitos. El término se relaciona con el aumento de los niveles circulantes de adrenalina durante el estrés fisiológico . [97] Tal aumento en la concentración circulante de adrenalina es secundario a la activación de los nervios simpáticos que inervan la médula suprarrenal, ya que es rápido y no está presente en animales a los que se les ha extirpado la glándula suprarrenal. [98] Aunque dicho estrés desencadena la liberación de adrenalina, también activa muchas otras respuestas dentro del sistema de recompensa del sistema nervioso central , que impulsa respuestas conductuales; mientras la concentración de adrenalina circulante esté presente, es posible que no impulse el comportamiento. Sin embargo, la infusión de adrenalina por sí sola aumenta el estado de alerta [99] y desempeña funciones en el cerebro, incluido el aumento de la consolidación de la memoria. [97]

Fortaleza

La adrenalina ha estado implicada en hazañas de gran fuerza, que a menudo ocurren en tiempos de crisis. Por ejemplo, hay historias de un padre que levanta parte de un automóvil cuando su hijo queda atrapado debajo. [100] [101]

Ver también

Referencias

  1. ^ Andersen AM (1975). "Estudios estructurales de productos metabólicos de la dopamina. III. Estructura cristalina y molecular de (-) -adrenalina". Acta Química. Escanear. 29b (2): 239–244. doi : 10.3891/acta.chem.scand.29b-0239 . PMID  1136652.
  2. ^ El-Bahr SM, Kahlbacher H, Patzl M, Palme RG (mayo de 2006). "Unión y eliminación de adrenalina y noradrenalina radiactivas en sangre de oveja". Comunicaciones de Investigación Veterinaria . Springer Science y Business Media LLC. 30 (4): 423–32. doi :10.1007/s11259-006-3244-1. PMID  16502110. S2CID  9054777.
  3. ^ Franksson G, Anggård E (13 de marzo de 2009). "La unión a proteínas plasmáticas de anfetaminas, catecolaminas y compuestos relacionados". Acta Farmacológica y Toxicológica . Wiley. 28 (3): 209–14. doi :10.1111/j.1600-0773.1970.tb00546.x. PMID  5468075.
  4. ^ Peaston RT, Weinkove C (enero de 2004). "Medición de catecolaminas y sus metabolitos". Anales de bioquímica clínica . Publicaciones SAGE. 41 (Parte 1): 17–38. doi :10.1258/000456304322664663. PMID  14713382. S2CID  2330329.
  5. ^ abcd "Epinefrina". La Sociedad Estadounidense de Farmacéuticos del Sistema de Salud . Consultado el 15 de agosto de 2015 .
  6. ^ Hummel, Michael D. (2012). "Medicamentos de emergencia". En Pollak, Andrew N. (ed.). Atención de emergencia en las calles de Nancy Caroline (7ª ed.). Burlington: Jones & Bartlett Aprendizaje. pag. 557.ISBN 9781449645861. Archivado desde el original el 8 de septiembre de 2017.
  7. ^ abc Lieberman M, Marks A, Peet A (2013). Bioquímica médica básica de Marks: un enfoque clínico (4ª ed.). Filadelfia: Wolters Kluwer Health/Lippincott Williams & Wilkins. pag. 175.ISBN 9781608315727.
  8. ^ "Adrenalina". 21 de agosto de 2015.
  9. ^ abc Malenka RC, Nestler EJ, Hyman SE (2009). "Capítulo 6: Sistemas de amplia proyección: monoaminas, acetilcolina y orexina". En Sydor A, Brown RY (eds.). Neurofarmacología molecular: una base para la neurociencia clínica (2ª ed.). Nueva York, Estados Unidos: McGraw-Hill Medical. pag. 157.ISBN 9780071481274. La epinefrina se encuentra sólo en una pequeña cantidad de neuronas centrales, todas ubicadas en la médula. La epinefrina participa en funciones viscerales, como el control de la respiración. También es producido por la médula suprarrenal.
  10. Larrañaga, M (2016). Diccionario químico condensado de Hawley . Nueva Jersey: John Wiley & Sons, Incorporated. pag. 561.
  11. ^ "Adrenalina: fisiología y farmacología | DermNet". dermnetnz.org . Consultado el 20 de marzo de 2023 .
  12. ^ Brown HF, DiFrancesco D, Noble SJ (julio de 1979). "¿Cómo acelera la adrenalina el corazón?". Naturaleza . 280 (5719): 235–236. Código Bib :1979Natur.280..235B. doi :10.1038/280235a0. PMID  450140. S2CID  4350616.
  13. ^ Bell DR (2009). Fisiología médica: principios de la medicina clínica (3ª ed.). Filadelfia: Lippincott Williams & Wilkins. pag. 312.ISBN 9780781768528.
  14. ^ ab Khurana I (2008). Fundamentos de fisiología médica. Elsevier India. pag. 460.ISBN 9788131215661.
  15. ^ Buckley E (2013). Animales venenosos y sus venenos: vertebrados venenosos. Elsevier. pag. 478.ISBN 9781483262888.
  16. ^ Fisiología animal: adaptación y medio ambiente (5ª ed.). Prensa de la Universidad de Cambridge. 1997. pág. 510.ISBN 9781107268500.
  17. ^ Phan, Minh Giang (2006). "Evaluación química y biológica de diterpenoides tipo escopadulano de Scoparia dulcis de origen vietnamita". Boletín Químico y Farmacéutico . 54 (4): 546–549. doi : 10.1248/cpb.54.546 . PMID  16595962.
  18. ^ Everard ML (febrero de 2009). "Bronquiolitis aguda y crup". Clínicas Pediátricas de América del Norte . 56 (1): 119–133, x–xi. doi :10.1016/j.pcl.2008.10.007. PMID  19135584.
  19. ^ Paradisis M, Osborn DA (2004). "Adrenalina para la prevención de la morbimortalidad en recién nacidos prematuros con compromiso cardiovascular". La base de datos Cochrane de revisiones sistemáticas (1): CD003958. doi : 10.1002/14651858.CD003958.pub2. PMID  14974048.
  20. ^ Erickson, K (agosto de 1992). "La epinefrina aumenta la facilidad de salida y el contenido de AMP cíclico en el ojo humano in vitro". Oftalmología de investigación y ciencias visuales . 33 (9): 2672–2678.
  21. ^ Rizzo V, Memmi M, Moratti R, Melzi d'Eril G, Perucca E (junio de 1996). "Concentraciones de L -dopa en plasma y ultrafiltrados plasmáticos". Revista de Análisis Farmacéutico y Biomédico . 14 (8–10): 1043–1046. doi :10.1016/s0731-7085(96)01753-0. PMID  8818013.
  22. ^ Fuller RW (abril de 1982). "Farmacología de las neuronas de epinefrina del cerebro". Revista Anual de Farmacología y Toxicología . 22 (1): 31–55. doi : 10.1146/annurev.pa.22.040182.000335. PMID  6805416.
  23. ^ Cryer PE (agosto de 1980). "Fisiología y fisiopatología del sistema neuroendocrino simpatoadrenal humano". El diario Nueva Inglaterra de medicina . 303 (8): 436–444. doi :10.1056/nejm198008213030806. PMID  6248784.
  24. ^ Barger G, Dale HH (octubre de 1910). "Estructura química y acción simpaticomimética de las aminas". La Revista de Fisiología . 41 (1–2): 19–59. doi : 10.1113/jphysiol.1910.sp001392. PMC 1513032 . PMID  16993040. 
  25. ^ Von Euler Estados Unidos (1946). "Un ergón simpaticomimético específico en las fibras nerviosas adrenérgicas (simpatina) y sus relaciones con la adrenalina y la noradrenalina". Acta Physiologica Scandinavica . 12 : 73–97. doi :10.1111/j.1748-1716.1946.tb00368.x.
  26. ^ Von Euler EE. UU., Hillarp NA (enero de 1956). "Evidencia de la presencia de noradrenalina en estructuras submicroscópicas de axones adrenérgicos". Naturaleza . 177 (4497): 44–45. Código Bib :1956Natur.177...44E. doi :10.1038/177044b0. PMID  13288591. S2CID  4214745.
  27. ^ Warren J (enero de 1986). "La médula suprarrenal y las vías respiratorias". Revista británica de enfermedades del tórax . 80 (1): 1–6. doi :10.1016/0007-0971(86)90002-1. PMID  3004549.
  28. ^ Twentyman OP, Disley A, Gribbin HR, Alberti KG, Tattersfield AE (octubre de 1981). "Efecto del bloqueo beta-adrenérgico sobre las respuestas respiratorias y metabólicas al ejercicio". Revista de fisiología aplicada . 51 (4): 788–793. doi :10.1152/jappl.1981.51.4.788. PMID  6795164.
  29. ^ Richter EA, Galbo H, Christensen Nueva Jersey (enero de 1981). "Control de la glucogenólisis muscular inducida por el ejercicio mediante hormonas de la médula suprarrenal en ratas". Revista de fisiología aplicada . Sociedad Americana de Fisiología . 50 (1): 21–26. doi :10.1152/jappl.1981.50.1.21. PMID  7009527.
  30. ^ Canon WB (1931). "Estudios sobre las condiciones de actividad de los órganos endocrinos xxvii. Evidencia de que la secreción meduloadrenal no es continua". La revista americana de fisiología . 98 : 447–453. doi :10.1152/ajplegacy.1931.98.3.447.
  31. ^ Cryer PE, Tse TF, Clutter WE, Shah SD (agosto de 1984). "Funciones del glucagón y la epinefrina en la contrarregulación de la glucosa hipoglucémica y no hipoglucémica en humanos". La revista americana de fisiología . 247 (2 puntos 1): E198–E205. doi :10.1152/ajpendo.1984.247.2.E198. PMID  6147094.
  32. ^ Hoelzer DR, Dalsky GP, Schwartz NS, Clutter WE, Shah SD, Holloszy JO, Cryer PE (julio de 1986). "La epinefrina no es fundamental para la prevención de la hipoglucemia durante el ejercicio en humanos". La revista americana de fisiología . 251 (1 parte 1): E104–E110. doi :10.1152/ajpendo.1986.251.1.E104. PMID  3524257.
  33. ^ Hartman FA, Waite RH, McCordock HA (1922). "La liberación de epinefrina durante el ejercicio muscular". La revista americana de fisiología . 62 (2): 225–241. doi :10.1152/ajplegacy.1922.62.2.225.
  34. ^ Von Euler US, Hellner S (septiembre de 1952). "Excreción de noradrenalina y adrenalina en el trabajo muscular". Acta Physiologica Scandinavica . 26 (2–3): 183–191. doi :10.1111/j.1748-1716.1952.tb00900.x. PMID  12985406.
  35. ^ Lund A (1950). "Determinaciones fluorimétricas simultáneas de adrenalina y noradrenalina en sangre". Acta Farmacológica y Toxicológica . 6 (2): 137–146. doi :10.1111/j.1600-0773.1950.tb03460.x. PMID  24537959.
  36. ^ Johnson GA, Kupiecki RM, Baker CA (noviembre de 1980). "Métodos de derivados de un solo isótopo (radioenzimáticos) en la medición de catecolaminas". Metabolismo . 29 (11 Suplemento 1): 1106–1113. doi :10.1016/0026-0495(80)90018-9. PMID  7001177.
  37. ^ Galbo H, Holst JJ, Christensen Nueva Jersey (enero de 1975). "Respuestas de glucagón y catecolaminas plasmáticas al ejercicio gradual y prolongado en el hombre". Revista de fisiología aplicada . 38 (1): 70–76. doi :10.1152/jappl.1975.38.1.70. PMID  1110246.
  38. ^ Winder WW, Hagberg JM, Hickson RC, Ehsani AA, McLane JA (septiembre de 1978). "Evolución temporal de la adaptación simpatoadrenal al entrenamiento con ejercicios de resistencia en el hombre". Revista de fisiología aplicada . 45 (3): 370–374. doi :10.1152/jappl.1978.45.3.370. PMID  701121.
  39. ^ Kindermann W, Schnabel A, Schmitt WM, Biro G, Hippchen M (mayo de 1982). "[Catecolaminas, GH, cortisol, glucagón, insulina y hormonas sexuales en el ejercicio y bloqueo beta 1 (traducción del autor)]". Klinische Wochenschrift . 60 (10): 505–512. doi :10.1007/bf01756096. PMID  6124653. S2CID  30270788.
  40. ^ Warren JB, Dalton N, Turner C, Clark TJ, Toseland PA (enero de 1984). "Secreción de adrenalina durante el ejercicio". Ciencia clínica . 66 (1): 87–90. doi :10.1042/cs0660087. PMID  6690194.
  41. ^ Fitzgerald GA, Barnes P, Hamilton CA, Dollery CT (octubre de 1980). "Adrenalina circulante y presión arterial: los efectos metabólicos y la cinética de la adrenalina infundida en el hombre". Revista europea de investigación clínica . 10 (5): 401–406. doi :10.1111/j.1365-2362.1980.tb00052.x. PMID  6777175. S2CID  38894042.
  42. ^ Warren JB, Dalton N (mayo de 1983). "Una comparación de los efectos broncodilatadores y vasopresores de los niveles de adrenalina durante el ejercicio en el hombre". Ciencia clínica . 64 (5): 475–479. doi :10.1042/cs0640475. PMID  6831836.
  43. ^ Warren JB, Dalton N, Turner C, Clark TJ (noviembre de 1984). "Efecto protector de la epinefrina circulante dentro del rango fisiológico sobre la respuesta de las vías respiratorias a la histamina inhalada en sujetos no asmáticos". La Revista de Alergia e Inmunología Clínica . 74 (5): 683–686. doi : 10.1016/0091-6749(84)90230-6 . PMID  6389647.
  44. ^ Grossman M (1887). "Das muscarin-lungen-odem". Zeitschrift für klinische Medizin . 12 : 550–591.
  45. ^ Jackson DE (1912). "La acción pulmonar de las glándulas suprarrenales". Revista de Farmacología y Terapéutica Experimental . 4 : 59–74.
  46. ^ Kagawa J, Kerr HD (febrero de 1970). "Efectos del ejercicio breve gradual sobre la conductancia específica de las vías respiratorias en sujetos normales". Revista de fisiología aplicada . 28 (2): 138-144. doi :10.1152/jappl.1970.28.2.138. PMID  5413299.
  47. ^ Warren JB, Jennings SJ, Clark TJ (enero de 1984). "Efecto del bloqueo adrenérgico y vagal sobre la respuesta normal de las vías respiratorias humanas al ejercicio". Ciencia clínica . 66 (1): 79–85. doi :10.1042/cs0660079. PMID  6228370.
  48. ^ Jennings SJ, Warren JB, Pride NB (julio de 1987). "El calibre de las vías respiratorias y el trabajo de la respiración en los humanos". Revista de fisiología aplicada . 63 (1): 20–24. doi :10.1152/jappl.1987.63.1.20. PMID  2957350.
  49. ^ ab Mezzacappa ES, Katkin ES, Palmer SN (1999). "Epinefrina, excitación y emoción: una nueva mirada a la teoría de dos factores". Cognición y Emoción . 13 (2): 181–199. doi :10.1080/026999399379320.
  50. ^ ab Toth M, Ziegler M, Sun P, Gresack J, Risbrough V (febrero de 2013). "Deterioro de la respuesta condicionada al miedo y reactividad de sobresalto en ratones con deficiencia de epinefrina". Farmacología del comportamiento . 24 (1): 1–9. doi :10.1097/FBP.0b013e32835cf408. PMC 3558035 . PMID  23268986. 
  51. ^ Cahill L, Alkire MT (marzo de 2003). "Mejora de la consolidación de la memoria humana con epinefrina: interacción con la excitación en la codificación". Neurobiología del Aprendizaje y la Memoria . 79 (2): 194-198. doi :10.1016/S1074-7427(02)00036-9. PMID  12591227. S2CID  12099979.
  52. ^ ab Dornelles A, de Lima MN, Grazziotin M, Presti-Torres J, García VA, Scalco FS, et al. (Julio de 2007). "Mejora adrenérgica de la consolidación de la memoria de reconocimiento de objetos". Neurobiología del Aprendizaje y la Memoria . 88 (1): 137-142. doi :10.1016/j.nlm.2007.01.005. PMID  17368053. S2CID  27697668.
  53. ^ Roozendaal B, McGaugh JL (diciembre de 2011). "Modulación de la memoria". Neurociencia del comportamiento . 125 (6): 797–824. doi :10.1037/a0026187. PMC 3236701 . PMID  22122145. 
  54. ^ Feldberg W, Minz B, Tsudzimura H (junio de 1934). "El mecanismo de la descarga nerviosa de la adrenalina". La Revista de Fisiología . 81 (3): 286–304. doi :10.1113/jphysiol.1934.sp003136. PMC 1394156 . PMID  16994544. 
  55. ^ Burn JH, Hutcheon DE, Parker RH (septiembre de 1950). "Adrenalina y noradrenalina en la médula suprarrenal tras la insulina". Revista británica de farmacología y quimioterapia . 5 (3): 417–423. doi :10.1111/j.1476-5381.1950.tb00591.x. PMC 1509946 . PMID  14777865. 
  56. ^ Outschoorn AS (diciembre de 1952). "Las hormonas de la médula suprarrenal y su liberación". Revista británica de farmacología y quimioterapia . 7 (4): 605–615. doi :10.1111/j.1476-5381.1952.tb00728.x. PMC 1509311 . PMID  13019029. 
  57. ^ Benedict CR, Grahame-Smith DG (agosto de 1979). "Concentraciones plasmáticas de adrenalina y noradrenalina y actividad de dopamina-beta-hidroxilasa en el infarto de miocardio con y sin shock cardiogénico". Diario británico del corazón . 42 (2): 214–220. doi :10.1136/hrt.42.2.214. PMC 482137 . PMID  486283. 
  58. ^ Nadeau RA, de Champlain J (noviembre de 1979). "Catecolaminas plasmáticas en el infarto agudo de miocardio". Diario americano del corazón . 98 (5): 548–554. doi :10.1016/0002-8703(79)90278-3. PMID  495400.
  59. ^ Larsson S, Svedmyr N (1977). "El temblor causado por simpaticomiméticos está mediado por adrenoceptores beta 2". Revista escandinava de enfermedades respiratorias . 58 (1): 5–10. PMID  190674.
  60. ^ Warren JB, O'Brien M, Dalton N, Turner CT (febrero de 1984). "Actividad simpática en el temblor familiar benigno". Lanceta . 1 (8374): 461–462. doi :10.1016/S0140-6736(84)91804-X. PMID  6142198. S2CID  36267406.
  61. ^ Wurtman RJ, Pohorecky LA, Baliga BS (junio de 1972). "Control adrenocortical de la biosíntesis de epinefrina y proteínas en la médula suprarrenal". Revisiones farmacológicas . 24 (2): 411–426. PMID  4117970.
  62. ^ Wright A, Jones IC (junio de 1955). "Tejido cromafín en la glándula suprarrenal del lagarto". Naturaleza . 175 (4466): 1001–1002. Código bibliográfico : 1955Natur.175.1001W. doi :10.1038/1751001b0. PMID  14394091. S2CID  36742705.
  63. ^ Coupland RE (abril de 1953). "Sobre la morfología y el contenido de adrenalina-nor-adrenalina del tejido cromafín". La Revista de Endocrinología . 9 (2): 194-203. doi : 10.1677/joe.0.0090194. PMID  13052791.
  64. ^ abcd Aronson JK (febrero de 2000). ""Donde el nombre y la imagen se encuentran ": el argumento a favor de la" adrenalina"". BMJ . 320 (7233): 506–509. doi :10.1136/bmj.320.7233.506. PMC 1127537 . PMID  10678871. 
  65. ^ Farmacopea europea 7.0 07/2008:2303
  66. ^ "¿Se ha convertido la adrenalina en una marca genérica?". genericides.org . Archivado desde el original el 1 de mayo de 2021.
  67. ^ "Denominación de medicamentos humanos - GOV.UK". www.mhra.gov.uk.6 de junio de 2019.
  68. ^ abcd Rao Y (junio de 2019). "La primera hormona: la adrenalina". Tendencias en Endocrinología y Metabolismo . 30 (6): 331–334. doi :10.1016/j.tem.2019.03.005. PMID  31064696. S2CID  144207341.
  69. ^ Shen H (2008). Tarjetas de memoria ilustradas de farmacología: farmnemónica . Minirevisión. pag. 4.ISBN 978-1-59541-101-3.
  70. ^ Arnall DA, Marker JC, Conlee RK, Winder WW (junio de 1986). "Efecto de la infusión de epinefrina sobre la glucogenólisis hepática y muscular durante el ejercicio en ratas". La revista americana de fisiología . 250 (6 partes 1): E641 – E649. doi :10.1152/ajpendo.1986.250.6.E641. PMID  3521311.
  71. ^ Raz I, Katz A, Spencer MK (marzo de 1991). "La epinefrina inhibe la glucogénesis mediada por insulina pero mejora la glucólisis en el músculo esquelético humano". La revista americana de fisiología . 260 (3 partes 1): E430 – E435. doi :10.1152/ajpendo.1991.260.3.E430. PMID  1900669.
  72. ^ ab Sircar S (2007). Fisiología Médica . Grupo Editorial Thieme. pag. 536.ISBN 978-3-13-144061-7.
  73. ^ Vasudevan, Neelakantan (2011). "Regulación de la función del receptor β-adrenérgico: énfasis en la resensibilización del receptor". Ciclo celular . 10 (21): 3684–3691. doi :10.4161/cc.10.21.18042. PMC 3266006 . PMID  22041711. 
  74. ^ Berg JM, Tymoczko JL, Stryer L (2002). "La epinefrina y el glucagón señalan la necesidad de descomponer el glucógeno". Bioquímica (5ª ed.). Nueva York: WH Freeman. ISBN 0-7167-3051-0.
  75. ^ "Pauta 11.5: Medicamentos en caso de paro cardíaco en adultos" (PDF) . Consejo Australiano de Reanimación . Diciembre de 2010 . Consultado el 7 de marzo de 2015 .
  76. ^ Chang YT, Huang WC, Cheng CC, Ke MW, Tsai JS, Hung YM y otros. (febrero de 2020). "Efectos de la epinefrina sobre la variabilidad de la frecuencia cardíaca y las citocinas en un modelo de sepsis en ratas". Revista Bosnia de Ciencias Médicas Básicas . 20 (1): 88–98. doi : 10.17305/bjbms.2018.3565. PMC 7029199 . PMID  29984678. 
  77. ^ Burnett AM, Segal N, Salzman JG, McKnite MS, Frascone RJ (agosto de 2012). "Posibles efectos negativos de la epinefrina sobre el flujo sanguíneo carotídeo y ETCO 2 durante la RCP activa por compresión-descompresión utilizando un dispositivo de umbral de impedancia". Reanimación . 83 (8): 1021-1024. doi :10.1016/j.resuscitation.2012.03.018. PMID  22445865.
  78. ^ Raymondos K, Panning B, Leuwer M, Brechelt G, Korte T, Niehaus M, et al. (mayo de 2000). "Absorción y efectos hemodinámicos de la administración de adrenalina por vía aérea en pacientes con enfermedad cardíaca grave". Anales de Medicina Interna . 132 (10): 800–803. doi :10.7326/0003-4819-132-10-200005160-00007. PMID  10819703. S2CID  12713291.
  79. ^ Baselt R (2008). Eliminación de drogas y productos químicos tóxicos en el hombre (8ª ed.). Foster City, CA: Publicaciones biomédicas. págs. 545–547. ISBN 978-0-9626523-7-0.
  80. ^ von Bohlen und Haibach O, Dermietzel R (2006). Neurotransmisores y neuromoduladores: manual de receptores y efectos biológicos. Wiley-VCH. pag. 125.ISBN 978-3-527-31307-5.
  81. ^ Kirshner N, Goodall M (junio de 1957). "La formación de adrenalina a partir de noradrenalina". Biochimica et Biophysica Acta . 24 (3): 658–659. doi :10.1016/0006-3002(57)90271-8. PMID  13436503.
  82. ^ Axelrod J (mayo de 1962). "Purificación y propiedades de la feniletanolamina-N-metil transferasa". La Revista de Química Biológica . 237 (5): 1657-1660. doi : 10.1016/S0021-9258(19)83758-4 . PMID  13863458.
  83. ^ Broadley KJ (marzo de 2010). "Los efectos vasculares de las trazas de aminas y anfetaminas". Farmacología y Terapéutica . 125 (3): 363–375. doi :10.1016/j.pharmthera.2009.11.005. PMID  19948186.
  84. ^ Lindemann L, Hoener MC (mayo de 2005). "Un renacimiento de las trazas de aminas inspirado en una nueva familia de GPCR". Tendencias en Ciencias Farmacológicas . 26 (5): 274–281. doi :10.1016/j.tips.2005.03.007. PMID  15860375.
  85. ^ Wang X, Li J, Dong G, Yue J (febrero de 2014). "Los sustratos endógenos del CYP2D cerebral". Revista europea de farmacología . 724 : 211–218. doi :10.1016/j.ejphar.2013.12.025. PMID  24374199.
  86. ^ Nelson L, Cox M (2004). Principios de bioquímica de Lehninger (4ª ed.). Nueva York: Freeman. pag. 908.ISBN 0-7167-4339-6.
  87. ^ "Familia SLC18 de transportadores de aminas vesiculares". Guía de Farmacología . IUPHAR/BPS . Consultado el 21 de agosto de 2015 .
  88. ^ Oanca G, Stare J, Mavri J (diciembre de 2017). "¿Qué tan rápido las monoaminooxidasas descomponen la adrenalina? Cinética de las isoenzimas A y B evaluadas mediante simulación empírica de enlaces de valencia". Proteínas . 85 (12): 2170–2178. doi :10.1002/prot.25374. PMID  28836294. S2CID  5491090.
  89. ^ Szablewski L (2011). Homeostasis de la glucosa y resistencia a la insulina. Editores científicos de Bentham. pag. 68.ISBN 9781608051892.
  90. ^ Skalski JH, Kuch J (abril de 2006). "Hilo polaco en la historia de la fisiología circulatoria". Revista de Fisiología y Farmacología . 57 (Suplemento 1): 5–41. PMID  16766800.
  91. ^ Bates WH (16 de mayo de 1896). "El uso de extracto de cápsula suprarrenal en el ojo". Revista médica de Nueva York : 647–650 . Consultado el 7 de marzo de 2015 . Leído ante la Sección de Oftalmología de la Academia de Medicina de Nueva York, 20 de abril de 1896.
  92. ^ Takamine J (1901). El aislamiento del principio activo de la glándula suprarrenal. Gran Bretaña: Cambridge University Press. págs. {{cite book}}: |work=ignorado ( ayuda )
  93. ^ Bennett SEÑOR (junio de 1999). "Cien años de adrenalina: el descubrimiento de los autorreceptores". Investigación Clínica Autonómica . 9 (3): 145-159. doi :10.1007/BF02281628. PMID  10454061. S2CID  20999106.
  94. ^ ab Ball CM, Featherstone PJ (mayo de 2017). "La historia temprana de la adrenalina". Anestesia y Cuidados Intensivos . 45 (3): 279–281. doi : 10.1177/0310057X1704500301 . PMID  28486885.
  95. ^ Greer, Arthur (mayo de 2015). "Epinefrina: una breve historia". Medicina respiratoria de The Lancet . 3 (5): 350–351. doi : 10.1016/S2213-2600(15)00087-9 . PMID  25969360.
  96. ^ Zuckerman M (2007). Búsqueda de sensaciones y conductas de riesgo. Washington, DC: Asociación Estadounidense de Psicología. doi :10.1016/0191-8869(93)90173-Z. ISBN 9781591477389.
  97. ^ ab Jänig W (6 de julio de 2006). La acción integradora del sistema nervioso autónomo: neurobiología de la homeostasis. Inglaterra: Cambridge University Press. págs. 143-146. ISBN 9780521845182.
  98. ^ Deane WH, Rubin BL (1964). "Ausencia de secreciones medulares suprarrenales". Las hormonas adrenocorticales, su origen: química, fisiología y farmacología . Berlín, Heidelberg: Springer Berlín Heidelberg. pag. 105.ISBN 9783662131329.
  99. ^ Frankenhaeuser M, Jarpe G, Matell G (febrero de 1961). "Efectos de las infusiones intravenosas de adrenalina y noradrenalina sobre determinadas funciones psicológicas y fisiológicas". Acta Physiologica Scandinavica . 51 (2–3): 175–186. doi :10.1111/j.1748-1716.1961.tb02126.x. PMID  13701421.
  100. ^ Wise J (28 de diciembre de 2009). "Cuando el miedo nos vuelve sobrehumanos". Científico americano . Consultado el 25 de agosto de 2015 .
  101. ^ Wise J (8 de diciembre de 2009). Miedo extremo: la ciencia de tu mente en peligro (1ª ed.). Nueva York: Palgrave Macmillan . ISBN 9780230101807.

enlaces externos