La plasticidad fenotípica se refiere a algunos de los cambios en el comportamiento, la morfología y la fisiología de un organismo en respuesta a un entorno único. [1] [2] Fundamental para la forma en que los organismos afrontan la variación ambiental, la plasticidad fenotípica abarca todos los tipos de cambios inducidos por el medio ambiente (por ejemplo, morfológicos , fisiológicos , conductuales , fenológicos ) que pueden o no ser permanentes a lo largo de la vida de un individuo. [3]
El término se utilizó originalmente para describir los efectos del desarrollo sobre los caracteres morfológicos, pero ahora se utiliza de forma más amplia para describir todas las respuestas fenotípicas al cambio ambiental, como la aclimatación ( aclimatación ), así como el aprendizaje . [3] El caso especial en el que las diferencias en el entorno inducen fenotipos discretos se denomina polifenismo .
En general, la plasticidad fenotípica es más importante para los organismos inmóviles (por ejemplo, las plantas ) que para los organismos móviles (por ejemplo, la mayoría de los animales ), ya que los organismos móviles a menudo pueden alejarse de entornos desfavorables. [4] Sin embargo, los organismos móviles también tienen al menos algún grado de plasticidad en al menos algunos aspectos del fenotipo . [2] Un organismo móvil con una plasticidad fenotípica sustancial es Acyrthosiphon pisum de la familia de los pulgones , que exhibe la capacidad de intercambiar entre reproducción asexual y sexual, así como de desarrollar alas entre generaciones cuando las plantas se vuelven demasiado pobladas. [5] Las pulgas de agua ( Daphnia magna ) han demostrado tanto plasticidad fenotípica como la capacidad de evolucionar genéticamente para lidiar con el estrés térmico de las aguas más cálidas de los estanques urbanos. [2]
La plasticidad fenotípica en las plantas incluye el momento de la transición de la etapa de crecimiento vegetativo a la reproductiva, la asignación de más recursos a las raíces en suelos que contienen bajas concentraciones de nutrientes , el tamaño de las semillas que produce un individuo dependiendo del entorno, [7] y la alteración de la forma, tamaño y grosor de las hojas . [8] Las hojas son particularmente plásticas y su crecimiento puede verse alterado por los niveles de luz. Las hojas que crecen a la luz tienden a ser más gruesas, lo que maximiza la fotosíntesis en luz directa; y tienen un área más pequeña, lo que enfría la hoja más rápidamente (debido a una capa límite más delgada ). Por el contrario, las hojas que crecen a la sombra tienden a ser más delgadas, con una mayor superficie para capturar más de la luz limitada. [9] [10] El diente de león es bien conocido por exhibir una considerable plasticidad en la forma cuando crece en ambientes soleados versus sombreados. Las proteínas de transporte presentes en las raíces también cambian dependiendo de la concentración del nutriente y la salinidad del suelo. [11] Algunas plantas, como por ejemplo Mesembryanthemum crystallinum , son capaces de alterar sus vías fotosintéticas para utilizar menos agua cuando sufren estrés hídrico o salino. [12]
Debido a la plasticidad fenotípica, es difícil explicar y predecir los rasgos cuando las plantas se cultivan en condiciones naturales a menos que se pueda obtener un índice ambiental explícito para cuantificar los entornos. La identificación de dichos índices ambientales explícitos a partir de períodos críticos de crecimiento que están altamente correlacionados con el tiempo de floración del sorgo y el arroz permite realizar tales predicciones. [6] [13] Se están realizando trabajos adicionales para apoyar a la industria agrícola, que enfrenta graves desafíos en la predicción de la expresión fenotípica de los cultivos en entornos cambiantes. Dado que muchos cultivos que sustentan el suministro mundial de alimentos se cultivan en una amplia variedad de entornos, la comprensión y la capacidad de predecir el genotipo del cultivo por la interacción con el entorno serán esenciales para la estabilidad alimentaria futura. [14]
Las hojas son muy importantes para una planta, ya que crean un camino por el que puede ocurrir la fotosíntesis y la termorregulación. Evolutivamente, la contribución ambiental a la forma de las hojas permitió que se crearan una gran variedad de tipos diferentes de hojas. [15] La forma de las hojas puede estar determinada tanto por la genética como por el medio ambiente. [16] Se ha demostrado que los factores ambientales, como la luz y la humedad, afectan la morfología de las hojas, [17] lo que da lugar a la pregunta de cómo se controla este cambio de forma a nivel molecular. Esto significa que diferentes hojas podrían tener el mismo gen pero presentar una forma diferente en función de factores ambientales. Las plantas son sésiles, por lo que esta plasticidad fenotípica permite que la planta absorba información de su entorno y responda sin cambiar su ubicación.
Para entender cómo funciona la morfología de las hojas, es necesario comprender su anatomía. La parte principal de la hoja, el limbo o lámina, está formada por la epidermis, el mesófilo y el tejido vascular. La epidermis contiene estomas que permiten el intercambio de gases y controlan la transpiración de la planta. El mesófilo contiene la mayor parte de los cloroplastos , donde puede producirse la fotosíntesis . El desarrollo de un limbo o lámina ancha puede maximizar la cantidad de luz que llega a la hoja, aumentando así la fotosíntesis; sin embargo, demasiada luz solar puede dañar la planta. Las láminas anchas también pueden atrapar el viento con facilidad, lo que puede causar estrés a la planta, por lo que encontrar un punto intermedio es imperativo para la aptitud de las plantas. La red reguladora genética es responsable de crear esta plasticidad fenotípica e involucra una variedad de genes y proteínas que regulan la morfología de las hojas. Se ha demostrado que las fitohormonas desempeñan un papel clave en la señalización en toda la planta, y los cambios en la concentración de las fitohormonas pueden provocar un cambio en el desarrollo. [18]
Se han realizado estudios sobre la especie de planta acuática Ludwigia arcuata para observar el papel del ácido abscísico (ABA), ya que se sabe que L. arcuata exhibe plasticidad fenotípica y tiene dos tipos diferentes de hojas, el tipo aéreo (hojas que tocan el aire) y el tipo sumergido (hojas que están bajo el agua). [19] Al agregar ABA a los brotes submarinos de L. arcuata , la planta pudo producir hojas de tipo aéreo bajo el agua, lo que sugiere que el aumento de las concentraciones de ABA en los brotes, probablemente causadas por el contacto con el aire o la falta de agua, desencadena el cambio del tipo de hoja sumergida al tipo aéreo. Esto sugiere el papel del ABA en el cambio fenotípico de las hojas y su importancia en la regulación del estrés a través del cambio ambiental (como la adaptación de estar bajo el agua a estar por encima del agua). En el mismo estudio, se demostró que otra fitohormona, el etileno, induce el fenotipo de hoja sumergida a diferencia del ABA, que indujo el fenotipo de hoja aérea. Debido a que el etileno es un gas, tiende a permanecer de forma endógena dentro de la planta cuando está bajo el agua; este aumento en la concentración de etileno induce un cambio de hojas aéreas a sumergidas y también se ha demostrado que inhibe la producción de ABA, lo que aumenta aún más el crecimiento de hojas de tipo sumergido. Estos factores (temperatura, disponibilidad de agua y fitohormonas) contribuyen a los cambios en la morfología de las hojas a lo largo de la vida de la planta y son vitales para maximizar su aptitud física.
Se han demostrado los efectos del desarrollo de la nutrición y la temperatura. [20] El lobo gris ( Canis lupus ) tiene una amplia plasticidad fenotípica. [21] [22] Además, los machos de las mariposas de madera moteada tienen dos morfos: uno con tres puntos en sus alas traseras y otro con cuatro puntos en sus alas traseras. El desarrollo del cuarto punto depende de las condiciones ambientales, más específicamente, la ubicación y la época del año. [23] En los anfibios , Pristimantis mutabilis tiene una notable plasticidad fenotípica, [24] así como Agalychnis callidryas cuyos embriones exhiben plasticidad fenotípica, eclosionando temprano en respuesta a perturbaciones para protegerse. Otro ejemplo es el pingüino de penacho amarillo del sur . [25] Los pingüinos de penacho amarillo están presentes en una variedad de climas y ubicaciones; las aguas subtropicales de la isla de Ámsterdam, el archipiélago de Kerguelen y las aguas costeras subantárticas del archipiélago de Crozet . [25] Debido a la plasticidad de las especies, estas son capaces de expresar diferentes estrategias y comportamientos de alimentación dependiendo del clima y el ambiente. [25] Un factor principal que ha influenciado el comportamiento de las especies es la ubicación del alimento. [25]
Las respuestas plásticas a la temperatura son esenciales entre los organismos ectotérmicos , ya que todos los aspectos de su fisiología dependen directamente de su entorno térmico. Como tal, la aclimatación térmica implica ajustes fenotípicos que se encuentran comúnmente en todos los taxones , como cambios en la composición lipídica de las membranas celulares . El cambio de temperatura influye en la fluidez de las membranas celulares al afectar el movimiento de las cadenas de acilo graso de los glicerofosfolípidos . Debido a que mantener la fluidez de la membrana es fundamental para la función celular, los ectotérmicos ajustan la composición de fosfolípidos de sus membranas celulares de tal manera que la fuerza de las fuerzas de van der Waals dentro de la membrana cambia, manteniendo así la fluidez a través de las temperaturas. [26]
La plasticidad fenotípica del sistema digestivo permite a algunos animales responder a cambios en la composición de nutrientes de la dieta, [27] [28] la calidad de la dieta, [29] [30] y los requerimientos de energía. [31] [32] [33]
Los cambios en la composición de nutrientes de la dieta (la proporción de lípidos, proteínas y carbohidratos) pueden ocurrir durante el desarrollo (por ejemplo, el destete) o con cambios estacionales en la abundancia de diferentes tipos de alimentos. Estos cambios en la dieta pueden provocar plasticidad en la actividad de enzimas digestivas particulares en el borde en cepillo del intestino delgado . Por ejemplo, en los primeros días después de la eclosión, los polluelos de gorriones domésticos ( Passer domesticus ) pasan de una dieta de insectos, alta en proteínas y lípidos, a una dieta basada en semillas que contiene principalmente carbohidratos; este cambio de dieta está acompañado por un aumento doble en la actividad de la enzima maltasa , que digiere los carbohidratos. [27] La aclimatación de los animales a dietas altas en proteínas puede aumentar la actividad de la aminopeptidasa -N, que digiere las proteínas. [28] [34]
Las dietas de mala calidad (aquellas que contienen una gran cantidad de material no digerible) tienen concentraciones más bajas de nutrientes, por lo que los animales deben procesar un mayor volumen total de alimentos de mala calidad para extraer la misma cantidad de energía que obtendrían de una dieta de alta calidad. Muchas especies responden a dietas de mala calidad aumentando su ingesta de alimentos, agrandando los órganos digestivos y aumentando la capacidad del tracto digestivo (por ejemplo, topillos de pradera , [33] jerbos de Mongolia , [30] codornices japonesas , [29] patos de bosque , [35] ánades reales [36] ). Las dietas de mala calidad también dan lugar a concentraciones más bajas de nutrientes en el lumen del intestino, lo que puede causar una disminución de la actividad de varias enzimas digestivas. [30]
Los animales suelen consumir más alimentos durante los períodos de alta demanda energética (por ejemplo, la lactancia o la exposición al frío en los endotermos ), esto se ve facilitado por un aumento del tamaño y la capacidad de los órganos digestivos, que es similar al fenotipo producido por dietas de mala calidad. Durante la lactancia, el degú común ( Octodon degus ) aumenta la masa de su hígado, intestino delgado, intestino grueso y ciego en un 15-35%. [31] Los aumentos en la ingesta de alimentos no provocan cambios en la actividad de las enzimas digestivas porque las concentraciones de nutrientes en el lumen intestinal están determinadas por la calidad de los alimentos y no se ven afectadas. [31] La alimentación intermitente también representa un aumento temporal en la ingesta de alimentos y puede inducir cambios dramáticos en el tamaño del intestino; la pitón birmana ( Python molurus bivittatus ) puede triplicar el tamaño de su intestino delgado solo unos días después de la alimentación. [37]
El gen AMY2B (alfa-amilasa 2B) codifica una proteína que ayuda en el primer paso de la digestión del almidón y el glucógeno de la dieta . Una expansión de este gen en los perros permitiría a los primeros perros aprovechar una dieta rica en almidón mientras se alimentaban de los desechos de la agricultura. Los datos indicaron que los lobos y los dingos tenían solo dos copias del gen y el husky siberiano, que está asociado con los cazadores-recolectores, tenía solo tres o cuatro copias, mientras que el saluki, que está asociado con la Media Luna Fértil , donde se originó la agricultura, tenía 29 copias. Los resultados muestran que, en promedio, los perros modernos tienen un alto número de copias del gen, mientras que los lobos y los dingos no. El alto número de copias de las variantes AMY2B probablemente ya existía como una variación permanente en los primeros perros domésticos, pero se expandió más recientemente con el desarrollo de grandes civilizaciones basadas en la agricultura. [38]
La infección con parásitos puede inducir plasticidad fenotípica como un medio para compensar los efectos perjudiciales causados por el parasitismo. Comúnmente, los invertebrados responden a la castración parasitaria o al aumento de la virulencia de los parásitos con una compensación de la fecundidad para aumentar su producción reproductiva o aptitud . Por ejemplo, las pulgas de agua ( Daphnia magna ), expuestas a parásitos microsporidios, producen más crías en las primeras etapas de la exposición para compensar la futura pérdida de éxito reproductivo. [39] También puede ocurrir una reducción en la fecundidad como un medio para redirigir los nutrientes a una respuesta inmune, [40] o para aumentar la longevidad del huésped. [41] Se ha demostrado que esta forma particular de plasticidad en ciertos casos está mediada por moléculas derivadas del huésped (por ejemplo, la esquistosamina en caracoles Lymnaea stagnalis infectados con trematodos Trichobilharzia ocellata ) que interfieren con la acción de las hormonas reproductivas en sus órganos diana. [42] También se piensa que los cambios en el esfuerzo reproductivo durante la infección son una alternativa menos costosa que aumentar la resistencia o la defensa contra los parásitos invasores, aunque pueden ocurrir en conjunto con una respuesta de defensa. [43]
Los hospedadores también pueden responder al parasitismo a través de la plasticidad en la fisiología, además de la reproducción. Los ratones domésticos infectados con nematodos intestinales experimentan una disminución en las tasas de transporte de glucosa en el intestino. Para compensar esto, los ratones aumentan la masa total de células mucosas, células responsables del transporte de glucosa, en el intestino. Esto permite que los ratones infectados mantengan la misma capacidad de absorción de glucosa y el mismo tamaño corporal que los ratones no infectados. [44]
La plasticidad fenotípica también se puede observar como cambios en el comportamiento. En respuesta a la infección, tanto los vertebrados como los invertebrados practican la automedicación , que puede considerarse una forma de plasticidad adaptativa. [45] Varias especies de primates no humanos infectados con gusanos intestinales participan en la deglución de hojas, en la que ingieren hojas enteras y ásperas que desalojan físicamente a los parásitos del intestino. Además, las hojas irritan la mucosa gástrica , lo que promueve la secreción de ácido gástrico y aumenta la motilidad intestinal , eliminando eficazmente los parásitos del sistema. [46] El término "plasticidad adaptativa autoinducida" se ha utilizado para describir situaciones en las que un comportamiento bajo selección causa cambios en los rasgos subordinados que a su vez mejoran la capacidad del organismo para realizar el comportamiento. [47] Por ejemplo, las aves que se involucran en la migración altitudinal podrían hacer "carreras de prueba" que duran unas pocas horas que inducirían cambios fisiológicos que mejorarían su capacidad para funcionar a gran altitud. [47]
Las orugas de oso lanudo ( Grammia incorrupta ) infectadas con moscas taquínidas aumentan su supervivencia al ingerir plantas que contienen toxinas conocidas como alcaloides pirrolizidínicos . Se desconoce la base fisiológica de este cambio de comportamiento; sin embargo, es posible que, al activarse, el sistema inmunitario envíe señales al sistema gustativo que desencadenen la plasticidad en las respuestas de alimentación durante la infección. [45]
Reproducción
La rana arbórea de ojos rojos, Agalychnis callidryas , es una rana arbórea (hylid) que reside en los trópicos de América Central. A diferencia de muchas ranas, la rana arbórea de ojos rojos tiene huevos arbóreos que se ponen en hojas que cuelgan sobre estanques o charcos grandes y, al eclosionar, los renacuajos caen al agua de abajo. Uno de los depredadores más comunes que encuentran estos huevos arbóreos es la serpiente de ojos de gato, Leptodeira septentrionalis . Para escapar de la depredación, las ranas arbóreas de ojos rojos han desarrollado una forma de plasticidad adaptativa, que también puede considerarse plasticidad fenotípica, en lo que respecta a la edad de eclosión; la nidada puede eclosionar prematuramente y sobrevivir fuera del huevo cinco días después de la oviposición cuando se enfrenta a una amenaza inmediata de depredación. Las nidadas de huevos toman información importante de las vibraciones que sienten a su alrededor y la utilizan para determinar si corren o no riesgo de depredación. En caso de un ataque de serpiente, la nidada identifica la amenaza por las vibraciones emitidas, lo que, a su vez, estimula la eclosión casi instantáneamente. En un experimento controlado realizado por Karen Warkentin, se observó la tasa de eclosión y las edades de las ranas arbóreas de ojos rojos en nidadas que fueron atacadas y no fueron atacadas por la serpiente de ojos de gato. Cuando una nidada fue atacada a los seis días de edad, toda la nidada eclosionó al mismo tiempo, casi instantáneamente. Sin embargo, cuando una nidada no se enfrenta a la amenaza de depredación, los huevos eclosionan gradualmente con el tiempo; los primeros eclosionan alrededor de siete días después de la oviposición, y los últimos de la nidada eclosionan alrededor del día diez. El estudio de Karen Warkentin explora más a fondo los beneficios y las desventajas de la plasticidad de eclosión en la rana arbórea de ojos rojos. [48]
Generalmente se piensa que la plasticidad es una adaptación evolutiva a las variaciones ambientales que es razonablemente predecible y ocurre dentro de la vida útil de un organismo individual, ya que permite a los individuos "adaptar" su fenotipo a diferentes entornos. [49] [50] Si el fenotipo óptimo en un entorno dado cambia con las condiciones ambientales, entonces la capacidad de los individuos para expresar diferentes rasgos debería ser ventajosa y, por lo tanto, seleccionada para . Por lo tanto, la plasticidad fenotípica puede evolucionar si la aptitud darwiniana aumenta al cambiar el fenotipo. [51] [52] Una lógica similar debería aplicarse en la evolución artificial que intenta introducir plasticidad fenotípica en agentes artificiales. [53] Sin embargo, los beneficios de la aptitud de la plasticidad pueden verse limitados por los costos energéticos de las respuestas plásticas (por ejemplo, sintetizar nuevas proteínas, ajustar la proporción de expresión de variantes de isoenzimas , mantener la maquinaria sensorial para detectar cambios), así como la previsibilidad y confiabilidad de las señales ambientales [54] (ver Hipótesis de aclimatación beneficiosa ).
Los caracoles de agua dulce ( Physa virgata ) son un ejemplo de cuándo la plasticidad fenotípica puede ser adaptativa o maladaptativa . En presencia de un depredador, el pez luna , estos caracoles hacen que la forma de su caparazón sea más redonda y reducen el crecimiento. Esto los hace más resistentes al aplastamiento y están mejor protegidos de la depredación. Sin embargo, estos caracoles no pueden distinguir la diferencia en las señales químicas entre el pez luna depredador y el no depredador. Por lo tanto, los caracoles responden de manera inapropiada al pez luna no depredador produciendo una forma de caparazón alterada y reduciendo el crecimiento. Estos cambios, en ausencia de un depredador, hacen que los caracoles sean susceptibles a otros depredadores y limitan la fecundidad . Por lo tanto, estos caracoles de agua dulce producen una respuesta adaptativa o maladaptativa a la señal ambiental dependiendo de si hay peces luna depredadores presentes o no. [55] [56]
Dada la profunda importancia ecológica de la temperatura y su variabilidad predecible en grandes escalas espaciales y temporales, se ha planteado la hipótesis de que la adaptación a la variación térmica es un mecanismo clave que determina la capacidad de los organismos para la plasticidad fenotípica. [57] Se cree que la magnitud de la variación térmica es directamente proporcional a la capacidad plástica, de modo que las especies que han evolucionado en el clima cálido y constante de los trópicos tienen una menor capacidad de plasticidad en comparación con las que viven en hábitats templados variables . Esta idea, denominada "hipótesis de variabilidad climática", ha sido apoyada por varios estudios de capacidad plástica en distintas latitudes tanto en plantas como en animales. [58] [59] Sin embargo, estudios recientes de especies de Drosophila no han podido detectar un patrón claro de plasticidad en gradientes latitudinales, lo que sugiere que esta hipótesis puede no ser válida para todos los taxones o para todos los rasgos. [60] Algunos investigadores proponen que las medidas directas de la variabilidad ambiental, utilizando factores como la precipitación, son mejores predictores de la plasticidad fenotípica que la latitud por sí sola. [61]
Los experimentos de selección y los enfoques de evolución experimental han demostrado que la plasticidad es un rasgo que puede evolucionar cuando está bajo selección directa y también como una respuesta correlacionada a la selección en los valores promedio de rasgos particulares. [62]
La plasticidad temporal , también conocida como adaptación ambiental de grano fino, [63] es un tipo de plasticidad fenotípica que implica el cambio fenotípico de los organismos en respuesta a cambios en el medio ambiente a lo largo del tiempo. Los animales pueden responder a cambios ambientales de corto plazo con cambios fisiológicos (reversibles) y de comportamiento ; las plantas, que son sedentarias, responden a cambios ambientales de corto plazo con cambios tanto fisiológicos como de desarrollo (no reversibles). [64]
La plasticidad temporal se produce en una escala de tiempo de minutos, días o estaciones, y en entornos que son tanto variables como predecibles dentro de la vida útil de un individuo. La plasticidad temporal se considera adaptativa si la respuesta fenotípica da como resultado una mayor aptitud . [65] Se pueden observar cambios fenotípicos no reversibles en organismos metaméricos como las plantas que dependen de las condiciones ambientales en las que se desarrolló cada metámero. [63] En algunas circunstancias, la exposición temprana a factores estresantes específicos puede afectar la forma en que una planta individual es capaz de responder a futuros cambios ambientales ( Metaplasticidad ). [66]Se prevé que en los próximos 100 años se produzcan tasas de cambio climático sin precedentes como resultado de la actividad humana. [67] La plasticidad fenotípica es un mecanismo clave con el que los organismos pueden hacer frente a un clima cambiante, ya que permite a los individuos responder al cambio durante su vida. [68] Se cree que esto es particularmente importante para las especies con tiempos generacionales largos, ya que las respuestas evolutivas a través de la selección natural pueden no producir cambios lo suficientemente rápido como para mitigar los efectos de un clima más cálido.
La ardilla roja norteamericana ( Tamiasciurus hudsonicus ) ha experimentado un aumento de la temperatura media durante la última década de casi 2 °C. Este aumento de la temperatura ha provocado un aumento de la abundancia de piñas de abeto blanco, la principal fuente de alimento para la reproducción invernal y primaveral. En respuesta, la fecha media de parto de esta especie se ha adelantado 18 días. La abundancia de alimento mostró un efecto significativo en la fecha de cría con hembras individuales, lo que indica una gran cantidad de plasticidad fenotípica en este rasgo. [69]