stringtranslate.com

Agar plate

Contamination on an agar plate

An agar plate is a Petri dish that contains a growth medium solidified with agar, used to culture microorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics.[1]

96 pinner used to perform spot assays with yeast, fungal or bacterial cells

Individual microorganisms placed on the plate will grow into individual colonies, each a clone genetically identical to the individual ancestor organism (except for the low, unavoidable rate of mutation). Thus, the plate can be used either to estimate the concentration of organisms in a liquid culture or a suitable dilution of that culture using a colony counter, or to generate genetically pure cultures from a mixed culture of genetically different organisms.

Several methods are available to plate out cells. One technique is known as "streaking". In this technique, a drop of the culture on the end of a thin, sterile loop of wire, sometimes known as an inoculator, is streaked across the surface of the agar leaving organisms behind, a higher number at the beginning of the streak and a lower number at the end. At some point during a successful "streak", the number of organisms deposited will be such that distinct individual colonies will grow in that area which may be removed for further culturing, using another sterile loop.

Another way of plating organisms, next to streaking, on agar plates is the spot analysis. This type of analysis is often used to check the viability of cells and is performed with pinners (often also called froggers). A third technique is using sterile glass beads to plate out cells. In this technique, cells are grown in a liquid culture, in which a small volume is pipetted on the agar plate and then spread out with the beads. Replica plating is another technique used to plate out cells on agar plates. These four techniques are the most common, but others are also possible. It is crucial to work in a sterile manner to prevent contamination on the agar plates.[1] Plating is thus often done in a laminar flow cabinet or on the working bench next to a bunsen burner.[2]

History

In 1881, Fanny Hesse, who was working as a technician for her husband Walther Hesse in the laboratory of Robert Koch, suggested agar as an effective setting agent, since it had been commonplace in jam making for some time.[3]

Types

An agar plate being viewed in an electronic colony counter
Example of a workup algorithm of possible bacterial infection in cases with no specifically requested targets (non-bacteria, mycobacteria etc.), with most common situations and agents seen in a New England community hospital setting. Different agar plates are used for different specimen sources, as seen in the upper left quadrant.

Like other growth media, the formulations of agar used in plates may be classified as either "defined" or "undefined"; a defined medium is synthesized from individual chemicals required by the organism so the exact molecular composition is known, whereas an undefined medium is made from natural products such as yeast extract, where the precise composition is unknown.[4]

Agar plates may be formulated as either permissive, with the intent of allowing the growth of whatever organisms are present, or restrictive or selective, with the intent of only allowing the growth of a particular subset of those organisms.[5] This may take the form of a nutritional requirement, for instance providing a particular compound such as lactose as the only source of carbon and thereby selecting only organisms which can metabolize that compound, or by including a particular antibiotic or other substance to select only organisms which are resistant to that substance. This correlates to some degree with defined and undefined media; undefined media, made from natural products and containing an unknown combination of very many organic molecules, is typically more permissive in terms of supplying the needs of a wider variety of organisms. In contrast, defined media can be precisely tailored to select organisms with specific properties.

Agar plates may also be indicator plates, in which the organisms are not selected based on growth, but are instead distinguished by a color change in some colonies, typically caused by the action of an enzyme on some compound added to the medium.[6]

The plates are incubated for 12 hours up to several days, depending on the test that is performed.

Commonly used types of agar plates include:

Red blood cells on an agar plate are used to diagnose infection. On the left is a positive Staphylococcus infection, on the right a positive Streptococcus culture.

Blood agar

Hemolyses of Streptococcus spp. (left) α-hemolysis (S. mitis); (middle) β-hemolysis (S. pyogenes); (right) γ-hemolysis (= nonhemolytic, S. salivarius)

Blood agar plate

Blood agar plates (BAPs) contain mammalian blood (usually sheep or horse), typically at a 5–10% concentration. BAPs are enriched, and differential media is used to isolate fastidious organisms and detect hemolytic activity. β-Hemolytic activity will show lysis and complete digestion of red blood cell contents surrounding a colony. Examples include Streptococcus haemolyticus. α-Hemolysis will only cause partial lysis of the red blood cells (the cell membrane is left intact) and appear green or brown due to the conversion of hemoglobin to methemoglobin. An example of this would be Streptococcus viridans. γ-Hemolysis (or nonhemolytic) is the term referring to a lack of hemolytic activity.[7] BAPs also contain meat extract or yeast extract, tryptone, sodium chloride, and agar.[8]

Chocolate agar

Chocolate agar is a type of blood agar plate in which the blood cells have been lysed by heating the cells to 80 °C. It is used for growing fastidious respiratory bacteria, such as Haemophilus influenzae. Chocolate agar is named for its color, and no chocolate is contained in the plate.

Thayer–Martin agar

Thayer–Martin agar is a chocolate agar designed to isolate Neisseria gonorrhoeae and Neisseria meningitidis.

Thiosulfate–citrate–bile salts–sucrose agar

Thiosulfate–citrate–bile salts–sucrose agar enhances growth of Vibrio spp., including Vibrio cholerae.[9]

General bacterial media

Four types of agar plate demonstrating differential growth depending on bacterial metabolism

Fungal media

Moss media

Yeast media

the yeast Candida albicans growing both as yeast cells and filamentous cells on YPD agar

Mega Plate

See also

Different specific types of agar:

References

  1. ^ a b Madigan M, Martinko J, eds. (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1.
  2. ^ Sanders, Erin R. (11 May 2012). "Aseptic Laboratory Techniques: Plating Methods". Journal of Visualized Experiments (63): e3064. doi:10.3791/3064. PMC 4846335. PMID 22617405. Archived from the original on 14 November 2017. Retrieved 3 May 2018.
  3. ^ "History of the agar plate". Laboratory News. Archived from the original on 11 February 2010. Retrieved 2010-02-22.
  4. ^ Baron S; et al., eds. (1996). Baron's Medical Microbiology (4th ed.). University of Texas Medical Branch. ISBN 0-9631172-1-1. (via NCBI Bookshelf).
  5. ^ Ryan KJ; Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 0-8385-8529-9.
  6. ^ "Indicator Plates". Retrieved 12 July 2018.
  7. ^ "Blood Agar Plates and Hemolysis Protocols". Archived from the original on 2012-02-02. Retrieved 2014-10-28.
  8. ^ "Blood Agar- Composition, Preparation, Uses and Pictures", Microbiology Info.com
  9. ^ a b Fisher, Bruce; Harvey, Richard P.; Champe, Pamela C. (2007). Lippincott's Illustrated Reviews: Microbiology (Lippincott's Illustrated Reviews Series). Hagerstwon, MD: Lippincott Williams & Wilkins. ISBN 978-0-7817-8215-9.
  10. ^ Miller, J. H. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  11. ^ Jung, Benjamin; Hoilat, Gilles J. (2022), "MacConkey Medium", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 32491326, retrieved 2022-12-12
  12. ^ Reski, Ralf; Abel, Wolfgang O. (1985). "Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine". Planta. 165 (3): 354–358. doi:10.1007/bf00392232. PMID 24241140. S2CID 11363119.
  13. ^ "A cinematic approach to drug resistance". Harvard Gazette. 2016-09-08. Retrieved 2021-04-08.

External links