stringtranslate.com

Separación de fases

Mezclado de los líquidos A y B y posterior separación de fases.
Cuando se mezclan, el aceite y el vinagre se separarán en fases.
Un diagrama de fases para dos isótopos de helio, que muestra en la parte inferior un rango de temperaturas y proporciones en las que se separarán las fases.

La separación de fases es la creación de dos fases distintas a partir de una única mezcla homogénea . [1] El tipo más común de separación de fases es entre dos líquidos inmiscibles , como el aceite y el agua. Este tipo de separación de fases se conoce como equilibrio líquido-líquido. Los coloides se forman mediante separación de fases, aunque no todas las separaciones de fases forman coloides; por ejemplo, el aceite y el agua pueden formar capas separadas bajo la gravedad en lugar de permanecer como gotas microscópicas en suspensión.

Una forma común de separación de fases espontánea se denomina descomposición espinodal ; se describe mediante la ecuación de Cahn-Hilliard . Las regiones de un diagrama de fases en las que se produce la separación de fases se denominan espacios de miscibilidad . Hay dos curvas límite destacables: la curva de coexistencia binodal y la curva espinodal . Por un lado del binodal, las mezclas son absolutamente estables. Entre el binodal y el espinodal, las mezclas pueden ser metaestables : permanecer mezcladas (o sin mezclar) sin ninguna alteración importante. La región más allá de la curva espinodal es absolutamente inestable y (si se parte de un estado mixto) se separará de fase espontáneamente.

La temperatura crítica superior de la solución (UCST) y la temperatura crítica inferior de la solución (LCST) son dos temperaturas críticas , por encima o por debajo de las cuales los componentes de una mezcla son miscibles en todas las proporciones. Es raro que los sistemas tengan ambos, pero existen algunos: el sistema de agua y nicotina tiene una LCST de 61 °C, y también una UCST de 210 °C a presiones lo suficientemente altas como para que exista agua líquida a esa temperatura. Por lo tanto, los componentes son miscibles en todas las proporciones por debajo de 61 °C y por encima de 210 °C (a alta presión), y parcialmente miscibles en el intervalo de 61 a 210 °C. [2] [3]

Base fisica

La mezcla se rige por la energía libre de Gibbs , y se produce una separación o mezcla de fases en cualquier caso que reduzca la energía libre de Gibbs. La energía libre se puede descomponer en dos partes: , con la entalpía , la temperatura y la entropía . Por tanto, el cambio de energía libre en la mezcla es la suma de la entalpía de mezcla y la entropía de mezcla . La entalpía de mezcla es cero para las mezclas ideales , y las mezclas ideales son suficientes para describir muchas soluciones comunes. Por tanto, en muchos casos, la mezcla (o separación de fases) está impulsada principalmente por la entropía de la mezcla. Generalmente se da el caso de que la entropía aumentará cada vez que una partícula (un átomo, una molécula) tenga un espacio mayor para explorar; y por tanto, la entropía de la mezcla es generalmente positiva: los componentes de la mezcla pueden aumentar su entropía al compartir un volumen común mayor.

La separación de fases es entonces impulsada por varios procesos distintos. En un caso, la entalpía de mezcla es positiva y la temperatura es baja: el aumento de entropía es insuficiente para reducir la energía libre. En otro caso mucho más raro, la entropía de la mezcla es " desfavorable ", es decir, negativa. En este caso, incluso si el cambio de entalpía es negativo, se producirá separación de fases a menos que la temperatura sea lo suficientemente baja. Es este segundo caso el que da lugar a la idea de una temperatura crítica más baja de la solución.

Separación de fases en gases fríos.

Una mezcla de dos isótopos de helio ( helio-3 y helio-4 ) en un cierto rango de temperaturas y concentraciones se separa en partes. La mezcla inicial de los dos isótopos se separa espontáneamente en regiones ricas y ricas. [4] La separación de fases también existe en sistemas de gas ultrafrío . [5] Se ha demostrado experimentalmente en una caja de gas Fermi ultrafrío de dos componentes . [6] [7] La ​​separación de fases puede competir con otros fenómenos como la formación de una red de vórtices o una fase exótica de Fulde-Ferrell-Larkin-Ovchinnikov . [8]

Ver también

Referencias

  1. ^ Nic M, Jirat J, Kosata B (1997). "Separación de fases". En McNaught AD, Wilkinson A, Jenkins A (eds.). Compendio de terminología química de la IUPAC (el "Libro de oro") (2ª ed.). Oxford: Publicaciones científicas de Blackwell. doi : 10.1351/goldbook.P04534. ISBN 0-9678550-9-8.
  2. ^ PW Atkins y J. de Paula, "Atkins' Physical Chemistry" (8ª ed., WH Freeman 2006) págs. 186-7
  3. ^ MA White, Propiedades de los materiales (Oxford University Press 1999) p. 175
  4. ^ Pobell, Frank (2007). Materia y métodos a bajas temperaturas (3ª rev. y edición ampliada). Berlín: Springer. ISBN 978-3-540-46356-6. OCLC  122268227.
  5. ^ Carlson, J.; Reddy, Sanjay (2 de agosto de 2005). "Sistemas de fermiones asimétricos de dos componentes en acoplamiento fuerte". Cartas de revisión física . 95 (6): 060401. arXiv : cond-mat/0503256 . Código bibliográfico : 2005PhRvL..95f0401C. doi : 10.1103/PhysRevLett.95.060401. PMID  16090928. S2CID  448402.
  6. ^ Shin, Y.; Zwierlein, MW; Schunck, CH; Schirotzek, A.; Ketterle, W. (18 de julio de 2006). "Observación de la separación de fases en un gas Fermi desequilibrado que interactúa fuertemente". Cartas de revisión física . 97 (3): 030401. arXiv : cond-mat/0606432 . Código bibliográfico : 2006PhRvL..97c0401S. doi : 10.1103/PhysRevLett.97.030401. PMID  16907486. S2CID  11323402.
  7. ^ Zwierlein, Martín W.; Schirotzek, André; Schunck, Christian H.; Ketterle, Wolfgang (27 de enero de 2006). "Superfluidez fermiónica con poblaciones de espín desequilibradas". Ciencia . 311 (5760): 492–496. arXiv : cond-mat/0511197 . Código bibliográfico : 2006 Ciencia... 311..492Z. doi : 10.1126/ciencia.1122318. ISSN  0036-8075. PMID  16373535. S2CID  13801977.
  8. ^ Kopyciński, Jakub; Pudelko, Wojciech R.; Wlazłowski, Gabriel (23 de noviembre de 2021). "Enrejado de vórtice en gas Fermi unitario con desequilibrio de espín". Revisión física A. 104 (5): 053322. arXiv : 2109.00427 . Código bibliográfico : 2021PhRvA.104e3322K. doi : 10.1103/PhysRevA.104.053322. S2CID  237372963.

Otras lecturas