Ecuación diferencial ordinaria de Riccati

La ecuación de Riccati es una ecuación diferencial ordinaria, no lineal de primer orden, inventada y desarrollada en el siglo XVIII por el matemático italiano Jacopo Francesco Riccati, con el fin de analizar la hidrodinámica.En 1724 publicó una investigación multilateral de la ecuación, llamada, por iniciativa de D'Alembert (1769): Ecuación de Riccati.La investigación de la ecuación de Riccati convocó el esfuerzo de varios matemáticos: Leibniz, Goldbach, Juan Bernoulli y sus hijos Nicolás y Daniel Bernoulli, y posteriormente, a Euler.[1]​ Generalmente, esta ecuación la presentan en la forma:Esta ecuación se resuelve si previamente se conoce una solución particular, seaConocida dicha solución, se hace el cambio:y reemplazando, se obtiene:lo que equivale a:que corresponde a una ecuación diferencial de Bernoulli.Obsérvese que si se hace la sustitución:propuesta por Euler en la década de 1760[2]​ esto lleva directamente a una ecuación lineal diferencial de primer orden.= p ( x ) ( y −teniendo en cuenta que{\displaystyle \Rightarrow {\frac {1}{z^{2}}}{\frac {dz}{dx}}={\frac {p(x)}{z}}+q(x)({\frac {1}{z^{2}}}+{\frac {2y_{1}}{z}})}l n ( 2 z + 1 ) = x +Luego la solución general es:Una aplicación importante de la ecuación de Riccati es en la ecuación diferencial Schwarziana de 3.er orden que aparece en la teoría del mapeo conforme y funciones univalentes.En este caso, las ecuaciones están en el dominio complejo y la diferenciación es con respecto a una variable compleja.(El derivado de Schwarziantiene la notable propiedad de que es invariante bajo las transformaciones de Möbius, es decir,( ( a w + b )( c w + d ) ) =a d − b csea no cero.)satisface la ecuación de Riccati Por lo anteriores una solución del ODE lineal Dado quePor otro lado, cualquier otra solución independienteo de la ODE lineal tiene un Wronskiano constante distinto de cerodespués de escalar.Entonces para que la ecuación de Schwarz tenga solución