Teorema de Napoleón

En geometría, el teorema de Napoleón es un resultado sobre triángulos equiláteros; se le atribuye a Napoleón Bonaparte (1769-1821), si bien no hay pruebas tangibles de que sea el verdadero autor.

Aparece publicado en el calendario The Ladies' Diary de 1825, es decir cuatro años después su muerte.

[2]​ Por construcción, al efectuar sobre el triángulo MCL una rotación de 30° centrada en C, seguida de una homotecia de razón √3, los puntos M y L se transforman en A y X, por lo que el segmento AX es igual a raíz de tres veces el segmento ML.

Dado que los triángulos YCB y ACX se obtienen uno a partir del otro por una rotación centrada en C de un ángulo de 60°, resulta que los segmentos AX y YB son iguales.

Aplicando el mismo razonamiento a los triángulos MAN y NBL, esta vez tomando como centro de rotación los puntos A y B y las homotecias correspondientes, se establece que los segmentos AX, YB y CZ son iguales entre sí y que guardan la misma relación entre cada uno de sus lados con la longitud de los lados del triángulo MNL (raíz cuadrada de 3).