Descrita de modo informal, se construye, como muestra la figura, sacando dos "cuernos" a una esfera, aproximándolos, dividiendo en dos cada uno de los cuernos anteriores y volviéndolos a aproximar, repitiendo el proceso indefinidamente.En una esfera canónica siempre podremos liberar una cuerda atada en su exterior, pero en la esfera cornuda de Alexander será imposible liberar una cuerda que tenga que pasar a través de los cuernos entrelazados.Así, del mismo modo que todos los nudos como espacios topológicos son homeomorfos a una circunferencia, pero nudos no equivalentes pueden tener exteriores no homeomorfos, la esfera canónica deComo consecuencia directa del mismo, quedaba demostrado que cualquier curva cerrada simple dividía el plano en dos regiones: la interior, homeomorfa al interior del disco unidad, y la exterior, homeomorfa al exterior del mismo disco.En 1921, J. W. Alexander buscaba un análogo en dimensión superior de este teorema.
Construcción animada de la esfera de Alexander.
Diagrama de los primeros pasos iterativos en la construcción de la esfera con cuernos de Alexander, según el artículo original de Alexander de 1924