La pérdida de masa estelar es un fenómeno que se observa en las estrellas y que consiste en que estas pierden algo de masa a lo largo de su vida. La pérdida de masa puede deberse a eventos desencadenantes que provocan la expulsión repentina de una gran parte de la masa de la estrella. También puede ocurrir cuando una estrella pierde material gradualmente en favor de una compañera binaria o debido a fuertes vientos estelares . Las estrellas masivas son particularmente susceptibles a perder masa en las últimas etapas de la evolución. La cantidad y la tasa de pérdida de masa varían ampliamente en función de numerosos factores.
La pérdida de masa estelar juega un papel muy importante en la evolución estelar , la composición del medio interestelar , la nucleosíntesis , así como en la comprensión de las poblaciones de estrellas en cúmulos y galaxias .
Toda estrella sufre alguna pérdida de masa a lo largo de su vida. Esto puede deberse a su propio viento estelar o a interacciones con el entorno exterior. Además, las estrellas masivas son especialmente vulnerables a una pérdida de masa significativa y pueden verse influidas por diversos factores, entre ellos:
A continuación se analizan algunas de estas causas, junto con las consecuencias de dicho fenómeno.
El viento solar es una corriente de plasma liberada desde la atmósfera superior del Sol . Las altas temperaturas de la corona permiten que las partículas cargadas y otros núcleos atómicos obtengan la energía necesaria para escapar de la gravedad del Sol . El Sol pierde masa debido al viento solar a un ritmo muy pequeño.(2–3) × 10 −14 masas solares por año. [2]
El viento solar transporta trazas de los núcleos de elementos pesados fusionados en el núcleo del sol, lo que revela el funcionamiento interno del sol y también transmite información sobre el campo magnético solar. [3] En 2021, la sonda solar Parker midió la " velocidad del sonido " y las propiedades magnéticas del entorno de plasma del viento solar. [4]
A menudo, cuando una estrella es miembro de un par de estrellas binarias en órbita cercana , la atracción de marea de los gases cerca del centro de masa es suficiente para atraer el gas de una estrella hacia su pareja. Este efecto es especialmente prominente cuando el socio es una enana blanca , una estrella de neutrones o un agujero negro . La pérdida de masa en sistemas binarios tiene resultados particularmente interesantes. Si la estrella secundaria en el sistema desborda su lóbulo de Roche , pierde masa a favor de la primaria, alterando en gran medida su evolución. Si la estrella primaria es una enana blanca, el sistema se desarrolla rápidamente en una supernova de tipo Ia . [5] Otro escenario alternativo para el mismo sistema es la formación de una variable cataclísmica o una "Nova". Si la estrella que acreta es una estrella de neutrones o un agujero negro , el sistema resultante es un binario de rayos X.
Un estudio de 2012 descubrió que más del 70% de todas las estrellas masivas intercambian masa con una compañera, lo que conduce a una fusión binaria en un tercio de los casos. [6] Dado que la trayectoria de evolución de estas estrellas se altera en gran medida debido a la pérdida de masa de la compañera, los modelos de evolución estelar se están centrando en replicar estas observaciones. [7] [8]
Ciertas clases de estrellas, especialmente las estrellas Wolf-Rayet, son lo suficientemente masivas y, a medida que evolucionan, su radio aumenta. Esto hace que su dominio sobre las capas superiores se debilite, lo que permite que pequeñas perturbaciones expulsen grandes cantidades de las capas externas al espacio. Eventos como las erupciones solares y las eyecciones de masa coronal son meros puntos en la escala de pérdida de masa para las estrellas de baja masa (como nuestro Sol). Sin embargo, estos mismos eventos causan eyecciones catastróficas de material estelar al espacio para las estrellas masivas como las estrellas Wolf-Rayet. [9]
Estas estrellas son extremadamente generosas y pasan gran parte de su vida donando masa al medio interestelar que las rodea. A medida que se despojan de sus envolturas de hidrógeno , continúan siendo buenos samaritanos, liberando elementos más pesados como helio , carbono , nitrógeno y oxígeno , y algunas de las estrellas más masivas liberan elementos aún más pesados, hasta el aluminio. [10]
Las estrellas que han entrado en la fase de gigante roja son conocidas por su rápida pérdida de masa. Como ya se ha dicho, la fuerza gravitatoria sobre las capas superiores se debilita y pueden ser arrojadas al espacio por eventos violentos como el comienzo de un destello de helio en el núcleo. La etapa final de la vida de una gigante roja también dará lugar a una pérdida de masa prodigiosa, ya que la estrella pierde sus capas externas para formar una nebulosa planetaria .
Las estructuras de estas nebulosas permiten comprender la historia de la pérdida de masa de la estrella. Las densidades excesivas e insuficientes revelan los períodos en los que la estrella perdió masa de forma activa, mientras que la distribución de estos cúmulos en el espacio sugiere la causa física de la pérdida. Las capas esféricas uniformes de la nebulosa apuntan a vientos estelares simétricos, mientras que la asimetría y la falta de estructura uniforme apuntan a eyecciones de masa y llamaradas estelares como la causa. [11] [12]
Este fenómeno adquiere una nueva escala cuando se observan las estrellas AGB . Las estrellas que se encuentran en la rama gigante asintótica del diagrama de Hertzsprung-Russell son las más propensas a la pérdida de masa en las últimas etapas de su evolución en comparación con otras. Esta fase es cuando se pierde la mayor cantidad de masa de una sola estrella que no llega a explotar en una supernova.
Simulación de una supergigante roja que muestra inestabilidad y pérdida de masa
Una revisión de la pérdida de masa estelar en estrellas masivas
Efectos de la pérdida de masa de las estrellas intermedias en el medio interestelar
{{cite journal}}
: CS1 maint: varios nombres: lista de autores ( enlace )