Adición (matemática)

Por otro lado, la acción repetitiva de sumar uno, es la forma más básica de contar.En términos más formales, la suma es una operación aritmética definida sobre conjuntos de números (naturales, enteros, racionales, irracionales, reales y complejos), y también sobre estructuras asociadas a ellos, como espacios vectoriales con vectores cuyas componentes sean estos números o funciones que tengan su imagen en ellos.En el álgebra moderna se utiliza el nombre suma y su símbolo "+" para representar la operación formal de un anillo que dota al anillo de estructura de grupo abeliano, o la operación de un módulo que dota al módulo de estructura de grupo abeliano.También se utiliza a veces en teoría de grupos para representar la operación que dota a un conjunto de estructura de grupo.En estos casos se trata de una denominación puramente simbólica, sin que necesariamente coincida esta operación con la suma habitual en números, funciones, vectores, etc.El hombre neolítico ya hacía matemática elemental, por lo tanto sabía sumar; pero previamente captó la idea de restar, puesto que sus medios de subsistencia disminuían durante el año, y no le era tan fácil de reponer.Los egipcios llegaron a sumar lo que se llaman hoy, números naturales y los números fraccionarios.Los babilonios llegaron a sumar los cuadrados de los números naturales.Los chinos y los hindúes sumaron números negativos.En el Renacimiento, con el auge de la banca y del comercio, se impuso la suma de decimales, catapultada por el uso del sistema de numeración decimal.Pero sí, con sus propias peculiaridades, tanto al generalizar para racionales y enteros.Además se suman con otros objetos, aun en el álgebra de Boole se habla de suma boleana.[3]​ Elemento neutro: El elemento identidad aditivo de los números es el cero, denotado por 0; porque todo número sumado con el 0 da el mismo número como total.Si todos los términos se escriben individualmente, se utiliza el símbolo "+" (leído más).Con esto, la suma de los números 1, 2 y 4 esTambién se puede emplear el símbolo "+" cuando, a pesar de no escribirse individualmente los términos, se indican los números omitidos mediante puntos suspensivos y es sencillo reconocer los números omitidos.Por ejemplo: En sumas largas o infinitas se emplea un nuevo símbolo, llamado sumatorio, y se representa con la letra griega sigma mayúscula (Σ).Por ejemplo: Esta es una suma de una sucesión, cuyo enésimo término es la suma de los primeros n términos de la serie infinita; es decir, se suman todos los elementos de un conjunto infinito; sin embargo, en realidad se calcula el límite de todos los elementos que se suman y se calcula el límite matemático.El procedimiento paradigmático para efectuar sumas de varios números, denominados «sumandos», es el siguiente: Los sumandos se colocan en filas sucesivas ordenando las cifras en columnas, empezando por la derecha con la cifra de las unidades (U), a la izquierda las decenas (D), la siguiente las centenas (C), la siguiente los millares (M), etc.Se suman en primer lugar las cifras de la columna de las unidades según las tablas elementales, colocando en el resultado la cifra de unidades que resulte; cuando estas unidades sean más de 10 las decenas se acumulan como un sumando más en la fila de acarreo.En este caso 3 más 9 son 12, el 2 del 12 se pone en la parte inferior y el 1 se pasa como acarreo en la columna siguiente.En la columna de las decenas, procediendo entonces a la suma de esa columna como si fueran unidades.Sumamos el 1 del acarreo más 5, 8 y 6 que dan un total de 20, el 0 de 20 se pone en la parte inferior como resultado y el 2 se pasa como acarreo a la columna siguiente.En la columna de las centenas tenemos, el 2 de acarreo, el 7 y el 5 que sumados dan 14, el 4 del 14 se pone en la parte inferior y el 1 se pasa a la siguiente columna como acarreo.En la columna de los millares tenemos 1 de acarreo más el 1 de sumando que sumados dan 2, que se pone en la parte inferior como resultado, al no haber más sumandos damos por finalizada la operación.Normalmente los acarreos o llevadas no se anotan en el papel, sumando directamente el acarreo a los sumandos de la columna siguiente y el aspecto de la realización de la suma sin las anotaciones auxiliares sería el siguiente:Según la axiomática de Peano la adición en el conjunto de los n números naturales se definen por estas dos condiciones: La adición o también llamada suma es una operación matemática que tiene aplicaciones significativas en diferentes campos del conocimiento.La enseñanza de la suma y resta permite el desarrollo de competencias básicas de las matemáticas, siendo el primer acercamiento a la aritmética.[8]​ La suma forma parte del currículum de educación infantil permitiendo que el educando adquiera el concepto de número.Dicho lo anterior las acciones que se realizan para que el educando se capaz de adquirir la concepción de suma se hacen inconscientemente.
3 + 2 = 5. [ 1 ]