En el cálculo vectorial, un campo vectorial solenoidal (también conocido como campo vectorial incompresible , campo vectorial libre de divergencia o campo vectorial transversal ) es un campo vectorial v con divergencia cero en todos los puntos del campo: Una forma común de expresar esta propiedad es decir que el campo no tiene fuentes ni sumideros. [nota 1]
El teorema de divergencia proporciona una definición integral equivalente de un campo solenoidal; es decir, que para cualquier superficie cerrada, el flujo total neto a través de la superficie debe ser cero:
donde es la normal externa a cada elemento de la superficie.
El teorema fundamental del cálculo vectorial establece que cualquier campo vectorial puede expresarse como la suma de un campo irrotacional y un campo solenoidal. La condición de divergencia cero se cumple siempre que un campo vectorial v tenga solo un componente de potencial vectorial , porque la definición del potencial vectorial A como: da como resultado automáticamente la identidad (como se puede demostrar, por ejemplo, utilizando coordenadas cartesianas): La inversa también es válida: para cualquier solenoidal v existe un potencial vectorial A tal que (Estrictamente hablando, esto es válido sujeto a ciertas condiciones técnicas sobre v , véase descomposición de Helmholtz .)
Solenoidal tiene su origen en la palabra griega para solenoide , que es σωληνοειδές (sōlēnoeidēs), que significa con forma de tubo, de σωλην (sōlēn) o tubo.