stringtranslate.com

Piruvato quinasa

La piruvato quinasa es la enzima implicada en el último paso de la glucólisis . Cataliza la transferencia de un grupo fosfato del fosfoenolpiruvato (PEP) al adenosín difosfato (ADP ) , produciendo una molécula de piruvato y una molécula de ATP . [1] La piruvato quinasa recibió un nombre inadecuado (de manera inconsistente con una quinasa convencional ) antes de que se reconociera que no catalizaba directamente la fosforilación del piruvato , lo que no ocurre en condiciones fisiológicas. [2] La piruvato quinasa está presente en cuatro isoenzimas distintas, específicas de tejido en animales, cada una de las cuales consta de propiedades cinéticas particulares necesarias para adaptarse a las variaciones en los requisitos metabólicos de diversos tejidos.

Isoenzimas en vertebrados

Cuatro isoenzimas de piruvato quinasa expresadas en vertebrados: L (hígado), R (eritrocitos), M1 (músculo y cerebro) y M2 (tejido fetal temprano y la mayoría de los tejidos adultos). Las isoenzimas L y R se expresan mediante el gen PKLR , mientras que las isoenzimas M1 y M2 se expresan mediante el gen PKM2 . Las isoenzimas R y L se diferencian de M1 y M2 en que están reguladas alostéricamente. Cinéticamente, las isoenzimas R y L de la piruvato quinasa tienen dos estados de conformación distintos; uno con una alta afinidad de sustrato y otro con una baja afinidad de sustrato. El estado R, caracterizado por una alta afinidad por el sustrato, sirve como la forma activada de piruvato quinasa y está estabilizado por PEP y fructosa 1,6-bisfosfato (FBP), lo que promueve la vía glucolítica. El estado T, caracterizado por una baja afinidad por el sustrato, sirve como la forma inactivada de piruvato quinasa, unida y estabilizada por ATP y alanina , provocando la fosforilación de la piruvato quinasa y la inhibición de la glucólisis. [3] La isoenzima M2 de la piruvato quinasa puede formar tetrámeros o dímeros. Los tetrámeros tienen una alta afinidad por la PEP, mientras que los dímeros tienen una baja afinidad por la PEP. La actividad enzimática se puede regular fosforilando tetrámeros altamente activos de PKM2 en dímeros inactivos. [4]

El gen PKM consta de 12 exones y 11 intrones . PKM1 y PKM2 son productos de corte y empalme diferentes del gen M (PKM1 contiene el exón 9 mientras que PKM2 contiene el exón 10) y solo se diferencian en 23 aminoácidos dentro de un tramo de 56 aminoácidos (aa 378-434) en su extremo carboxi . [5] [6] El gen PKM está regulado a través de proteínas ribonucleotídicas heterogéneas como hnRNPA1 y hnRNPA2. [7] El monómero PKM2 humano tiene 531 aminoácidos y es una cadena única dividida en dominios A, B y C. La diferencia en la secuencia de aminoácidos entre PKM1 y PKM2 permite que PKM2 esté regulado alostéricamente por FBP y forme dímeros y tetrámeros, mientras que PKM1 solo puede formar tetrámeros. [8]

Isoenzimas en bacterias

Muchas enterobacterias, incluida E. coli , tienen dos isoformas de piruvato quinasa, PykA y PykF, que son idénticas en un 37% en E. coli (Uniprot: PykA, PykF). Catalizan la misma reacción que en los eucariotas, es decir, la generación de ATP a partir de ADP y PEP, último paso de la glucólisis , paso irreversible en condiciones fisiológicas. PykF está regulado alostéricamente por FBP, lo que refleja la posición central de PykF en el metabolismo celular. [9] La transcripción de PykF en E. coli está regulada por el regulador transcripcional global, Cra (FruR). [10] [11] [12] Se demostró que PfkB es inhibido por MgATP en concentraciones bajas de Fru-6P, y esta regulación es importante para la gluconeogénesis . [13]

Reacción

Glucólisis

Hay dos pasos en la reacción de la piruvato quinasa en la glucólisis. Primero, la PEP transfiere un grupo fosfato al ADP, produciendo ATP y el enolato de piruvato. En segundo lugar, se debe agregar un protón al enolato de piruvato para producir la forma funcional de piruvato que requiere la célula. [14] Debido a que el sustrato de la piruvato quinasa es un fosfoazúcar simple y el producto es un ATP, la piruvato quinasa es una posible enzima fundamental para la evolución del ciclo de la glucólisis y puede ser una de las enzimas más antiguas de toda la Tierra. -vida basada. El fosfoenolpiruvato puede haber estado presente abióticamente y se ha demostrado que se produce con alto rendimiento en una vía primitiva de glucólisis de triosas. [15]

Un diagrama simple que demuestra el paso final de la glucólisis, la transferencia de un grupo fosfato del fosfoenolpiruvato (PEP) al adenosín difosfato (ADP) mediante la piruvato quinasa, produciendo una molécula de piruvato y una molécula de ATP .

En las células de levadura, se descubrió que la interacción de la piruvato quinasa de levadura (YPK) con la PEP y su efector alostérico fructosa 1,6-bisfosfato (FBP) aumentaba con la presencia de Mg 2+ . Por lo tanto, se concluyó que el Mg 2+ es un cofactor importante en la catálisis de PEP en piruvato por la piruvato quinasa. Además, se demostró que el ion metálico Mn 2+ tiene un efecto similar, pero más fuerte, sobre YPK que el Mg 2+ . La unión de iones metálicos a los sitios de unión de metales en la piruvato quinasa aumenta la velocidad de esta reacción. [dieciséis]

La reacción catalizada por la piruvato quinasa es el paso final de la glucólisis. Es uno de los tres pasos limitantes de la tasa de este camino. Los pasos limitantes de la velocidad son los pasos regulados más lentos de una vía y, por lo tanto, determinan la velocidad general de la vía. En la glucólisis, los pasos limitantes de la velocidad están acoplados a la hidrólisis de ATP o a la fosforilación de ADP, lo que hace que la vía sea energéticamente favorable y esencialmente irreversible en las células. Este paso final está altamente regulado y deliberadamente irreversible porque el piruvato es un componente intermedio crucial para futuras vías metabólicas. [17] Una vez que se produce el piruvato, ingresa al ciclo de TCA para una mayor producción de ATP en condiciones aeróbicas, o se convierte en ácido láctico o etanol en condiciones anaeróbicas.

Gluconeogénesis: la reacción inversa

La piruvato quinasa también sirve como enzima reguladora de la gluconeogénesis , una vía bioquímica en la que el hígado genera glucosa a partir de piruvato y otros sustratos. La gluconeogénesis utiliza fuentes distintas de carbohidratos para proporcionar glucosa al cerebro y a los glóbulos rojos en tiempos de inanición cuando se agotan las reservas directas de glucosa. [17] Durante el estado de ayuno , la piruvato quinasa se inhibe, evitando así que la "fuga" de fosfoenolpiruvato se convierta en piruvato; [17] en cambio, el fosfoenolpiruvato se convierte en glucosa mediante una cascada de reacciones de gluconeogénesis . Aunque utiliza enzimas similares, la gluconeogénesis no es lo contrario de la glucólisis. En cambio, es una vía que evita los pasos irreversibles de la glucólisis. Además, la gluconeogénesis y la glucólisis no ocurren simultáneamente en la célula en un momento dado, ya que están reguladas recíprocamente por la señalización celular. [17] Una vez que se completa la vía de la gluconeogénesis, la glucosa producida se expulsa del hígado, proporcionando energía para los tejidos vitales en estado de ayuno.

Regulación

La glucólisis está altamente regulada en tres de sus pasos catalíticos: la fosforilación de la glucosa por la hexoquinasa , la fosforilación de la fructosa-6-fosfato por la fosfofructoquinasa y la transferencia de fosfato de PEP a ADP por la piruvato quinasa. En condiciones naturales, estas tres reacciones son irreversibles, tienen una gran energía libre negativa y son responsables de la regulación de esta vía. [17] La ​​actividad de la piruvato quinasa está regulada más ampliamente por efectores alostéricos, modificadores covalentes y control hormonal. Sin embargo, el regulador de piruvato quinasa más importante es la fructosa-1,6-bisfosfato (FBP), que actúa como efector alostérico de la enzima.

Efectores alostéricos

La regulación alostérica es la unión de un efector a un sitio de la proteína distinto del sitio activo, provocando un cambio conformacional y alterando la actividad de esa proteína o enzima determinada. Se ha descubierto que la piruvato quinasa se activa alostéricamente por FBP y se inactiva alostéricamente por ATP y alanina. [18] La tetramerización de la piruvato quinasa es promovida por FBP y serina, mientras que la disociación del tetrámero es promovida por L-cisteína. [19] [20] [21]

Fructosa-1,6-bifosfato

La FBP es la fuente de regulación más importante porque proviene de la vía de la glucólisis. FBP es un intermedio glucolítico producido a partir de la fosforilación de la fructosa 6-fosfato . FBP se une al sitio de unión alostérico en el dominio C de la piruvato quinasa y cambia la conformación de la enzima, provocando la activación de la actividad de la piruvato quinasa. [22] Como intermediario presente dentro de la vía glucolítica, la FBP proporciona estimulación anticipada porque cuanto mayor es la concentración de FBP, mayor es la activación alostérica y la magnitud de la actividad de la piruvato quinasa. La piruvato quinasa es más sensible a los efectos de la FBP. Como resultado, el resto de los mecanismos regulatorios sirven como modificación secundaria. [9] [23]

Modificadores covalentes

Los modificadores covalentes sirven como reguladores indirectos al controlar la fosforilación, desfosforilación, acetilación, succinilación y oxidación de enzimas, lo que resulta en la activación e inhibición de la actividad enzimática. [24] En el hígado, el glucagón y la epinefrina activan la proteína quinasa A , que sirve como modificador covalente al fosforilar y desactivar la piruvato quinasa. Por el contrario, la secreción de insulina en respuesta a la elevación del azúcar en sangre activa la fosfoproteína fosfatasa I, provocando la desfosforilación y activación de la piruvato quinasa para aumentar la glucólisis. La misma modificación covalente tiene el efecto opuesto sobre las enzimas de gluconeogénesis. Este sistema de regulación es responsable de evitar un ciclo inútil mediante la prevención de la activación simultánea de la piruvato quinasa y las enzimas que catalizan la gluconeogénesis. [25]

control hormonal

Para evitar un ciclo inútil , la glucólisis y la gluconeogénesis están fuertemente reguladas para garantizar que nunca funcionen en la célula al mismo tiempo. Como resultado, la inhibición de la piruvato quinasa por el glucagón, el AMP cíclico y la epinefrina no sólo detiene la glucólisis, sino que también estimula la gluconeogénesis. Alternativamente, la insulina interfiere con el efecto del glucagón, el AMP cíclico y la epinefrina, lo que hace que la piruvato quinasa funcione normalmente y se detenga la gluconeogénesis. Además, se descubrió que la glucosa inhibe y altera la gluconeogénesis, sin afectar la actividad de la piruvato quinasa ni la glucólisis. En general, la interacción entre hormonas juega un papel clave en el funcionamiento y regulación de la glucólisis y la gluconeogénesis en la célula. [26]

Efecto inhibidor de la metformina.

La metformina, o dimetilbiguanida , es el tratamiento principal utilizado para la diabetes tipo 2. Se ha demostrado que la metformina afecta indirectamente a la piruvato quinasa mediante la inhibición de la gluconeogénesis. Específicamente, la adición de metformina está relacionada con una marcada disminución en el flujo de glucosa y un aumento en el flujo de lactato/piruvato de diversas vías metabólicas. Aunque la metformina no afecta directamente la actividad de la piruvato quinasa, provoca una disminución en la concentración de ATP. Debido a los efectos inhibidores alostéricos del ATP sobre la piruvato quinasa, una disminución de ATP da como resultado una disminución de la inhibición y la posterior estimulación de la piruvato quinasa. En consecuencia, el aumento de la actividad de la piruvato quinasa dirige el flujo metabólico a través de la glucólisis en lugar de la gluconeogénesis. [27]

Regulación genética

Las proteínas ribonucleotídicas heterogéneas (hnRNP) pueden actuar sobre el gen PKM para regular la expresión de las isoformas M1 y M2. Las isoformas PKM1 y PKM2 son variantes de empalme del gen PKM que se diferencian por un solo exón. Varios tipos de hnRNP, como hnRNPA1 y hnRNPA2, ingresan al núcleo durante condiciones de hipoxia y modulan la expresión de manera que PKM2 se regula positivamente. [28] Hormonas como la insulina regulan positivamente la expresión de PKM2, mientras que hormonas como la triyodotironina (T3) y el glucagón ayudan a regular negativamente PKM2. [29]

Proteína de unión al elemento de respuesta a carbohidratos (ChREBP)

ChREBP es un factor de transcripción que regula la expresión de la isozima L de la piruvato quinasa. [30] Un módulo sensor de glucosa contiene dominios que son objetivos para la fosforilación regulatoria basada en las concentraciones de glucosa y AMPc, que luego controlan su importación al núcleo. [31] También puede activarse aún más uniéndose directamente a la glucosa-6-fosfato. [30] [32] Una vez en el núcleo, sus dominios de unión al ADN activan la transcripción de la piruvato quinasa. [31] Por lo tanto, un nivel alto de glucosa y un nivel bajo de AMPc provocan la desfosforilación de ChREBP , que luego regula positivamente la expresión de piruvato quinasa en el hígado. [30]

Aplicaciones clínicas

Deficiencia

Los defectos genéticos de esta enzima provocan la enfermedad conocida como deficiencia de piruvato quinasa . En esta condición, la falta de piruvato quinasa ralentiza el proceso de glucólisis. Este efecto es especialmente devastador en las células que carecen de mitocondrias , porque estas células deben utilizar la glucólisis anaeróbica como única fuente de energía porque el ciclo del TCA no está disponible. Por ejemplo, los glóbulos rojos , que en un estado de deficiencia de piruvato quinasa, rápidamente se vuelven deficientes en ATP y pueden sufrir hemólisis . Por lo tanto, la deficiencia de piruvato quinasa puede causar anemia hemolítica no esferocítica crónica (CNSHA). [33]

Mutación del gen PK-LR

La deficiencia de piruvato quinasa es causada por un rasgo autosómico recesivo. Los mamíferos tienen dos genes de piruvato quinasa, PK-LR (que codifica las isoenzimas L y R de piruvato quinasa) y PK-M (que codifica la isoenzima M1 de piruvato quinasa), pero solo PKLR codifica la isoenzima de los glóbulos rojos que afecta la deficiencia de piruvato quinasa. Se han identificado más de 250 mutaciones del gen PK-LR y se han asociado con la deficiencia de piruvato quinasa. Las pruebas de ADN han guiado el descubrimiento de la ubicación de PKLR en el cromosoma 1 y el desarrollo de pruebas de secuenciación genética directa para diagnosticar molecularmente la deficiencia de piruvato quinasa. [34]

Aplicaciones de la inhibición de la piruvato quinasa.

Inhibición de especies reactivas de oxígeno (ROS)

Las especies reactivas de oxígeno (ROS) son formas químicamente reactivas de oxígeno. En las células pulmonares humanas, se ha demostrado que las ROS inhiben la isozima M2 de la piruvato quinasa (PKM2). ROS logra esta inhibición oxidando Cys358 e inactivando PKM2. Como resultado de la inactivación de PKM2, el flujo de glucosa ya no se convierte en piruvato, sino que se utiliza en la vía de las pentosas fosfato, lo que resulta en la reducción y desintoxicación de ROS. De esta manera, los efectos nocivos de las ROS aumentan y provocan un mayor estrés oxidativo en las células pulmonares, dando lugar a una posible formación de tumores. Este mecanismo inhibidor es importante porque puede sugerir que los mecanismos reguladores de PKM2 son responsables de ayudar a la resistencia de las células cancerosas al estrés oxidativo y a una mayor tumorigénesis. [35] [36]

Inhibición de fenilalanina

Se ha descubierto que la fenilalanina funciona como un inhibidor competitivo de la piruvato quinasa en el cerebro. Aunque el grado de actividad inhibidora de la fenilalanina es similar en las células fetales y adultas, las enzimas de las células cerebrales fetales son significativamente más vulnerables a la inhibición que las de las células cerebrales adultas. Un estudio de PKM2 en bebés con la enfermedad cerebral genética fenilcetonúrica (PKU) mostró niveles elevados de fenilalanina y una menor eficacia de PKM2. Este mecanismo inhibidor proporciona información sobre el papel de la piruvato quinasa en el daño de las células cerebrales. [37] [38]

Piruvato quinasa en el cáncer

Las células cancerosas tienen una maquinaria metabólica característicamente acelerada y se cree que la piruvato quinasa tiene un papel en el cáncer. En comparación con las células sanas, las células cancerosas tienen niveles elevados de la isoforma PKM2, específicamente el dímero de baja actividad. Por tanto, los niveles séricos de PKM2 se utilizan como marcadores de cáncer. El dímero de baja actividad permite la acumulación de fosfoenol piruvato (PEP), lo que deja grandes concentraciones de intermediarios glucolíticos para la síntesis de biomoléculas que eventualmente serán utilizadas por las células cancerosas. [8] La fosforilación de PKM2 por la proteína quinasa 1 activada por mitógenos (ERK2) provoca cambios conformacionales que permiten que PKM2 ingrese al núcleo y regule la expresión del gen glicolítico necesario para el desarrollo del tumor. [39] Algunos estudios afirman que hay un cambio en la expresión de PKM1 a PKM2 durante la carcinogénesis. Los microambientes tumorales como la hipoxia activan factores de transcripción como el factor inducible por hipoxia para promover la transcripción de PKM2, que forma un circuito de retroalimentación positiva para mejorar su propia transcripción. [8]

Distribución de anomalías de los glóbulos rojos en todo el mundo.

Alternativas

Una enzima reversible con una función similar, la piruvato fosfato diquinasa (PPDK), se encuentra en algunas bacterias y ha sido transferida a varios grupos de eucariotas anaeróbicos (por ejemplo, Streblomastix , Giardia , Entamoeba y Trichomonas ), al parecer a través de un gen horizontal. transferencia en dos o más ocasiones. En algunos casos, el mismo organismo tendrá piruvato quinasa y PPDK. [40]

Referencias

  1. ^ Gupta V, Bamezai RN (noviembre de 2010). "Piruvato quinasa M2 humana: una proteína multifuncional". Ciencia de las proteínas . 19 (11): 2031–44. doi :10.1002/pro.505. PMC  3005776 . PMID  20857498.
  2. ^ Buen hombre HM (2009). Endocrinología Médica Básica (4ª ed.). Elsevier. pag. 132.ISBN 978-0-12-373975-9.
  3. ^ Muirhead H (abril de 1990). "Isoenzimas de piruvato quinasa". Transacciones de la sociedad bioquímica . 18 (2): 193–6. doi :10.1042/bst0180193. PMID  2379684. S2CID  3262531.
  4. ^ Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R (1 de enero de 1992). "Doble papel de la piruvato quinasa tipo M2 en la expansión de los grupos de fosfometabolitos que se encuentran en las células tumorales". Reseñas críticas en oncogénesis . 3 (1–2): 91–115. PMID  1532331.
  5. ^ Noguchi T, Inoue H, Tanaka T (octubre de 1986). "Las isoenzimas de tipo M1 y M2 de la piruvato quinasa de rata se producen a partir del mismo gen mediante empalme de ARN alternativo". La Revista de Química Biológica . 261 (29): 13807–12. doi : 10.1016/S0021-9258(18)67091-7 . PMID  3020052.
  6. ^ Dombrauckas JD, Santarsiero BD, Mesecar AD (julio de 2005). "Base estructural para la catálisis y regulación alostérica de la piruvato quinasa M2 tumoral". Bioquímica . 44 (27): 9417–29. doi :10.1021/bi0474923. PMID  15996096. S2CID  24625677.
  7. ^ Chen M, Zhang J, Manley JL (noviembre de 2010). "Activar el interruptor de combustible del cáncer: las proteínas hnRNP regulan el empalme alternativo del ARNm de piruvato quinasa". Investigación sobre el cáncer . 70 (22): 8977–80. doi :10.1158/0008-5472.CAN-10-2513. PMC 2982937 . PMID  20978194. 
  8. ^ abc Prakasam G, Iqbal MA, Bamezai RN, Mazurek S (2018). "Modificaciones postraduccionales de la piruvato quinasa M2: ajustes que benefician al cáncer". Fronteras en Oncología . 8 : 22. doi : 10.3389/fonc.2018.00022 . PMC 5808394 . PMID  29468140. 
  9. ^ ab Valentini G, Chiarelli L, Fortin R, Speranza ML, Galizzi A, Mattevi A (junio de 2000). "La regulación alostérica de la piruvato quinasa". La Revista de Química Biológica . 275 (24): 18145–52. doi : 10.1074/jbc.M001870200 . PMID  10751408.
  10. ^ Ramseier TM, Nègre D, Cortay JC, Scarabel M, Cozzone AJ, Saier MH (noviembre de 1993). "Unión in vitro de la proteína reguladora transcripcional pleiotrópica, FruR, a los operones fru, pps, ace, pts e icd de Escherichia coli y Salmonella typhimurium". Revista de biología molecular . 234 (1): 28–44. doi :10.1006/jmbi.1993.1561. PMID  8230205.
  11. ^ Ramseier TM, Bledig S, Michotey V, Feghali R, Saier MH (junio de 1995). "La proteína reguladora global FruR modula la dirección del flujo de carbono en Escherichia coli". Microbiología Molecular . 16 (6): 1157–69. doi :10.1111/j.1365-2958.1995.tb02339.x. PMID  8577250. S2CID  45447144.
  12. ^ Saier MH, Ramseier TM (junio de 1996). "La proteína represora / activadora de catabolitos (Cra) de bacterias entéricas". Revista de Bacteriología . 178 (12): 3411–7. doi :10.1128/jb.178.12.3411-3417.1996. PMC 178107 . PMID  8655535. 
  13. ^ Sabnis NA, Yang H, Romeo T (diciembre de 1995). "Regulación pleiotrópica del metabolismo central de carbohidratos en Escherichia coli mediante el gen csrA". La Revista de Química Biológica . 270 (49): 29096–104. doi : 10.1074/jbc.270.49.29096 . PMID  7493933.
  14. ^ Kumar S, Barth A (mayo de 2010). "Unión de fosfoenolpiruvato y Mg2 + a piruvato quinasa monitorizada por espectroscopia infrarroja". Revista Biofísica . 98 (9): 1931–40. Código Bib : 2010BpJ....98.1931K. doi :10.1016/j.bpj.2009.12.4335. PMC 2862152 . PMID  20441757. 
  15. ^ Coggins AJ, Powner MW (abril de 2017). "Síntesis prebiótica de piruvato de fosfoenol mediante glucólisis de triosa controlada por α-fosforilación". Química de la Naturaleza . 9 (4): 310–317. doi :10.1038/nchem.2624. PMID  28338685. S2CID  205296677.
  16. ^ Bollenbach TJ, Nowak T (octubre de 2001). "Análisis cinético de función ligada de las interacciones multiligando en piruvato quinasa de levadura activada por Mg (2+)". Bioquímica . 40 (43): 13097–106. doi :10.1021/bi010126o. PMID  11669648.
  17. ^ abcde Berg JM, Tymoczko JL, Stryer J, Clarke ND (2002). Bioquímica (quinta ed.). Nueva York, Nueva York: WH Freeman. ISBN 978-0-7167-3051-4.
  18. ^ Carbonell J, Felíu JE, Marco R, Sols A (agosto de 1973). "Piruvato quinasa. Clases de isoenzimas reguladoras en tejidos de mamíferos". Revista europea de bioquímica . 37 (1): 148–56. doi :10.1111/j.1432-1033.1973.tb02969.x. hdl : 10261/78345 . PMID  4729424.
  19. ^ Yang J, Liu H, Liu X, Gu C, Luo R, Chen HF (junio de 2016). "Mecanismo alostérico sinérgico de fructosa-1,6-bisfosfato y serina para piruvato quinasa M2 mediante análisis de red de fluctuación dinámica". Revista de información y modelado químico . 56 (6): 1184-1192. doi : 10.1021/acs.jcim.6b00115. PMC 5115163 . PMID  27227511. 
  20. ^ Chaneton B, Hillmann P, Zheng L, Martin AC, Maddocks OD, Chokkathukalam A, et al. (Noviembre 2012). "La serina es un ligando natural y activador alostérico de la piruvato quinasa M2". Naturaleza . 491 (7424): 458–462. Código Bib :2012Natur.491..458C. doi : 10.1038/naturaleza11540. PMC 3894725 . PMID  23064226. 
  21. ^ Nakatsu D, Horiuchi Y, Kano F, Noguchi Y, Sugawara T, Takamoto I, et al. (Marzo de 2015). "La L-cisteína inhibe reversiblemente la secreción de insulina bifásica inducida por glucosa y la producción de ATP al inactivar PKM2". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 112 (10): E1067-76. Código Bib : 2015PNAS..112E1067N. doi : 10.1073/pnas.1417197112 . PMC 4364213 . PMID  25713368. 
  22. ^ Ishwar A (24 de febrero de 2015). "Distinguir las interacciones en el sitio de unión de fructosa 1,6-bisfosfato de la piruvato quinasa del hígado humano que contribuyen al alosterio". Bioquímica . 54 (7): 1516–24. doi :10.1021/bi501426w. PMC 5286843 . PMID  25629396. 
  23. ^ Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL (febrero de 1998). "La regulación alostérica de la piruvato quinasa por la fructosa-1,6-bisfosfato". Estructura . 6 (2): 195–210. doi : 10.1016/S0969-2126(98)00021-5 . PMID  9519410.
  24. ^ Li YH, Li XF, Liu JT, Wang H, Fan LL, Li J, Sun GP (agosto de 2018). "PKM2, una diana potencial para regular el cáncer". Gen.668 : 48–53. doi :10.1016/j.gene.2018.05.038. PMID  29775756. S2CID  205030574.
  25. ^ Birnbaum MJ, Fain JN (enero de 1977). "Activación de proteína quinasa y glucógeno fosforilasa en células aisladas de hígado de rata por glucagón y catecolaminas". La Revista de Química Biológica . 252 (2): 528–35. doi : 10.1016/S0021-9258(17)32749-7 . PMID  188818.
  26. ^ Feliú JE, Hue L, Hers HG (1976). "Control hormonal de la actividad piruvato quinasa y de la gluconeogénesis en hepatocitos aislados". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 73 (8): 2762–6. Código bibliográfico : 1976PNAS...73.2762F. doi : 10.1073/pnas.73.8.2762 . PMC 430732 . PMID  183209. 
  27. ^ Argaud D, Roth H, Wiernsperger N, Leverve XM (1993). "La metformina disminuye la gluconeogénesis al mejorar el flujo de piruvato quinasa en hepatocitos de rata aislados". Revista europea de bioquímica . 213 (3): 1341–8. doi : 10.1111/j.1432-1033.1993.tb17886.x . PMID  8504825.
  28. ^ Clower CV, Chatterjee D, Wang Z, Cantley LC, Vander Heiden MG, Krainer AR (febrero de 2010). "Los represores de empalme alternativos hnRNP A1 / A2 y PTB influyen en la expresión de la isoforma de piruvato quinasa y el metabolismo celular". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 107 (5): 1894–9. Código bibliográfico : 2010PNAS..107.1894C. doi : 10.1073/pnas.0914845107 . PMC 2838216 . PMID  20133837. 
  29. ^ Iqbal MA, Siddiqui FA, Gupta V, Chattopadhyay S, Gopinath P, Kumar B, et al. (Julio 2013). "La insulina mejora las capacidades metabólicas de las células cancerosas mediante la regulación dual de la enzima glicolítica piruvato quinasa M2". Cáncer molecular . 12 (1): 72. doi : 10.1186/1476-4598-12-72 . PMC 3710280 . PMID  23837608. 
  30. ^ abc Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K (noviembre de 2001). "La glucosa y el AMPc regulan el gen de la piruvato quinasa de tipo L mediante la fosforilación/desfosforilación de la proteína de unión al elemento de respuesta a los carbohidratos". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 98 (24): 13710–5. Código bibliográfico : 2001PNAS...9813710K. doi : 10.1073/pnas.231370798 . PMC 61106 . PMID  11698644. 
  31. ^ ab Ortega-Prieto, Paula; Postic, Catherine (2019). "Detección de carbohidratos a través del factor de transcripción ChREBP". Fronteras en genética . 10 : 472. doi : 10.3389/fgene.2019.00472 . ISSN  1664-8021. PMC 6593282 . PMID  31275349. 
  32. ^ Richards, Pablo; Ouraba, Sara; Montaña, Jacques; Burnol, Anne-Françoise; Postic, Catalina; Guilmeau, Sandra (2017). "MondoA/ChREBP: los sospechosos habituales de la detección transcripcional de glucosa; implicaciones en la fisiopatología". Metabolismo: clínico y experimental . 70 : 133-151. doi :10.1016/j.metabol.2017.01.033. ISSN  1532-8600. PMID  28403938.
  33. ^ Grace RF, Zanella A, Neufeld EJ, Morton DH, Eber S, Yaish H, Glader B (septiembre de 2015). "Deficiencia de piruvato quinasa de eritrocitos: informe de situación de 2015". Revista Estadounidense de Hematología . 90 (9): 825–30. doi :10.1002/ajh.24088. PMC 5053227 . PMID  26087744. 
  34. ^ Climent F, Roset F, Repiso A, Pérez de la Ossa P (junio de 2009). "Trastornos de las enzimas glucolíticas de los glóbulos rojos causados ​​por mutaciones: una actualización". Objetivos farmacológicos para los trastornos cardiovasculares y hematológicos . 9 (2): 95-106. doi : 10.2174/187152909788488636. PMID  19519368.
  35. ^ Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC (diciembre de 2011). "La inhibición de la piruvato quinasa M2 por especies reactivas de oxígeno contribuye a las respuestas antioxidantes celulares". Ciencia . 334 (6060): 1278–83. Código Bib : 2011 Ciencia... 334.1278A. doi : 10.1126/ciencia.1211485. PMC 3471535 . PMID  22052977. 
  36. ^ Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (marzo de 2008). "La isoforma de empalme M2 de la piruvato quinasa es importante para el metabolismo del cáncer y el crecimiento tumoral". Naturaleza . 452 (7184): 230–3. Código Bib :2008Natur.452..230C. doi : 10.1038/naturaleza06734. PMID  18337823. S2CID  16111842.
  37. ^ Miller AL, Hawkins RA, Veech RL (marzo de 1973). "Fenilcetonuria: la fenilalanina inhibe la piruvato quinasa cerebral in vivo". Ciencia . 179 (4076): 904–6. Código bibliográfico : 1973 Ciencia... 179.. 904 M. doi : 10.1126/ciencia.179.4076.904. PMID  4734564. S2CID  12776382.
  38. ^ Weber G (agosto de 1969). "Inhibición de la piruvato quinasa y hexoquinasa del cerebro humano por fenilalanina y fenilpiruvato: posible relevancia para el daño cerebral fenilcetonúrico". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 63 (4): 1365–9. Código bibliográfico : 1969PNAS...63.1365W. doi : 10.1073/pnas.63.4.1365 . PMC 223473 . PMID  5260939. 
  39. ^ Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. (Diciembre 2012). "La fosforilación dependiente de ERK1 / 2 y la translocación nuclear de PKM2 promueven el efecto Warburg". Biología celular de la naturaleza . 14 (12): 1295–304. doi :10.1038/ncb2629. PMC 3511602 . PMID  23178880. 
  40. ^ Liapounova NA, Hampl V, Gordon PM, Sensen CW, Gedamu L, Dacks JB (diciembre de 2006). "Reconstrucción de la vía glucolítica en mosaico del eucariota anaeróbico Monocercomonoides" (Texto completo gratuito) . Célula eucariota . 5 (12): 2138–46. doi :10.1128/EC.00258-06. PMC 1694820 . PMID  17071828. 

enlaces externos